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Abstract

We introduce expected coverage probability as a measure for constructing confidence intervals for the
binomial proportion, π . We propose a model based confidence interval for π using the expected coverage
probabilities of the Clopper-Pearson interval. The method provides intervals comparable or better than
the alternative intervals, such as the Wilson, Agresti-Coull and Jeffreys intervals.
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1. Introduction

Recent years have seen considerable development in a very basic but important problem in statistical practice,
namely interval estimation of the probability of success, π, from a binomial observation, x ∼ Bin(n,π). A point
estimate of π is provided by the MLE p = x

n , where x is the number of successes in n Bernoulli trials with prob-
ability π succss on each trial. A considerable literature exists about different methods of forming confidence
intervals for π (e.g. [1, 2, 3, 4] ). These and other authors have used a number of alternative methods of forming
confidence intervals for π . To name some, we have Wald, Wilson, Jeffreys, Agresti-Coull and Clopper-Pearson
intervals among others. The two papers, [5, 6] provide a thorough study of the coverage characteristics of these
intervals.

For most of these intervals their validity depends heavily on the large sample approximation. To improve the
normal approximation, in particular for the Wald interval, some intervals based on transformation of sample
proportion were proposed. These intervals include arcsine transformation, probit transformation and comple-
mentary log-log transformation. These approaches have better convergence rates than the Wald interval. To
avoid normal approximation, exact intervals can be derived directly from the binomial distribution. Especially
these days, with modern computational power, it is not necessary to rely on large sample approximations to
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obtain the distribution of test statistic and confidence intervals for the binomial proportion. Tests and confidence
intervals can use the binomial distribution directly rather than its approximation. The best known interval of this
type is Clopper-Pearson (CP) interval; it uses the tail method for forming confidence intervals. According to [7]
and [8], there was a time when this method was treated as the “golden rule” for obtaining binomial proportion
confidence intervals. In a traditional statistical sense, the appealing coverage probability of at least 100(1−α)%
is accepted by many statisticians as well as practitioners. In other words, it is well known that the CP interval is
conservative in the sense that (1−α) is not the greatest lower bound for the coverage probability.

To improve the conservativeness, in this paper we consider an alternative method to construct confidence in-
tervals for π through introducing a measure of expected coverage probability (see Section 2 for the definition
of the expected coverage). We then model these expected coverage probabilities as a function of the limits of
the confidence interval. As mentioned before for a given value of α , the 100(1−α)% CP intervals are known
to provide conservative intervals, wherein the true coverage probability is always equal to or above the nominal
coverage probability. Furthermore, the expected coverage probabilities are bounded below by the nominal level
(see Proposition 1). For instance, given x and n, a 95% CP interval has an expected coverage much greater than
95%.

Our approach enables one to determine comparable or better confidence interval than those of Wald, Wilson,
Agresit-Coull and Jeffreys from observed proportion of success when these approaches are inadequate. For
example, [5] and other authors have shown the inconsistency and poor performance of the Wald interval unless
npq is large. The use of the Wilson interval or Jeffreys interval for a small n and the Agresti and Coull interval
for a large n was recommended by [5]. Various evaluations indicate that the Clopper-Pearson interval tends to be
extremely conservative for small to moderate n. We believe that our method is valuable for instructors as well,
particularly when they conclude that the confidence intervals in many textbooks are erroneous. For example,
most texts use the traditional (Wald) interval which has a long history. The methodology and tables of CP inter-
vals can be found in many intermediate and most advanced statistics (e.g. [9]). But these two have been found to
be somewhat inaccurate. Because of the accessibility of digital computers and programmable electronic devices
such as calculators and smart phones, the new approach can be easily obtained.

In Section 2, we introduce the concept of expected coverage probabilities. In Section 3, we discuss the con-
struction of the model based confidence interval for π and give the new confidence intervals Mnew for various
values of n at a given level of confidence. Section 4 compares the performance of the Mnew and the most com-
monly used alternative confidence intervals using coverage probabilities, mean coverage probabilities, average
expected length and mean absolute errors.

2. Expected Coverage Probability

The concept of expected coverage probability being introduced here is an extension of the true coverage which
is usually provided for a given n and π . For each observed x = 0,1, · · · ,n, let the 100(1−α)% confidence
intervals be denoted by CIx,n,1−α . Furthermore, let Lx,n,1−α and Ux,n,1−α denote the lower and upper limits of the
confidence interval, respectively. Now, for fixed n, π and α, the true coverage probability is

C(n,1−α,π) =
n

∑
x=0

δ (x) f (x|π) (2.1)

where, f (x|π) =
(n

x

)
πx(1−π)n−x , x = 0, . . . ,n and δ (x) = 1 if CIx,n,1−α captures π and is 0, otherwise.
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For a given x, n and α , we now define the expected coverage probability of CIx,n,1−α as follows

EC(x,n,1−α) =
∫ 1

0
C(n,1−α,π)w(π)dπ. (2.2)

Here w(π) =
{

f (x|π)/
∫ 1

0 f (x|π)dπ
}

. As the name suggests, the expected coverage probability is the ex-
pectation of the true coverage over π for a given x. It can be easily noticed that the expression of the expected
coverage is the conditional distribution of π given x. Thus, the expected coverage can be considered as the
posterior expected coverage given x. For the sake of simplicity and convenience, we place a prior distribution
of beta(1,1) on the parameter π of a binomial distribution. Just to illustrate, when x = 2 and n = 15, for the
95% confidence interval, the expected coverage for CP, Wilson and Jeffreys intervals are 98.28%, 95.69% and
96.72%, respectively. Also, when x = 8 and n = 15, the expected coverage for CP, Wilson and Jeffreys intervals
are 97.42%, 95.11% and 94.78%, respectively.

Lemma 1.
EC(x,n,1−α) = (n+1)

∫ 1

0
C(n,1−α,π) f (x|π)dπ. (2.3)

Proof. The proof of this lemma is straightforward and trivial. First we write f (x|π) =
(n

x

)
πx(1−π)n−x and(n

x

)
= Γ(n+1)

Γ(x+1)Γ(n−x+1) since Γ(k) = (k−1)! when k is an integer.
Note that, f (x|π) is a density function in π and a probability mass function in x. We can easily calculate the

marginal density of X by integrating the joint over π .
Now, recall the beta density

g(u) =
Γ(a+b)
Γ(a)Γ(b)

ua−1(1−u)b−1, 0 6 u 6 1.

The fact that this density integrates to 1 implies
∫ 1

0
ua−1(1−u)b−1du =

Γ(a)Γ(b)
Γ(a+b)

.

Thus, identifying u with π , a−1 with x, and b−1 with n− x,

∫ 1

0

(
n
x

)
πx(1−π)n−xdπ =

Γ(n+1)
Γ(x+1)Γ(n− x+1)

∫ 1

0
πx(1−π)n−xdπ =

1
n+1

.

The rest follows using (2.2).

The integral on the right hand side of (2.3) does not have a closed form solution. Thus, we replace it by a
numerical approximation involving summation over the range of π having a specified increment, say ∆π . This
∆π could be a small fixed positive number. Practically, ∆π = 1/m, where m is a finite large positive integer, such
as 100, 1000 or 10000 . Let V = {0,∆π,2∆π,3∆π, . . . ,m∆π}, then the numerical approximation of the expected
coverage probability is

EC(x,n,1−α)≈ (n+1) ∑
π∈V

C(n,1−α,π) f (x|π)∆π. (2.4)

In other words, the approximate expected coverage probability approach uses a weighted sum of the true
coverage probabilities over distributions of π to derive its value at any x. In order to assign these weights,
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we create a weight function that gives the largest weight to the true coverage corresponding to π such that,
(x− 1)/n 6 π 6 (x + 1)/(n + 1). As nπ moves away from x, the weight will eventually decay to zero. We
illustrate this using fixed values of n = 12, x = 4 and 0 6 π 6 1 with an increment of 0.1. Table 1 provides com-
putation of the expected coverage probabilities of CP, Wald, Wilson, Jeffreys, (which are 0.972, 0.883, 0.962
and 0.962, respectively) for α = 0.05.

Table 1: A 95% coverage probabilities and expected coverage probabilities at x = 4 of CP, Wald, Wilson, and
Jeffreys for n = 12, 0 6 π 6 1 with increment of 0.1, and probabilities of success for x = 4 evaluated at the
different values of π .

π C(12,0.95,π) CP Wald Wilson Jeffreys f (4|π)
∑π∈V f (4|π)

0.000 C(12,0.95,0.0) 1.000 1.000 1.000 1.000 0.000
0.100 C(12,0.95,0.1) 0.996 0.713 0.974 0.974 0.027
0.200 C(12,0.95,0.2) 0.981 0.912 0.981 0.981 0.173
0.300 C(12,0.95,0.3) 0.977 0.876 0.948 0.948 0.300
0.400 C(12,0.95,0.4) 0.965 0.901 0.965 0.965 0.277
0.500 C(12,0.95,0.5) 0.961 0.854 0.961 0.961 0.157
0.600 C(12,0.95,0.6) 0.965 0.901 0.965 0.965 0.055
0.700 C(12,0.95,0.7) 0.977 0.876 0.948 0.948 0.010
0.800 C(12,0.95,0.8) 0.981 0.912 0.981 0.981 0.001
0.900 C(12,0.95,0.9) 0.996 0.713 0.974 0.974 0.000
1.000 C(12,0.95,1.0) 1.000 1.000 1.000 1.000 0.000

EC(4,12,0.95) 0.972 0.883 0.962 0.962
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Figure 1: Display of the expected coverage probabilities of CP for n = 50 and n = 15, 99% (solid curve), 95%
(dashed curve) and 90% (dotted curve).

Figure 1 shows the trend in expected coverage probabilities of CP for n = 15 and n = 50 at 90%, 95% and
99% nominal coverage probabilities. One can see that the discrepancies of the expected coverage probabilities
from nominal levels increases for x near 0 or n and decreases when x is close to n/2. In addition, one can
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observe that the conservativeness of the CP intervals increases as the confidence level decreases and decreases
as the sample size increases as expected.
Proposition 1 Consider any fixed n and 0 < α < 1. Let EC(x,n,1−α) be the expected coverage probabilities
of Clopper-Pearson for any fixed 1 6 x 6 n then EC(x,n,1−α) > 1−α.

Proof. Suppose 0 < α < 1 and 1 6 x 6 n with EC(x,n,1−α) as in (2.2).

EC(x,n,1−α) =
∫ 1

0
C(n,1−α,π)

{
f (x|π)

∫ 1
0 f (x|π)dπ

}
dπ

>
∫ 1

0
(1−α)

{
f (x|π)

∫ 1
0 f (x|π)dπ

}
dπ

since C(n,1−α,π) is bounded below by (1−α) (see, [10] and [11], i.e. C(n,1−α,π) > (1−α)

= (1−α)
∫ 1

0

{
f (x|π)

∫ 1
0 f (x|π)dπ

}
dπ = (1−α).

3. Construction of Modified Clopper-Pearson Intervals

In this section, before we introduce our method, we review some fundamental concepts of the Clopper-Pearson
interval that can help us to lay groundwork for the construction of our interval. The methodology and results
along with more details about the properties of Clopper-Pearson method can be found in [11] and [9].

The “exact” 100(1−α)% confidence interval of Clopper and Pearson is obtained by inverting the binomial
test of H0 : π = π0. For 0 6 x 6 n, to obtain the lower and upper confidence limits, we solve

Pπ0(X > x) =
n

∑
i=x

(
n
i

)
π i

0(1−π0)n−i =
α
2

, (3.1)

and

Pπ0(X 6 x) =
x

∑
i=0

(
n
i

)
π i

0(1−π0)n−i =
α
2

. (3.2)

The explicit form of the solutions for the confidence limits using the F-dist is
(

xF2x,2(n−x+1)(1−α/2)
n− x+1+ xF2x,2(n−x+1)(1−α/2)

,
(x+1)F2(x+1),2(n−x)(α/2)

n− x+(x+1)F2(x+1),2(n−x)(α/2)

)
, (3.3)

for more details about (3.3) see [11].
Here Fa,b(c) denotes the 1− c quantile of the F-distribution with degrees of freedom a and b. The following

endpoint adjustments are needed: the lower limit is 0 if x = 0 and the upper limit is 1 when x = n. As mentioned
before, the interval has true coverage probabilities of at least 1−α for all n and π (see, for example, [5]). The
limits can also be obtained using root finding routines such as bisection method or Newton-Raphson method for
a given x and n using (3.1) and (3.2).
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In order to construct the model based confidence interval Mnew, the following algorithms are proposed to com-
pute the confidence limits for given x, n and α∗.

Step 1. For a given n and all outcomes, x = 0,1, . . . ,n, obtain the 100(1−α)% CP confidence intervals. Denoting
the confidence interval by CI(CP)(x,n,1−α), let L(CP)(x,n,1−α) and U(CP)(x,n,1−α) be the corresponding lower
and upper limits of this confidence interval, respectively.

Step 2. For fixed π and α , obtain the true coverage probability for the CP confidence intervals using (2.1).

Step 3. Taking ∆π = 0.001, find the expected coverage probability of CI(CP)(x,n,1−α) for fixed x, n and α using
(2.4).

Step 4. For given x and n, in order to find the desired 100(1−α∗)% confidence interval, model the expected
coverage probabilities for various values of the lower limits, L(CP)(x,n,1−α) by varying 1−α . The range
of 1−α, for building the model, is chosen such that the corresponding expected coverage probabilities
contain 1−α∗.

Similarly, model the expected coverage probabilities for various values of the upper limits, U(CP)(x,n,1−α).

Finally, fit the two logistic regression models

Logit(EC(x,n,1−α)) = βL0 +βL1L(CP)(x,n,1−α)

and
Logit(EC(x,n,1−α)) = βU0 +βU1U(CP)(x,n,1−α).

Step 5. For i = 0,1, let the estimate of the coefficients, βLi and βUi be bLi and bUi, respectively. Then the modified
upper and lower limits for the 100(1−α∗)% confidence interval are obtained by inverting the equations
given in step 4, as follows

Lower Limit : L(new)(x,n,1−α∗) =
(

log
[

1−α∗

α∗

]
−bL0

)
/bL1,

Upper Limit : U(new)(x,n,1−α∗) =
(

log(
1−α∗

α∗ )−bU0

)
/bU1.

Following the above steps, one can obtain the 100(1−α∗)% confidence intervals for various values of n and x.
In general, for building the logistic model, the values of 1−α can range from 0.50 to 0.999 with increments
of 0.001. However, for more commonly used values of 1−α∗, such as 0.99, 0.95 or 0.90, we prescribe more
precise ranges for 1−α . For example, for the 100(1−α∗)% = 95% confidence interval, in order to fit the
logistic model, the values of 1−α may range from 0.7 to 0.95 with increments of 0.001. Similarly, for fitting
the 99% and 90% confidence intervals, the values of 1−α range from 0.90 to 0.999 (with increment of 0.001)
and 0.55 to 0.90 (with increment of 0.001), respectively. For building the model, the above ranges of 1−α
ensure that the corresponding expected coverage probabilities contains 0.95, 0.99 and 0.90, respectively. We
obtain the 95% confidence intervals for various values of n (= 5,6, . . . ,40) and x (= 0,1, . . . ,n). The results
are displayed in Tables 2 and 3. For each n, we give the intervals for x = 0,1, . . . , [n/2], where [z] represents
the largest integer less than or equal to z. The intervals for the other values of x follows from the relation

Published by Atlantis Press 
Copyright: the authors 

301



Modified Clopper-Pearson Confidence Interval for Binomial Proportion

L(new)(x,n,1−α∗) = 1−U(new)(n−x,n,1−α∗).

Some select confidence limits using the new approach are also provided for 90% and 99% confidence intervals.
The results are given in Table 4. The results in this article can be reproduced using our R code. The authors have
provided a confidence interval function in R on the Web page at http: //gozips.uakron.edu/̃dh52/confnew.html.
The function allows the user to request any of the confidence intervals for choices n, x and α∗.

4. Comparison of the Confidence Intervals

The comparison of the Wald, Clopper-Pearson (CP), Wilson, Agresit-Coull (AC), Jeffreys and our Mnew inter-
vals are carried out in this section. In Figure 2 we provide the coverage probabilities for the six intervals for a
fixed n = 50 and variable π while taking 95% confidence level. From Figure 2, the coverage probability of the
Wald is strictly smaller than the nominal coverage probability of 0.95. The coverage probabilities of Wilson,
AC, Jeffreys and Mnew fluctuate around the target confidence level. The oscillation in the coverage probabilities
is caused by the discreteness of the binomial distribution. See [5], [12] and [13] for a more detailed discussion.
The plots in Figure 2 and our evaluation show that when π nears 0.5, the performance of Mnew is better than the
other alternative intervals. Similarly, in Figure 3, we compare the six intervals using fixed π = 0.25 and variable
n. In this figure the coverage probabilities of Mnew shows fewer oscillations and the coverage probabilities do
not deviate significantly from the nominal coverage probability.

Instead of comparing the performance of our method using coverage probabilities, in some cases, the cover-
age probabilities vary according to the parameter value due to the discreteness of the binomial distribution. So
we used mean coverage probability, expected length along with the average of expected length of the intervals
and mean absolute errors for n = 5,6, . . . ,55. The results are given in Figures 4-7. The mean coverage probabil-
ity, expected length, average expected length and mean absolute errors for a given n and 1−α∗ are computed as
follows, respectively:
Mean coverage probability

C(n,1−α) =
∫ 1

0
C(n,1−α∗,π)g(π)dπ,

expected length

En,π(length(CI)) =
n

∑
x=0

(Ux,n,1−α −Lx,n,1−α)
(

n
x

)
πx(1−π)n−x

and the average expected length is given by the following integral
∫ 1

0
En,π(length(CI))dπ,

mean absolute errors, ∫ 1

0
|C(n,1−α)− (1−α)|dπ,

where g(π) = 1 for 0 6 π 6 1. From Figures 4-7, we see that Mnew provides comparable estimates vis-a-vis
those of Wilson, Jeffreys and Agresit-Coull. The performance of Mnew is consistently comparable or better than
those of Wilson, AC and Jeffreys. This supports our observations made in Figures 2 and 3. In these examples,
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Table 2: The 95% confidence limits based on “Mnew” approach for 5 6 n 6 28.
Lnew Unew Lnew Unew Lnew Unew Lnew Unew Lnew Unew Lnew Unew

x 5 6 7 8 9 10
0 0.000 0.360 0.000 0.314 0.000 0.279 0.000 0.250 0.000 0.228 0.000 0.208
1 0.020 0.597 0.016 0.528 0.013 0.474 0.011 0.428 0.010 0.391 0.009 0.359
2 0.100 0.774 0.078 0.696 0.065 0.631 0.055 0.575 0.048 0.528 0.043 0.487
3 0.174 0.826 0.141 0.758 0.120 0.697 0.104 0.644 0.092 0.598
4 0.202 0.798 0.173 0.743 0.152 0.693
5 0.224 0.776

x 11 12 13 14 15 16
0 0.000 0.193 0.000 0.179 0.000 0.166 0.000 0.155 0.000 0.145 0.000 0.136
1 0.008 0.332 0.007 0.309 0.006 0.289 0.006 0.271 0.006 0.255 0.005 0.241
2 0.039 0.452 0.035 0.422 0.032 0.395 0.030 0.372 0.028 0.351 0.026 0.332
3 0.082 0.557 0.075 0.521 0.068 0.489 0.063 0.461 0.058 0.436 0.054 0.413
4 0.136 0.648 0.123 0.609 0.112 0.573 0.103 0.541 0.096 0.512 0.089 0.486
5 0.199 0.729 0.179 0.687 0.163 0.648 0.150 0.614 0.138 0.582 0.129 0.554
6 0.243 0.757 0.220 0.717 0.201 0.681 0.186 0.647 0.172 0.616
7 0.258 0.742 0.237 0.707 0.220 0.674
8 0.271 0.729

x 17 18 19 20 21 22
0 0.000 0.128 0.000 0.122 0.000 0.117 0.000 0.112 0.000 0.107 0.000 0.103
1 0.005 0.229 0.005 0.217 0.004 0.207 0.004 0.198 0.004 0.189 0.004 0.181
2 0.024 0.315 0.023 0.300 0.021 0.286 0.020 0.273 0.019 0.261 0.018 0.251
3 0.051 0.392 0.048 0.374 0.045 0.357 0.043 0.341 0.041 0.327 0.039 0.314
4 0.083 0.463 0.078 0.441 0.074 0.422 0.070 0.404 0.066 0.387 0.063 0.372
5 0.120 0.528 0.113 0.504 0.106 0.482 0.100 0.462 0.095 0.443 0.091 0.426
6 0.161 0.588 0.151 0.562 0.142 0.538 0.134 0.516 0.127 0.496 0.121 0.477
7 0.205 0.644 0.192 0.617 0.180 0.591 0.170 0.568 0.161 0.546 0.153 0.525
8 0.252 0.698 0.236 0.668 0.221 0.642 0.209 0.617 0.197 0.593 0.187 0.571
9 0.282 0.718 0.265 0.689 0.249 0.663 0.236 0.639 0.223 0.616
10 0.292 0.708 0.276 0.683 0.261 0.658
11 0.301 0.699
x 23 24 25 26 27 28
0 0.000 0.098 0.000 0.095 0.000 0.092 0.000 0.089 0.000 0.086 0.000 0.083
1 0.003 0.174 0.003 0.168 0.003 0.162 0.003 0.156 0.003 0.150 0.003 0.146
2 0.017 0.241 0.017 0.232 0.016 0.224 0.015 0.216 0.015 0.208 0.014 0.202
3 0.037 0.302 0.035 0.291 0.034 0.280 0.032 0.271 0.031 0.262 0.030 0.253
4 0.060 0.358 0.057 0.345 0.055 0.333 0.053 0.322 0.051 0.311 0.049 0.301
5 0.086 0.410 0.082 0.395 0.079 0.382 0.076 0.369 0.073 0.357 0.070 0.346
6 0.115 0.459 0.110 0.443 0.105 0.428 0.101 0.414 0.097 0.400 0.093 0.388
7 0.146 0.506 0.139 0.489 0.133 0.472 0.127 0.457 0.122 0.442 0.118 0.428
8 0.178 0.551 0.170 0.532 0.162 0.514 0.156 0.498 0.149 0.482 0.143 0.467
9 0.212 0.594 0.202 0.574 0.193 0.555 0.185 0.538 0.178 0.521 0.171 0.505
10 0.248 0.636 0.236 0.615 0.226 0.595 0.216 0.576 0.207 0.558 0.199 0.542
11 0.285 0.676 0.272 0.654 0.259 0.633 0.248 0.613 0.238 0.595 0.228 0.578
12 0.308 0.692 0.294 0.670 0.281 0.650 0.269 0.630 0.258 0.612
13 0.315 0.685 0.302 0.665 0.289 0.646
14 0.321 0.679
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Table 3: The 95% confidence limits based on “ Mnew” approach for 29 6 n 6 40.
Lnew Unew Lnew Unew Lnew Unew Lnew Unew Lnew Unew Lnew Unew

x 29 30 31 32 33 34
0 0.000 0.081 0.000 0.078 0.000 0.076 0.000 0.074 0.000 0.071 0.000 0.069
1 0.003 0.141 0.003 0.136 0.003 0.132 0.002 0.128 0.002 0.125 0.002 0.121
2 0.014 0.195 0.013 0.189 0.013 0.183 0.012 0.178 0.012 0.173 0.012 0.169
3 0.029 0.245 0.028 0.237 0.027 0.231 0.026 0.224 0.025 0.218 0.025 0.212
4 0.047 0.291 0.045 0.282 0.044 0.274 0.042 0.267 0.041 0.259 0.040 0.252
5 0.067 0.335 0.065 0.324 0.063 0.316 0.061 0.307 0.059 0.298 0.057 0.290
6 0.090 0.376 0.086 0.364 0.083 0.355 0.080 0.345 0.078 0.335 0.076 0.326
7 0.113 0.415 0.109 0.403 0.105 0.392 0.102 0.381 0.098 0.371 0.095 0.361
8 0.138 0.453 0.133 0.440 0.128 0.428 0.124 0.417 0.120 0.405 0.116 0.395
9 0.164 0.490 0.158 0.476 0.153 0.463 0.147 0.451 0.143 0.439 0.138 0.427
10 0.191 0.526 0.184 0.511 0.178 0.497 0.172 0.484 0.166 0.471 0.161 0.459
11 0.219 0.561 0.211 0.545 0.203 0.531 0.196 0.516 0.190 0.503 0.184 0.490
12 0.248 0.595 0.239 0.578 0.230 0.563 0.222 0.548 0.215 0.534 0.208 0.521
13 0.278 0.628 0.267 0.611 0.258 0.595 0.249 0.579 0.240 0.565 0.232 0.550
14 0.308 0.660 0.297 0.642 0.286 0.626 0.276 0.609 0.266 0.594 0.258 0.579
15 0.327 0.673 0.315 0.656 0.303 0.639 0.293 0.623 0.283 0.608
16 0.332 0.668 0.320 0.652 0.310 0.636
17 0.337 0.663

x 35 36 37 38 39 40
0 0.000 0.067 0.000 0.066 0.000 0.065 0.000 0.063 0.000 0.062 0.000 0.061
1 0.002 0.118 0.002 0.115 0.002 0.112 0.002 0.110 0.002 0.107 0.002 0.104
2 0.011 0.164 0.011 0.160 0.011 0.156 0.010 0.152 0.010 0.148 0.010 0.145
3 0.024 0.206 0.023 0.201 0.022 0.196 0.022 0.191 0.021 0.186 0.021 0.182
4 0.039 0.246 0.037 0.240 0.036 0.234 0.036 0.228 0.035 0.222 0.034 0.217
5 0.055 0.283 0.054 0.276 0.052 0.269 0.051 0.262 0.049 0.256 0.048 0.250
6 0.073 0.318 0.071 0.310 0.069 0.303 0.067 0.295 0.065 0.288 0.064 0.282
7 0.092 0.352 0.090 0.343 0.087 0.335 0.085 0.327 0.082 0.319 0.080 0.312
8 0.113 0.385 0.109 0.375 0.106 0.366 0.103 0.358 0.100 0.349 0.098 0.341
9 0.134 0.417 0.130 0.406 0.126 0.397 0.122 0.388 0.119 0.379 0.116 0.370
10 0.156 0.448 0.151 0.437 0.146 0.427 0.142 0.417 0.138 0.407 0.135 0.398
11 0.178 0.478 0.173 0.467 0.168 0.456 0.163 0.445 0.158 0.435 0.154 0.426
12 0.201 0.508 0.195 0.496 0.189 0.484 0.184 0.473 0.179 0.463 0.174 0.452
13 0.225 0.537 0.218 0.524 0.212 0.512 0.205 0.501 0.200 0.489 0.194 0.479
14 0.249 0.566 0.242 0.552 0.234 0.540 0.228 0.528 0.221 0.516 0.215 0.505
15 0.274 0.594 0.266 0.580 0.258 0.567 0.250 0.554 0.243 0.542 0.236 0.530
16 0.300 0.621 0.290 0.607 0.281 0.593 0.273 0.580 0.265 0.567 0.258 0.555
17 0.326 0.648 0.315 0.633 0.306 0.619 0.297 0.605 0.288 0.592 0.280 0.580
18 0.341 0.659 0.330 0.645 0.320 0.631 0.311 0.617 0.302 0.604
19 0.345 0.655 0.335 0.641 0.325 0.628
20 0.348 0.652
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Table 4: The 90% and 99% confidence limits based on “Mnew” approach for n = 10, 25 and 50.
Lnew Unew Lnew Unew Lnew Unew Lnew Unew Lnew Unew Lnew Unew

90% 99%
x 10 25 50 10 25 50
0 0.000 0.163 0.000 0.069 0.000 0.038 0.000 0.308 0.000 0.142 0.000 0.075
1 0.015 0.312 0.006 0.137 0.003 0.071 0.004 0.463 0.002 0.214 0.001 0.114
2 0.060 0.439 0.023 0.197 0.011 0.103 0.007 0.591 0.002 0.281 0.000 0.149
3 0.119 0.550 0.045 0.252 0.022 0.132 0.036 0.699 0.011 0.342 0.005 0.183
4 0.188 0.647 0.069 0.302 0.034 0.159 0.079 0.789 0.025 0.398 0.012 0.214
5 0.266 0.734 0.096 0.350 0.047 0.185 0.138 0.862 0.042 0.450 0.020 0.244
6 0.125 0.395 0.061 0.210 0.063 0.498 0.029 0.271
7 0.155 0.439 0.075 0.234 0.086 0.542 0.040 0.298
8 0.187 0.481 0.090 0.258 0.111 0.585 0.051 0.324
9 0.220 0.522 0.105 0.281 0.138 0.625 0.063 0.349
10 0.254 0.562 0.121 0.303 0.167 0.664 0.075 0.373
11 0.288 0.601 0.137 0.326 0.198 0.701 0.089 0.396
12 0.324 0.639 0.153 0.348 0.230 0.736 0.102 0.419
13 0.170 0.370 0.117 0.442
14 0.187 0.391 0.131 0.464
15 0.204 0.412 0.146 0.486
16 0.221 0.433 0.162 0.507
17 0.239 0.454 0.178 0.528
18 0.257 0.475 0.194 0.549
19 0.275 0.495 0.210 0.569
20 0.293 0.515 0.227 0.589
21 0.311 0.535 0.244 0.609
22 0.330 0.555 0.261 0.629
23 0.349 0.575 0.278 0.648
24 0.367 0.594 0.296 0.667
25 0.387 0.613 0.315 0.685
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the mean coverage probability of Mnew are closer to 95% than those of Wald, CP, AC and Jeffreys in most
cases. When 22 6 n 6 55 Mnew performs better than Wilson. As expected Wald has smaller mean coverage
probabilities for smaller sample sizes. As n increases the mean coverage of Mnew, Wilson and Jeffreys becomes
closer and closer to the nominal level.

We also computed the average expected lengths of the six intervals for n = 5, · · · ,55 and α = 0.05; the re-
sults are given in Figure 5. The average expected lengths of CP, Wilson, Jeffreys and AC are larger than Mnew
by 0.0165 to 0.158, 0.0001 to 0.0218, 0 to 0.1021 and 0.005 to 0.0702, respectively. In this case, the average ex-
pected length of Mnew is the smallest among the six intervals especially when the sample size is small (n 6 32).
The Mnew intervals have considerably higher coverage probabilities than Wald intervals but they are not wider.
Unless the p is very close to 0 or 1, the Mnew intervals are shorter.

Figure 6 shows the percentage increase of the average expected lengths of five intervals compare to Mnew.
For n > 40 the difference of the average expected lengths between Mnew and Wilson as well as Mnew and
Jeffreys diminishes gradually. These differences can have a practical relevance. Our interval can be a plausible
choice for all sample sizes because of its good coverage and smaller expected length.

Figure 7 displays the mean absolute error, Mnew does not have significant small mean absolute errors in com-
parison to the Jeffreys, Wilson and AC intervals. This indicates that the variability about the nominal level is
similar for these four approaches.
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Figure 2: Coverage probability for n = 50 and variable p ∈ (0,1).
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Figure 3: Coverage probability for p = 0.25 and 5 6 n 6 50.
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Figure 4: Mean coverage probabilities for n = 5, · · · ,55 and variable p ∈ (0,1), CP (black solid curve), Wilson
(blue dashed curve), Jefferys (green dashed-dotted curve), Mnew (red dotted), AC ( yellow dashed curve) and
nominal mean coverage (solid straight line).
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Figure 5: Average expected lengths of CP (black solid curve), Wilson (blue dashed curve), Jefferys (green
dashed-dotted curve), Mnew (red dotted) and AC (yellow dashed curve) for n = 5, · · · ,55.
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Figure 6: Percentage increase of the average expected lengths for CP (black solid curve), Wilson (blue dashed
curve), Jefferys (green dashed-dotted curve), and AC (yellow dashed curve) for n = 5, · · · ,55 in comparison to
Mnew .
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Figure 7: For n = 5, · · · ,55 display of the mean absolute errors of CP (black solid curve), Wilson (blue dashed
curve), Jefferys (green dashed-dotted curve), Mnew (red dotted), AC (yellow dashed curve) and Wald (green
solid curve).
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