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Abstract. The three-dimensional shock-bubble interaction is investigated numerically using 
high-resolution piecewise parabolic method, in which both the viscous and turbulence effects are 
considered. The bubble is fixed at the same size and is accelerated by a planar shock wave of 
different strengths, in which the Mach number (Ma) ranges from 1.2 to 6.0. The bubbles are filled 
with four different gases (Helium, Nitrogen, Krypton and R12) surrounded by air in order to 
investigate different density jumps across the interface (Atwood number -0.8<A<0.7). The 
computational results of low Ma cases agree well with that of experiments quantitatively. The 
deformation process of bubble geometry is quite different as the change of A and Ma, particularly 
for A>0 and A<0. In all cases, statistical quantities like the compression ratio, mean bubble fluid 
velocity and mixing ratio are studied in detail. As the increase of Ma for fixed A, the compression 
ratio is highly raised, and the time-dependent mean bubble velocity is influenced as well. In 
addition, the ‘mixedness’ between two fluids is enhanced greatly as Ma increases. More importantly, 
it is found that some existed scaling laws of these quantities for the shock wave strength can’t be 
directly applied to high Ma cases. 

Introduction  

The problem of a shock interact with a bubble has received wide concerns due to its interesting 
features involved, since the pioneer work of Rudinger & Somers (1960)[1]. The fundamental 
features like the distribution of inhomogeneities of density, pressure, temperature or other state 
variables can serve as strong perturbations which will alter the shock fronts, bubble geometry and 
many other properties when driven by a planar shock wave impulsively[2, 3]. For instance, the 
gradients of density and pressure are not colinear after shock passage and act as an important source 
in generating characteristic vortices, and hence result in further distortion of the interface and 
mixing between two fluids [5]. It is well-known that the interaction of a shock with a density 
inhomogeneity will lead to Richtmyer-Meshkov instabilities (RMI) [6], which occur in broad area 
of applications such as inertial confinement fusion (ICF) implosions, combustion of scramjet or 
supernova explosion. There are some similarities in basic features between shock-bubble interaction 
(SBI) and RMI, and therefore the better understanding of the former can help us dealing with RMI. 
Due to the nature of multifluid mixture or even multiphase, in combination of the complicated 
underlying mechanisms of RMI, a lot of efforts have been made to study SBI theoretically [7], 
experimentally [5] and numerically [8, 9]. 

The SBI system has many configurations, wherein the simplest one is corresponding to a single 
spherical bubble accelerated by a planar incident shock. The ambient unshocked gas medium has 
the density

1 , and the unshocked bubble has density
2 . A dimensionless parameter is defined 

referred to as Atwood number (A) to scale the density jump    2 1 2 1A       . The incident 
shock of different intensity (usually generated in a shock tube experimentally) is scaled by Mach 
number Ma. A>0 means that the bubble is heavier than the ambient gas (‘heave-bubble’ case), 

which also implies that the sound speed in the bubble 2c  is faster than that in ambient gas 1c . On 

the contrary, A<0 represents a ‘light-bubble’ case ( 1 2c c ). The difference of sound speed has great 
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influence on the shock refraction pattern, which is a determinant associated with bubble 
deformation [8]. Therefore, the A and Ma are two of the most important control parameters for SBI. 

Numerical Method  

So far, many numerical studies of SBI have been carried out, however, relatively little work has 
been made to study the SBI with strong shocks in three dimensions (3D), particularly considering 
the viscous and turbulence effects. In this work, the gas bubble (-0.8<A<0.7) which is accelerated 
by both weak and strong shock will be simulated using high-resolution piecewise parabolic method 
(PPM) in 3D with viscous and turbulence effects considered. Four cases of different shock strength 
are considered: two ‘weak-shock’ cases (Ma= 1.2, 1.5) and two ‘strong-shock’ cases (Ma=3.0, 6.0).  
We have focused on investigating the morphology and time-dependent bubble dynamics, and some 
integral properties have be presented quantitatively. The results of ‘weak-shock’ cases are 
compared to that of the existed experiments [5]. In addition, the integral properties of all cases are 
analyzed and compared so as to clarify the partial influence of Mach number. 

 
Fig. 1 the Configurations of the Computational Domain 

The configuration of the computational domain is shown in Fig.1. The domain has the size of 
( 0.08 0.08 0.2  ) m in , ,x y z  direction respectively. The bubble has a diameter 0.04  m and 
its center is located at (0.04, 0.04, 0.17) m. The initial diaphragm is placed at z=0.19 m, the left is 
unshocked gas with atmospheric pressure p = 101325 Pa. The bubble is filled with four different 
gases (Helium, Nitrogen, Krypton and R12), and the ambient gas is air. The initial properties and 
sound speeds for the gases are given in table 1(The initial temperature is 293 K). 

Tab. 1 the Initial Properties of the Gases 

 
The filtered three-dimensional Navier-Stokes equations in Cartesian coordinates are employed to 

resolve the this problem, which are expressed as 
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 is the viscous stress tensor,  ij i j i ju u u u   is the 

subgrid scale(SGS)stress tensor which is explicitly modelled by the same techniques adopted in[10]. 
N is the number of components. 

To solve the Equations (1)-(4), the inviscid fluxes are discretized by PPM method, while the 
viscous and heat fluxes are discretized by second-order central difference scheme. Using the 
dimension-splitting technique, the 3D problem can be simplified to 1D problem, and then two-step 
Lagrange-Remap algorithm is applied for time advancing [11]. About 37 million cells are adopted 
in the computation, and at least 120 cells are distributed in the bubble in each direction. 

In this work, the conditions of ‘weak-shock’ cases are set the same to Layes & Métayer's 
experiments [5] for the sake of comparison. Layes & Métayer measured the trajectory of incident 
and transmitted shock, and two points on the interface indicated by point 1 and 4, which located at 
the upstream structure and downstream one, respectively. The comparisons between the present 
results and experimental trajectories are made, and good agreement is achieved, as illustrated in 
Fig.2. At late times, the velocity of point 1 and 4 are almost constant, and the latter is faster. 

 
(a)                            (b) 

 
(c)                          (d) 

Fig. 2 the Trajectories of Numerical Simulations and Experiments (a, b) Ma=1.2; (c, d) Ma=1.5 

Results and Discussions 

The time-dependent morphology of the Helium bubble is shown in Fig.3. Because of A<0, the 
incident shock wave is slower than the transmitted shock wave, and the latter has convex curvature.  
Influenced by baroclinic mechanism, vorticity is generated and deposited on the interface due to 
strong gradients of density and pressure [12]. The upstream portion of the interface is inversed, and 
a vortex ring is formed in all cases initially. With increased Mach number, the bubble deformation 
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becomes larger, and the size of the bubble is diminished greatly. A significant difference between 
strong and weak shock cases is found: there are two vortex rings formed in cases of Ma = 1.2, 1.5 
and the forward one contains more helium gas as increase of Ma while only a single vortex ring is 
found in ‘strong-shock’ cases, as shown in Fig.3. 

    
(a)The volume fraction in y-z plane at x=0.04m 
(from top to bottom Ma=1.2, 1.5, 3.0 and 6.0) 

(b) The iso-surfuce of the volume fraction 
( 0.75heliumY  )(from left to right Ma=1.2, 1.5, 3.0 

and 6.0) 

Fig. 3 the Time-dependent Morphology of the Helium Bubble

As aforementioned, the size of bubble decreases with increase in Ma, this is response of the 
bubble to the compressive effects. Such effects can be quantitatively measured through integral 
flow quantities, for instance, to track the mean density of the bubble fluid. Niederhaus et al.(2008)[8] 
measured the ‘compression ratio’  for different scenarios using simulation data, and then 
normalized them to one-dimensional model of Giodnao & Burtschell(2006)[13]. The compression 
ratio is defined as *

0( ) ( )C t V V t  and ( )C t is the normalized one, where *( )V t is the total weighted 
volume of the helium gas written as *( ) ( , , , )

D
V t Y x y x t dV  . Y is the local volume fraction of bubble 

gas and D is the entire computational domain. 0V  is the initial volume of the bubble. 

  
(a)                        (b) 

 
                           (c)                        (d) 

Fig. 4 Compression Ratio ( )C t -Dimensionless Time(a)air-He; (b)air-
2N ; (c)air-Kr; (d)air-R12 
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Fig.4 shows the history of ( )C t  in present simulations, and the time is scaled based on Ma and 
sound speed 0c  in unshocked air. It is interesting that ( )C t  approaches a value close to Ma for
Ma 3.0 . For Ma=6.0, drastic oscillations are observed for ( )C t , which should be related with 
stronger intensity of scattered shocks and rarefaction waves. In ‘weak-shock’ cases, the amplitudes 
of oscillations are much smaller. Here, in the case of Helium bubble, ( )C t  is computed using 
densities according to [8] in Fig.5, with the final volume fV  estimated directly in simulation at late 
times. It is easy to find that ( )C t  yields quite well collapse for Ma=1.2 and 1.5.For Ma 3.0 , ( )C t  
grows quicker and reaches a peak value larger than 1 around dimensionless time 2. It seems that the 
unified normalization can describe the low Ma cases well, but high Ma cases violate such 
normalization. 

The mean Helium bubble fluid velocities are presented in Fig. 5(b). In the simulation, the bubble 
moves along z-direction, hence, the w  is used to compute the integral velocity: 

0

1( ) b

D

v t YwdV
V

   , where
b   is the local partial density of the bubble fluid. v  increases fast when 

accelerated by the incident shock wave at the initial stage, then oscillate and settle down to a nearly 
constant value gradually. Here, the inflow velocity 

flowU  is utilized to scale v . For Ma 3.0 the 
final v around 1.5

flowU , while this value is near 
flowU  as Ma = 6.0. In the shadow area, v decrease 

abruptly in cases of Ma=3 and 6. The decline occurs at the moment that the transmitted shock wave 
leaves the bubble and the bubble is largely deformed. 

 
 (a)                     (b)                       (c) 

Fig. 5 Air-He: (a) .Normalized Compression Ratio ( )C t - dimensionless time (b) The mean 
velocities of bubble. (c)The time-dependent mixing ratio ( )t  

An important aspect of SBI is mixing between the helium gas and air. A dimensionless quantity 
( )t  is defined to scale the ‘mixedness’, which is expressed as : ( , , , )

( ) 1 B

B

Y x y z t dV

t
dV

  




, where B is 

the region containing the bubble fluid. The Helium bubble time-dependent ‘mixedness’ is plotted in 
Fig.5(c). It is obvious that the ‘mixedness’ is highly raised with the increased Ma. The growth rate 
of ( )t  varies before and after the shock passage, the former is larger, which can easily be found 
in cases of Ma=1.2 and 1.5. However, such a trend is less obvious in ‘strong-shock’ cases. 

Summary 

The interactions of a planar shock and a gas bubble in 3D with different Ma have been 
investigated. The high-order PPM method is utilized to capture the interface of the two fluids in 
consideration of viscous and turbulence effects. It is found that the bubble deforms quite different as 
the increase of Ma, two vortex rings are identified in low Ma cases, while only a single vortex ring 
is found in high Ma cases. The quantitative results measured in present simulations agree well with 
that of experiments. The compression ratio ( )C t  increases as Ma increases, and unified 
normalization ( )C t can only applied to low Ma cases. In addition, Ma has a large impact on the 
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mean bubble fluid velocity, as well as the ‘mixedness’. The ‘mixedness is highly enhanced as Ma is 
increased. 
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