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Abstract 

Discounted central limit theorem was proved for i.i.d. random variables by Gerber (Theorem 2.1). This work 
is intended to extend the work of Gerber to the case where {𝑋𝑖} is a periodic sequence of independent 
variables and 𝜐i are periodic scalars. A simulation study was performed in order to support the result. We also 
give an interpretation of our work in a financial context. Finally, an example with real data is presented. 
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1. Introduction 

In mathematical statistics, approximation theorems that provide an upper bound for the error of 
approximation are always of great importance. Among these theorems, Berry-Essen Theorem, 
which is stated by Berry (1941) and Esseen (1945), gives an upper bound to the error of central 
limit theorem approximation for the class of distributions for which 𝜌 = 𝐸|𝑋 − 𝜇|3 < ∞,  [1] and 
[4]. In 1971 Gerber proved that if 𝑋𝜐 = ∑ 𝜐𝑘∞

𝑘=0 𝑋𝑘 , where 𝑋1 ,𝑋2 , …  is a sequence of 
independent random variables, 0 < 𝜐 < 1,  and the first three moments of 𝑋𝑘 are finite, then there 
exists an upper bound for the error of approximation of distribution of 𝑋𝜐  by the normal 
distribution, [6]. Besides, he pointed out that his theorem is analogous to the Berry-Esseen 
Theorem and called it the discounted version of the Berry-Esseen Theorem. As its application he 
showed that the normalized random variable 

𝑍𝜐 = (1−𝜐)
1
2

𝜎
(𝑋𝜐 –

𝜇
1−𝜐

), 

is asymptotically normal as 𝜐 → 1. He mentioned that 𝑋𝜐  may be interpreted as the present value 
of the sum of certain periodic and identically distributed payments, 𝑋𝑘, with discount factor 𝜐. 
Recent research in this field is done by Saulis and Deltuviene (2006), in which a non-uniform 
estimate of the Berry-Esseen Theorem in a discounted version is proved, [9].  

   In economic literature the present value is an important financial concept; it describes the 
process of determining what a cash flow to be received in the future is worth in today's money. In 
many practical economic problems the payments are random variables and consequently the 
present value is also a random variable. Thus, knowing about the distribution of present value is 
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essential for statistical inference. There are many problems in mathematical finance which require 
the evaluation of present value in the case that the discount factors and the values of payments 
are periodic. This was our motivation for current work. In this work we attempt to extend the 
result of Gerber to the case where {𝑋𝑖} is a sequence of independent random variables and 𝑋𝑖+𝑇𝑘 
has the same distribution as 𝑋𝑖 for a fixed constant, 𝑇𝜖ℕ , 0 < 𝜐𝑖 < 1, 𝐵 = 0, … ,𝑇 − 1.  

2. Main Result 

To begin this section we first state the Gerber Theorem. In the sequel, let 𝐹𝑋𝛾 and Φ𝜇,𝜎2 denote 
the distribution functions of 𝑋𝛾  and the Normal distribution with mean  𝜇  and variance  𝜎2 , 
respectively. 

Theorem 2.1. (H. Gerber) Let {𝑋𝑘}𝑘=0∞  be a sequence of independent random variables with 
common distribution function 𝐹. Let 𝜐 be a discount factor (0 < 𝜐 < 1) and assume that the first 
three moments of 𝑋𝑘 are finite: 

𝜇 = ∫ 𝑥𝑆𝐹(𝑥)+∞
−∞ < ∞,     𝜎2 = ∫ (𝑥 − 𝜇)2𝑆𝐹(𝑥)+∞

−∞ < ∞,      𝜌 = ∫ |𝑥 − 𝜇|3𝑆𝐹(𝑥)+∞
−∞ < ∞.  

If 𝑋𝜐 = ∑ 𝜐𝑘∞
𝑘=0 𝑋𝑘  and 𝑍𝜐 = (1−𝜐)

1
2

𝜎
(𝑋𝜐 −

𝜇
1−𝜐

), then for all 𝑥, 

�𝐹𝑍𝜐(𝑥) −𝛷0,(1+𝜐)−1(𝑥)� ≤ 𝐶(1 − 𝜐)
1
2(𝜌 𝜎3� ), 

where 

𝐶 = � 1
√𝜋
� 5
24

1
1+𝜐+𝜐2

� �1
2

1
1+𝜐

− 5
12

1
1+𝜐+𝜐2

�
−32 + 24

𝜋
(1+𝜐)

1
2

√2𝜋

 

�. 

If 0.9 ≤ 𝜐 ≤ 1, then the value 5.4 is an upper bound for 𝐶 . 

   Before proceeding to the proof of Theorem 2.2, which is the main result of this paper, we need 
the following lemma. 

Lemma 2.1. If  𝐹𝑖 ,  𝐺𝑖 ,  𝐵 = 1, … ,𝑆,  are distribution functions and 𝑆𝑖 , 𝐵 = 1, … ,𝑆,  are fixed 
numbers and if 

|𝐹𝑖(𝑥) − 𝐺𝑖(𝑥)| ≤ 𝑆𝑖                    ∀ 𝑥𝜖ℝ ,  𝐵 = 1, … ,𝑆, 

then 

|𝐹1 ∗ 𝐹2 ∗ … ∗ 𝐹𝑛(𝑥) − 𝐺1 ∗ 𝐺2 ∗ … ∗ 𝐺𝑛(𝑥)| ≤�𝑆𝑖

𝑛

𝑖=1

, 
 

(2.1)  

where ∗ denotes the convolution operation of functions. 

Proof. The proof is by induction on 𝑆. Since  
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|𝐹1 ∗ 𝐹2(𝑥)− 𝐺1 ∗ 𝐹2(𝑥)|  = �� 𝐹1(𝑥 − 𝑆)𝑆
+∞

−∞
𝐹2(𝑆) −� 𝐺1(𝑥 − 𝑆)𝑆

+∞

−∞
𝐹2(𝑆)� 

                                  ≤ ∫ |𝐹1(𝑥 − 𝑆) − 𝐺1(𝑥 − 𝑆)|𝑆+∞
−∞ 𝐹2(𝑆)  ≤ 𝑆1, 

thus 

|𝐹1 ∗ 𝐹2(𝑥)− 𝐺1 ∗ 𝐹2(𝑥)| ≤ 𝑆1. 

We have  

|𝐹1 ∗ 𝐹2(𝑥) − 𝐺1 ∗ 𝐺2(𝑥)| =
1
2

|2𝐹1 ∗ 𝐹2(𝑥) ± 𝐺2 ∗ 𝐹1(𝑥) ± 𝐺1 ∗ 𝐹2(𝑥) − 2𝐺1 ∗ 𝐺2(𝑥)| 

                                              ≤
1
2

[|𝐹1 ∗ 𝐹2(𝑥)− 𝐺1 ∗ 𝐹2(𝑥)| + |𝐹1 ∗ 𝐹2(𝑥)− 𝐺2 ∗ 𝐹1(𝑥)| 

                                                     +|𝐺2 ∗ 𝐹1(𝑥)− 𝐺1 ∗ 𝐺2(𝑥)| + |𝐺1 ∗ 𝐹2(𝑥)− 𝐺1 ∗ 𝐺2(𝑥)|] 

≤ 𝑆1 + 𝑆2.                                          

This gives the proof for the case 𝑆 = 2. Assuming (2.1) to hold for 𝑘, by a similar argument one 
can show that it is true for 𝑘 + 1. □ 

Theorem 2.2. Let {𝑋𝑘}𝑘=0∞  be a sequence of independent random variables. Moreover assume 
that 𝑋𝑖+𝑇𝑘  has the same distribution as 𝑋𝑖  and 𝜐𝑖+𝑇𝑘 = 𝜐𝑖  for a fixed constant, 𝑇𝜖ℕ ,  𝐵 =
0, … ,𝑇 − 1. Suppose that the first three moments of  𝑋𝑖, 𝐵 = 0, … ,𝑇 − 1 are finite i.e. 

𝜇𝑖 = ∫ 𝑥𝑆𝐹𝑋𝑖(𝑥)+∞
−∞ < ∞,  𝜎𝑖2 = ∫ (𝑥 − 𝜇𝑖)2𝑆𝐹𝑋𝑖(𝑥)+∞

−∞ < ∞,  𝜌𝑖 = ∫ |𝑥 − 𝜇𝑖|3𝑆𝐹𝑋𝑖(𝑥)+∞
−∞ < ∞, 

and ∑ 𝜐𝑘𝑘|𝑋𝑘|∞
𝑘=0 < ∞.  Let 𝝊 = (𝜐0, 𝜐1, … , 𝜐𝑇−1),  𝑋𝝊 = ∑ 𝜐𝑘𝑘𝑋𝑘∞

𝑘=0  and 

 𝑍𝝊 = �1 ∑ 𝜎𝑖2𝜐𝑖2𝑖

1−𝜐𝑖2𝑇
𝑇−1
𝑖=0� �𝑋𝝊 − ∑ 𝜐𝑖𝑖𝜇𝑖

1−𝜐𝑖𝑇
𝑇−1
𝑖=0 �. Then  

�𝐹𝑍𝝊(𝑥) −𝛷0,1(𝑥)� ≤ ∑ 𝐶𝑖(1 − 𝜐𝑖𝑇)
1
2(𝜌𝑖 𝜎𝑖3� )𝑇−1

𝑖=0 , 

where 

𝐶𝑖 = � 1
√𝜋
� 5
24

(1+𝜐𝑖𝑇)
3
2

1+𝜐𝑖𝑇+𝜐𝑖2𝑇
� �1

2
 − 5

12
1+𝜐𝑖𝑇

1+𝜐𝑖𝑇+𝜐𝑖2𝑇
�
−32 + 24

𝜋
(1+𝜐𝑖𝑇)

1
2

√2𝜋

 

�. 

Proof. Let 𝑋𝜐𝑖 = ∑ 𝜐𝑖𝑇𝑘𝑋𝑖+𝑇𝑘∞
𝑘=0  𝑆𝑆𝑆 

𝑍𝜐𝑖 =
(1 − 𝜐𝑖2𝑇)

1
2

𝜎𝑖
�𝑋𝜐𝑖 −

𝜇𝑖
1 − 𝜐𝑖𝑇

�. 
 

(2.2) 

Then we get immediately the following relation from Theorem 2.1 for,  𝐵 = 0, … ,𝑇 − 1. 
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�𝐹𝑍𝜐𝑖(𝑥)−Φ0,1(𝑥)� ≤ 𝐶𝑖(1 − 𝜐𝑖𝑇)
1
2 �𝜌𝑖 𝜎𝑖3� �                   ∀𝑥 ∈ ℝ. 

 
 (2.3) 

 

From (2.2) we have 𝑍𝝊 = ∑ 𝑆𝑖𝑍𝜐𝑖
𝑇−1
𝑖=0  with  𝑆𝑖 = 𝜎𝑖𝜐𝑖𝑖 ((1 − 𝜐𝑖2𝑇)

1
2�∑ 𝜐𝑗2𝑗𝜎𝑗2

1−𝜐𝑗2𝑇
𝑇−1
𝑗=0� ). It is clear that 

𝐹𝑡𝑖𝑍𝜐𝑖(. ) = 𝐹𝑍𝜐𝑖 �
.
𝑡𝑖
�. The relation (2.3) leads us to 

�𝐹𝑡𝑖𝑍𝜐𝑖(𝑥)−Φ0,𝑡𝑖2(𝑥)� = �𝐹𝑍𝜐𝑖 �
𝑥
𝑆𝑖
� − Φ0,1(

𝑥
𝑆𝑖

)� ≤ 𝐶𝑖(1 − 𝜐𝑖𝑇)
1
2 �

𝜌𝑖
𝜎𝑖3

�. (2.4) 

 

Since ∑ 𝑆𝑖2𝑇−1
𝑖=0 = 1,  Φ0,1(𝑥) = Φ0,𝑡02 ∗ Φ0,𝑡12 ∗ … ∗ Φ0,𝑡𝑇−1

2 (𝑥). From independence of 𝑋𝑖 we have 
𝐹𝑍𝝊(𝑥) = 𝐹𝑡0𝑍𝜐𝑖 ∗ … ∗ 𝐹𝑡𝑇−1𝑍𝜐𝑖(𝑥). From what we have just stated, Lemma 2.1, and (2.4), we have 

�𝐹𝑍𝝊(𝑥)−  Φ0,1(𝑥)� ≤ �𝐶𝑖(1 − 𝜐𝑖𝑇)
1
2(𝜌𝑖 𝜎𝑖3� )

𝑇−1

𝑖=0

. 

This completes the proof. □ 

Remark: An immediate consequence of this theorem gives us that the normalized random 
variable 𝑍𝝊 is asymptotically normal as 𝝊 = (𝜐0, 𝜐1, … , 𝜐𝑇−1) → (1,1, … ,1). 

   The random variable 𝑋𝝊 can be interpreted as the present value in the case that 𝜐𝑖 and 𝑋𝑖+𝑇𝑘 are 
discount factor and the value of payment, respectively, which are related to the season. 

3. Simulation Study 

To validate the result of the previous section we present a simulation study. We have performed a 
simulation study for different statistical distributions, different 𝝊's and sample sizes, for  𝑇 =
4,6,12. Here is an overview of our approach. 

   Step 1: 𝑇 different statistical distributions were chosen, the arbitrary values  𝜐0, …, 𝜐𝑇−1 were 
considered. We let 𝜐𝑖 's tend to 1. 

   Step 2: A random sample of size 𝑆 , �𝑥𝑖, 𝑥𝑖+𝑇 , … , 𝑥𝑖+(𝑛−1)𝑇� , was drawn from the 𝐵 th 
distribution.  

   Step 3: The following was computed: 𝑋𝝊 = ∑ 𝜐𝑘𝑘𝑋𝑘𝑛𝑇−1
𝑘=0 . 

   Step 4: The second and third steps were repeated 1000 times, then the empirical distribution 
function of 𝑍𝝊 was obtained and was named 𝐹𝑛. 

   Step 5: The normality test was employed using Kolmogorov-Smirnov statistic 𝐷𝑛 =
𝑝𝑢𝑝𝑥�𝐹𝑛(𝑥) −Φ0,1(𝑥)� at level of significance 0.01. 
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   Our observations demonstrated that by increasing 𝝊 → 𝟏 the accuracy of approximation in most 
cases increased; indeed the p-values were greater than 0.01. Therefore, the hypothesis of 
normality is not rejected as 𝝊 → 𝟏. Figure 1 displays  the graphs of the distribution functions of 
𝑍𝜐  for 𝑇 = 4 , 𝑋1~𝑃𝑁𝑝(1) , 𝑋2~𝐺𝐺(0.2) , 𝑋3~𝐵𝐵𝑆(15, 0.75) , 𝑋4~𝐻𝐺(10,10,5),  with different 
𝝊's. It can be seen that, as 𝝊 → 𝟏, the distribution function of 𝑍𝝊 converges to the distribution 
function of standard normal. In a similar way, two plots are shown for 𝑇 = 6 and 𝑇 = 12 in 
Figure 2 and Figure 3, respectively.  

4. Empirical Evidence 

We will here draw out an implication for a relevant important topic, investment appraisal. As we 
know one of the most important responsibilities of the plan management in financial economics is 
asset allocation decision, [7]. This section contains an investment appraisal for a white meat 
manufacturing and packing firm. Figure 4 shows quarterly expected profit that is collected from a 
study to setup a new factory in Iran. The initial cost of investment for this firm is 155.8 Billion 
Iranian Rials. We used expected quarterly data from the first quarter of 2014 until fourth quarter 
of 2023.  

   In well-developed capital markets, interest rates will reflect expectations of inflation, and hence 
it will not make much difference whether we measure the alternative cost of capital by interest 
rates or inflation rates, [2]. But when capital markets are not free because interest rates are subject 
to regulations or have ceilings -such as Iran- it is often appropriate to use inflation, not interest 
rates, as the measure of the alternative cost, [3]. It is believed that the right measure of the 
opportunity cost of capital is the higher of the two: interest rates or inflation, [8]. Hence, to 
calculate present value, we discount expected profit by the inflation rate. 

   For 𝑆th1, year we employed a test (based on the statistic 𝑋𝑣 with significance level of 0.01) to 
test the null hypothesis, 𝐻0:𝜇𝑣 ≤ 𝐴, against 𝐻1:𝜇𝑣 > 𝐴. The alternative hypothesis shows the 
year in which the average present value, 𝜇𝑣, is greater than the initial investment, 𝐴, of the firm. 
In fact, this test statistically represents the year in which the initial cost of investment returns to 
the investors. Rejection of the hypothesis 𝐻0 indicated that in year 𝑆 the average present value is 
greater than the initial investment. Hence, for small 𝑆 the decision maker should invest in this 
project. 

   Table 1 reports the results. This table shows the year of capital return based on the initial cost of 
investment. As we already mentioned the initial costs of investment of the firm is 155.8 billion 
Iranian Rials, which is between 105 and 175. Hence, the year of capital return is the third year. 
Our test shows that it is profitable that the decision maker allocates 155.8 billion Iranian Rials to 
this project. 

 

 

                                                           
1. This year should be before the useful lifetime of the investment project. 
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𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑁𝑁𝑁𝑁𝑁𝑁 
𝜐 = (.04, .02 , .03 , .01) 
𝜐 = ( .77 , .79 , .74 , .75) 
𝜐 = (.99, .986 , .980, .993) 

 

 

Figure 1. 𝑇 = 4 and 𝑋1~𝑝𝑝𝑝(1), 𝑋2~𝐺𝐺(0.2), 
  𝑋3~𝐵𝐵𝐵(15, 0.75), 𝑋4~𝐻𝐻(10,10,5) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑁𝑁𝑁𝑁𝑁𝑁 
𝜐 = (.04 , .02 , .03 , .01 , .02 , .05) 
𝜐 = ( .75 , .8 , .7 , .65 , .75 , .6) 
𝜐 = (.99 , .986 , .98, .993 , .983 , .988) 
 

Figure 2. 𝑇 = 6 and 𝑋1~𝑡(4), 𝑋2~𝑡(8), 𝑋3~𝑡(10), 
𝑋4~𝑡(12), 𝑋5~𝑡(15), 𝑋6~𝑡(6), 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑁𝑁𝑁𝑁𝑁𝑁 
𝜐 = (.14, .12, .13, .1, .15, .125 , .15, .13, .128, .16, .123 , .11) 
 𝜐 = ( .77, .79, .74, .75, .73, .78, .725 , .77, .76, .71, .72, .75) 
 𝜐 = (.99, .98, .985, .965, .96, .97, .98, .95, .995, .99, .975, .955) 

Figure 3. T = 12 and X1~Ge(0.2), X2~E(5), X3~Bin(20, 1
4
), 

 X4~t(4), X5~Pos(5), X6~U(5,10), X7~E(1), X8~Pos(4), 
 X9~t(9), X10~t(11), X11~Bin(15, 3

4
), X12~U(3,6). 

Figure 4. Quarterly expected profit for a white meat 
manufacturing and packing firm January 2104 - 
December 2023 
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Table 1. Results of the test 

Range of Initial 
Costs of Investment 

(Billion Iranian 
Rials) 

 
 

45-100 

 
 

105-170 

 
 

175-250 

 
 

255-320 

 
 

325-395 

 
 

400-470 

 
 

475-530 

Year of Capital 
Return 

 
2 

 
3 

 
4 

 
5 

 
6 

 
7 

 
8 
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