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Abstract 

Our research group has been working on the P-adic theory and its implementation. Based on the Chinese 
Remainder theorem and the Hensel code a new data type, called Multiple P-adic Data Type, has been established to 
realize rational calculation. With this data type all rational number operations are converted to integer calculations, 
and the fast integer multiplication of modern computer architectures can be fully taken advantage of. This data type 
can be significantly effective in the parallel and cloud computing environment due to its independent computation 
at each node during the calculation process.  

Keywords: Parallel computing, Computational efficiency, P-adic, Multiple modulus, Chinese remainder theorem

1. Introduction 

Solutions of very large dense linear systems are required 
for the estimation of the Earth’s gravitational field, 
boundary element formulations in electromagnetism and 
acoustics, and molecular dynamics simulations [1]. One 
of the most important issues is to guarantee the accuracy 
of the results. The floating-point number system 
naturally has the defect of generating truncation error. 
When the matrix size is very large, the accumulated 
errors make the computational results unreliable and 
unacceptable. For example, using Gaussian elimination  
to calculate the matrix inverse of Hilbert matrix 15 by 
15, with the double floating point number data type, the 
result is, 
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൥
151 ⋯ ⋯

െ11348 1138179 ⋯
⋯ ⋯ ⋯

൩ 

While the actual result is 

൥
225 ⋯ ⋯

െ25200 3763200 ⋯
⋯ ⋯ ⋯

൩ 

Even when the matrix size is 15 by 15, the accumulation 
of truncation errors make the results unacceptable under 
the double floating point number system. Error free 
rational calculation is necessary. But most of the 
existing symbolic data type, such as in Matlab or 
Mathematic, the time cost is considered too much. 
During the past few years, we have been working on P-
adic theory and its implementation. Based on the 
Chinese Remainder Theorem and Hensel code, a new 
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data type has been established to realize a rational 
calculation called Multiple P-adic Data Type [2-4]. 
With this data type all rational number operations are 
converted to integer calculation, and the fast integer 
multiplication of modern computer architectures can be 
fully used. This data type can be significantly effective 
in the parallel and cloud computing environment due to 
its independent computation at each node during the 
calculation process. Furthermore, the existing C++ 
programs can be converted to run with this data type 
with no (or minimal) changes to the source code. We 
have developed a computational library based on the 
data type and the object oriented program using C/C++. 
Computational algorithms have been developed using 
the data type for the calculation of matrix inverse, 
Lower Hessenberg form transformation, Wilkinson 
form transformation, Frobenius form transformation, 
post processing from all the transformations, reflexive 
general matrix inverse, Moore-Penrose inverse, 
݁஺௧ calculation, Laplace’s method for FTA 
(Fundamental Theorem of Algebra), Bézoutian 
formulation of the Resultant and etc. 

2. Background 

We introduce the theoretical background of the Multiple 
P-adic Data Type briefly here. The main idea is coming 
from the Hensel code and the Residue Number System 
[14]. Hensel code was originally defined by 
Krishnamurthy, Rao and Subramanian, which was 
developed from the P-adic number system first 
proposed by Hensel in the 1900s. The purpose was to 
realize exact computation for rational numbers. Based 
on the Chinese Remainder Theory, Morrison devised 
the method to realize paralleled P-adic arithmetic for 
rational numbers [2]. The detail can be found in our 
previous papers [4-8]. 

2.1. Finite P-adic (Hensel code) Arithmetic[8-11] 

Any rational number can be coded into P-adic sequence 
by the following algorithm: ߙ ൌ

௕

௔
∙ ,௡݌ ܽ, ܾ, ݊ ∈ ܰ, ܾ ്

0,  and ,ሺܽܦܥܩ ܾሻ ,ሺܽܦܥܩ , ,ሻ݌ ,ሺܾܦܥܩ ሻ݌ ൌ 1  can be 
written as	∝ൌ ∑ ܽ௜݌

௜ஶ
௜ୀ௞ , ݇ ∈ ܰ. 

The conversion process is following: 
 
 

 

 

The P-adic sequence with point position ݊ will have the 
following form: 

1 2 1 0 1 2

0 1 2

0 1 2

.                0

                     .                0

                     .000          0

n na a a a a a a for n

a a a for n

a a a for n

   





 



  

Conventionally, we write P-adic sequence as: 

1

0

   point position = 

point position means the position of 
i n i na a n

a
   

. 

2.1.1. Addition/Subtraction  

The addition of P-adic is similar to the binary numeral 
addition. The difference is that P-adic addition process 
is calculating from left to right.  

For example of computing 
ଵ

଺
൅

ଵ

ଶ
ൌ

ଶ

ଷ
 for p = 5: 

ଵ

଺
ൌ .140404040…  

ଵ

ଶ
ൌ .32222222… 

In the process, the position of the point should be kept 
in alignment, 

.140404040

.322222222

.413131313





  

We can check that the 5-adic of 

2

3
ൌ .413131313… 

2.1.2. Multiplication/Division  

The multiplication of P-adic is similar to the binary 
numeral multiplication, the difference is that P-adic 
multiplication is calculating from left to right. The point 
position of the result equals: point1 + point2. 

For example of 
ଵ

ଷ
ൈ

ଵ

଺
ൌ

ଵ

ଵ଼
 with p = 5: 

1
.231313131

3
1

.140404040
6








 

The multiplication can be shown: 

                              .2313131313131 · · · 
                          × .1404040404040 · · ·  
                  ------------------------------------------ 
                              2313131313131 · · · 
                           331313131313· · ·  
                                  00000000000 · · · 
                                     3313131313 · · · 

Sep 1. ∝ mod	݌ ൌ 	ܽ଴ 
Sep 2. ∝ൌ ሺ∝ െܽଵሻ/݌, go to Step 1 to get ܽଵ. 
Continue Step 1 and Step 2, to get ܽ௜  
Finally, α ൌ ௡݌ ∙ ∑ ܽ௜݌

௜ஶ
௜ୀ଴ ൌ ∑ ܽ௜ି௡݌

௜ஶ
௜ୀ௡  
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                                       000000000 · · · 
                                         33131313 · · · 
                                            0000000 · · · 
                                              331313 · · · 
                                                00000 · · · 
                                                  3313 · · · 
                                                    000 · · · 
                                                      33 · · · 
                           +                           0· · · 
                   --------------------------------------------------- 
                                .2103341103341 · · · 

Check the result with 5-adic representation: 

1
.21033411033411.....

18


 

Division can be carried out as a multiplication process. 
First we use the recursive method to get the inverse of 
the dividend then complete the multiplication. The point 
position for division equals: point1 - point2. 

2.1.3. Hensel code 

The encoded P-adic sequence is usually infinite. The 
way to choose a finite P-adic sequence used in exact 
rational computation is called Hensel code arithmetic. 
The Hensel codes are closed with respect to basic 
arithmetic operations 
(ADD/SUBTRACT/MULTIPLY/DIVIDE). 
For each Hensel code ܪሺ݌, ,ݎ ∝ሻ, ݌ means the prime, ݎ 
means the length of the P-adic sequence, ∝ means the 
finite P-adic sequence. 

2.2. Multiple P-adic Algorithm 

Multiple P-adic algorithm is first introduced by 
Morrison [2]. The algorithm is based on extending the 
Chinese remainder theorem from integers to rational 
numbers [4].  
The decoding process is as follows, 
If ݎ~ሼݎଵ, ⋯,ଶݎ , ௦ሽݎ  is the residue representation of a 
rational number r with respect to moduli ሼ݌ଵ,  ௦ሽ݌⋯,ଶ݌
where ܦܥܩ൫݌௜, ௝൯݌ ൌ 1  for ݅ ് ݆ , then the decoding 
algorithm is given as follows [10] [13]: 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Combining P-adic arithmetic [7-10] with the extended 
Chinese remainder theorem (CRT), the multiple P-adic 
algorithm is established. The implementation flow chart 
follows: 

 

Figure 1. Extended CRT combined with P-adic arithmetic for 
parallel implementation 

Decoding algorithm 
Step 1:  Chinese remainder theorem 

݌  ൌ ∏ ௜݌
௦
௜ୀଵ  

 For ݅ ൌ 1 to ݏ 
 Using extended Euclidean algorithm  
 to find ݌௜

ᇱ by 
௣

௣೔
௜݌
ᇱ ≡  ௜݌	݀݋݉	1

 End 
ݎ̅  ൌ ∑

௣

௣೔
௜݌
ᇱݎ௜

௦
௜ୀଵ  ݌	݀݋݉	

Step 2:  Euclidean algorithm 
ଵିݑ ൌ ଴ݑ ,݌ ൌ  ݎ̅

ଵିݒ  ൌ ଴ݒ,0 ൌ 1 
 ݅ ൌ െ1 

While ݑ௜ ൏ ඥ݌ 
௜ݍ   ൌ  ۂ௜ݑ/௜ିଵݑہ
௜ାଵݑ   ൌ ௜ିଵݑ െ  ௜ݑ௜ݍ
௜ାଵݒ   ൌ ௜ିଵݒ ൅  ௜ݒ௜ݍ
  ݅ ൅ ൅ 
 End 
Rational solution: 
ݎ  ൌ ሺሺെ1ሻ௜ݑ௜/ݒ௜ሻ 
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2.3. Overflow Detection [5] [10] 

Extended CRT overflow:  
For the extended CRT systems with the prime set 
ሼ݌ଵ,⋯݌௦ሽ	, when a rational number 

	
௕

௔
	mod	݌௜	 set ⋯,ଵݎሼ~ݎ		 , ,௦ሽݎ ,ሺܽܦܥܩ ܾሻ ൌ 1 , satisfies 

|ܽ, ܾ| ൐ ,݌ඥߣ ݌ ൌ ∏ ௜݌
௦
௜ୀଵ  ( ߣ ൌ 0.618⋯		 is a root of 

ଶߣ ൅ ߣ െ 1 ൌ 0), the rational number, whose set cannot 
be uniquely recovered by the inverse transformation. 
We call this situation extended CRT overflow. One way 
to detect the overflow is to predict the bound, then 
decide the size of the prime set ሼ݌ଵ, ௡ሽ݌⋯,ଶ݌  by 
Newman [14]. Another way to detect overflow is to 
provide extra digits [5]. This method can detect the 
overflow by using the prime set ሼ݌ଵ,⋯݌௡ሽ  and the 
residue number set itself. In this method, each number 
set should have extra digits used for verification, the 
length is kept by k. 
With prime set 	ሼ݌ଵ, ,௜݌⋯,ଶ݌ ⋯,௜ାଵ݌ , ௜ା௞ሽ݌ , for any 
rational number x, we get the 
setሼݎଵ ൌ ⋯,ଵ݌	݀݋݉	ݔ , ௜ା௞ݎ ൌ  ௜ା௞ሽ, we record it݌	݀݋݉	ݔ
as: ݔ~ሼݎଵ, ⋯,ଶݎ , ,௜ݎ ⋯,௜ାଵݎ ,  .௜ା௞ሽݎ
During the overflow detection process, it will be treated 
as  

ଵݎ଴ݎሺ~ݔ ⋯ ௜ݎ ௜ାଵݎ ௜ା௞ᇣᇧᇧᇤᇧᇧᇥݎ⋯
௩௘௥௜௙௜௖௔௧௜௢௡	௣௔௥௧

ሻ. 

Notation: Decoding(x, i) and Decoding(X, i) will be 
used to donate decoding rational number set x and 
matrix X into rational number and rational number 
matrix by first i digits.  
Overflow happened, if: 

,ݔሺ݃݊݅݀݋ܿ݁ܦ ݅ሻ ് ,ݔሺ݃݊݅݀݋ܿ݁ܦ ݅ ൅ ݇ሻ. 

Overflow did not happen, if: 

,ݔሺ݃݊݅݀݋ܿ݁ܦ ݅ሻ ൌ ,ݔሺ݃݊݅݀݋ܿ݁ܦ ݅ ൅ ݇ሻ. 

3. The Main Properties of Multiple P-adic Data 
Type 

3.1. Error-free Computing in Rational Number 
Field 

Each rational number is represented by a finite sequence 
of integers. The integers’ values are the module results 
of prime numbers, which can be chosen by developers 
and also depend on the CPU architectures. The 
arithmetic calculation process is in a rational number 
field, thus there will be no truncation error. The 

arithmetic is transformed to integer arithmetic and 
module operations. 
The structure of the data type can be explained as the 
following: 

ܾ

ܽ
∶ 	 00	ݎ݁݃݁ݐ݊ܫ 	 01	ݎ݁݃݁ݐ݊ܫ ⋯ 0݇ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ	ݎ݁݃݁ݐ݊ܫ

௠௢ௗ௨௟௘	௥௘௦௨௟௧௦	௢௙	௉బ	

 

	⋯	 0݊	ݎ݁݃݁ݐ݊ܫ 	 1݊	ݎ݁݃݁ݐ݊ܫ ⋯ ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ݇݊	ݎ݁݃݁ݐ݊ܫ
௠௢ௗ௨௟௘	௥௘௦௨௟௧௦	௢௙	௉೙	

 

For example, form prime number set ሾ257, 251, 241ሿ, 
then, 

1

10234567
∶ 	 179 	 235ᇣᇧᇧᇤᇧᇧᇥ
௠௢ௗ௨௟௘	௥௘௦௨௟௧௦	௢௙	ଶହ଻	

6 	 193ᇣᇧᇤᇧᇥ
௠௢ௗ௨௟௘	௥௘௦௨௟௧௦	௢௙	ଶହଵ	

 

229 	 114ᇣᇧᇧᇤᇧᇧᇥ
௠௢ௗ௨௟௘	௥௘௦௨௟௧௦	௢௙	ଶସଵ	

 

The integer sequence for 
ଵ

ଵ଴ଶଷସହ଺଻
 is:  

179, 235; 	6, 193; 	229, 114. 

The size of the prime number set and the length for the 
integer sequence can be self-defined. The size of the 
prime number set can affect the efficiency of parallel 
computing. The detail explanation will be introduced in 
the natural parallel ability section. Because the 
arithmetic operation is in rational number field as 
integers, there will be no truncation error. For example 
of the calculation of 1/2 ൅ 1/3  with the prime 
setሾ257,251,241ሿ, 

ଵ

ଶ
: 129,128; 126,125; 121, 120 

ଵ

ଷ
:		86, 171; 		84,167; 161, 160 

൅

129 128 126 125 121 120
86 171 84 167 161 160
215 42 210 41 41 40

 

The sequence: 215,42; 210,41; 41,40 is transformed to 
ହ

଺
 

3.2. Integer Calculations Taking Full Use of 
Computer Architecture 

Usually the rational calculation is using arbitrary length 
integers to represent the numerator and denominator. 
For example, we use one character (1 byte) to represent 
each digit of an integer and then link the data structure 
to realize the arbitrary length of the integer. For 
example, when calculating 1234567 ൅ 7654321  
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൅

1 2 3 4 5 6 7
7 6 5 4 3 2 1
8 8 8 8 8 8 8

 

Including the carry-out operations, there will be 16 
possible character operations. While using the Multiple 
P-adic Data Type, and choosing [46337] as the prime 
set, the calculation process will be 

൅

29805 26 0
8716 165 0
38521 191 0

 

There are only 3 additions and 3 module operations. 
For rational operation, the numerator and denominator 
will cost more due to the reasons shown below:  
Addition process: 

ܽଵ
ܾଵ
൅
ܽଶ
ܾଶ

ൌ
ܽଵܾଶ ൅ ܽଶܾଵ

ܾଵܾଶ
 

ൌ
ሺܽଵܾଶ ൅ ܽଶܾଵሻ/ܦܥܩሺሺܽଵܾଶ ൅ ܽଶܾଵሻ, ܾଵܾଶሻ

ܾଵܾଶ/ܦܥܩሺሺܽଵܾଶ ൅ ܽଶܾଵሻ, ܾଵܾଶሻ
 

Multiplication process: 

ܽଵ
ܾଵ
ൈ
ܽଶ
ܾଶ

ൌ
ܽଵܽଶ
ܾଵܾଶ

ൌ
ܽଵܽଶ/ܦܥܩሺܽଵܽଶ, ܾଵܾଶሻ

ܾଵܾଶ/ܦܥܩሺܽଵܽଶ, ܾଵܾଶሻ
 

During these calculation processes, 
,ݎ݋ݐܽݎ݁݉ݑሺ݊ܦܥܩ ሻݎ݋ݐܽ݊݅݉݋݊݁݀  must be found and 
extra calculation steps will be needed. However, for 
Multiple P-adic Data Type there will be no difference 
between fractions and integers.  
The Multiple P-adic Data Type can be easily 
implemented on 32 and 64-bit platforms. The only 
difference is to choose the right prime number set. On 
the 32-bit platform, the maximum prime is	ܲ ൌ 46337, 
the largest prime numbers smaller or equal to 46337 can 
be used, while on the 64-bit platform, the maximum 
prime will be 	ܲ ൌ 2147483647,  the largest prime 
numbers smaller or equal to 2147483647 can be used. 

3.3. Natural Parallel Structure Taking Full Use of 
Multi-core System 

According to the features of the Multiple P-adic Data 
Type, parallel computing can be implemented on any 
algorithm with basic arithmetic operations and do not 
depend on the specific algorithm. The parallel structure 
depends on the size of the chosen prime set. For 

example, we calculate ሺ
ଵ

ଵ଻
െ 1ሻ ൈ

ଵ

ଶ
 with prime 

setሾ257, 251,241ሿ, 

1

17
: 121,60; 192,14; 156,212 

1: 1,0; 1,0; 1,0 
1

2
: 129,128; 126,125; 121,120 

ݏݏ݁ܿ݋ݎܲ	݁݊݅ܮ	257

െ

121 60
1 0

120 60

ൈ
129 128

60 30

ݏݏ݁ܿ݋ݎܲ	݁݊݅ܮ	251

െ

192 14
1 0

191 14

ൈ
126 125

221 132

	

ݏݏ݁ܿ݋ݎܲ	݁݊݅ܮ	241

െ

156 212
1 0

155 212

ൈ
121 120

198 226ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
ଷ	ௌ௘௣௔௥௔௧௘ௗ	௉௥௢௖௘௦௦

 

After the 3 separated computing processes, we can get 

the final result:	െ
଼

ଵ଻
: 60,30; 221,132; 198,226. 

Most of the linear processes can directly use this data 
type to realize parallel computing without modification 
at the mathematical algorithm level. We have 
implemented this data type to calculate matrix inverse, 
Moore-Penrose inverse (General Inverse) and ݁஺௧. 

3.4. Easy for Task Allocation in Cloud 
Environment 

Using the Multiple P-adic Data Type, the total work 
load is homogeneously allocated into small parts which 
is as many as the size of the prime set. It will be easier 
for making task allocations in a cloud environment. 
Furthermore in the symbolic (numerator-denominator) 
rational number calculation process, as the size of the 
arbitrary length number grows, the memory cost will 
increase quickly, while the Multiple P-adic Data Type 
will not have that kind of problem. The memory cost for 
each key will not grow during the calculation process. It 
is easy to estimate the memory cost before the 
calculation. 

4. Practical Considerations In A Cloud 
Environment 

Using Multiple P-adic Data Type, each module is 
independent of others, so that each can be computed on 
a different cluster node and can be done not necessarily 
at the same time. At each cluster node, a parallel 
algorithm can also be implemented during the matrix 
calculation process on multi CPU cores. If the matrix 
size is too large, the block algorithm can be freely 
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implemented in the calculation process. The efficient 
formula for calculation time is the following: 

ݐݏ݋ܥ	݁݉݅ܶ	݊݋݅ݐ݈ܽݑ݈ܿܽܥ	݈ܽݐ݋ܶ
ൌ 	ݐݏ݋ܥ	݁݉݅ܶ	݊݋݅ݐ݈ܽݑ݈ܿܽܥ	ݎ݁݃݁ݐ݊ܫ	ܿ݅ݏܽܤ

ൈ ඄
ݕݐ݅ݔ݈݁݌݉݋ܥ	݊݋݅ݐ݈ܽݑ݈ܿܽܥ

݀݁ݏܷ	ܷܲܥ	݂݋	ݎܾ݁݉ݑܰ
ඈ 

Basic Integer Calculation Time means the time cost on 
one node calculation by one module prime (64bits 
integer type or 32bits integer type). Calculation 
Complexity means the necessary prime set length with 
no overflow happening. Of course, the total time cost 
must also include the communication cost between 
nodes and the host at the beginning and the end of each 
node calculation. 
The implementation process is the following: 

1) Analyze the work load. According to the matrix 
size, the complexity of the number and the matrix 
calculation algorithms, the size of prime set s and the 
length of the P-adic sequence r will be decided. For a 
specific matrix transform, there will be a specific 
algorithm chosen or created for the work load 
evaluation. For example, to calculate ݔܣ ൌ ܾ , 
Hadamard’s inequality will be used: 

ሺ݊	ݔ2݉ܽ
೙

మܯሺܣሻ௡, ݊ሺ݊ െ 1ሻ
೙షభ

మ ሺܾሻሻܯሻ௡ିଵܣሺܯ ൑

∏ඥߣ ௜݌
௥௦

௜ୀଵ , where ߣ ൌ 0.618⋯		is a root of ߣଶ ൅ ߣ െ

1 ൌ  means the largest value of denominator or	ሺܺሻܯ ,0
numerator among elements in matrix X, s means the 
number of cluster nodes assigned, and r usually can 
represent the calculation efficiency. The smaller r 
means the less calculation time and less memory usage 
for a cluster node, while the smaller r requires larger s, 
which means to assign more cluster nodes. 

2) Work load separation. The original matrix data 
and a specific prime from a prime set will be sent to 
different cluster nodes. In each node, the original matrix 
elements will be module by the prime and generate P-
adic sequence with length equals to r. Then the matrix 
transformation will be calculated. During this process, 
parallel and block algorithms can be freely implemented.  

3) Generate the final result. All the temporary 
results will be collected from various nodes in the cloud 
by the master (host). The final rational result will be 
generated on the host machine. The Hensel code 
overflow detection will be used for verification. If 
overflow does not happen, we get the final result. 
Otherwise, keep the temporary results and choose a 
different prime set, then go to step 1). 

4.1.  Compare with the MATLAB Symbolic 
Toolbox 

This new data type can significantly shorten the 
calculation time by using more CPU-cores. We have 
compared the calculation time for matrix inverses with 
the symbolic toolbox in MATLAB, the experimental 
results are given in Fig. 2. The computer used is the 
Intel(R) Core(TM) i7-2600 CPU @ 3.40 GHz for the 
experiment. This CPU has 8 CPU cores. 
The following results (Fig. 2) show the calculation time 
of the inverse of ݐݎܾ݈݁݅ܪ	ݔ݅ݎݐܽ݉ ൈ   .ݔ݅ݎݐܽ݉	ݐݎܾ݈݁݅ܪ

 

Figure 2. Vertical axis: calculation time (seconds) 
          Horizontal axis: matrix size (N x N)     

The MATLAB code is following: 
for n = 5:100 

A = hilb(n); 
B = sym(A); 
B = B * B; 
n 
tic 
inv(B); 
t1(n) = toc; 
toc 

end 

During the calculation process, Matlab uses only one 
core of CPU to do the calculation, while our data type 
takes full use of all the 8 cores. 

4.2.  Compare with the Mathematic Symbolic 
Toolbox 

We have compared the calculation time for Moore-
Penrose inverses with a symbolic toolbox in 
Mathematica 8, the experimental results are given in Fig. 
3 and Fig. 4. 
Intel(R) Core(TM) i7-2600 CPU @ 3.40 GHz is used to 
do the experiment. This CPU has 8 CPU cores. The 
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following results (Fig. 3) show the calculation time of 
the inverse of ݐݎܾ݈݁݅ܪ	ݔ݅ݎݐܽ݉ ൈ   .ݔ݅ݎݐܽ݉	ݐݎܾ݈݁݅ܪ

 

Figure 3. Vertical axis: calculation time (seconds) 
          Horizontal axis: matrix size (N x N)    

The Mathematica code is following: 

Array[f,100]; 
For[i=5,i<105,i++,s = 
HilbertMatrix[i]*HilbertMatrix[i];f[i-4] 
= Timing[Inverse[s];][[1]];Print[f[i-
4]]] 

The following results (Fig. 4) show the calculation time 
of the Moore-Penrose inverse of ݐݎܾ݈݁݅ܪ	ݔ݅ݎݐܽ݉ ൈ
  .ݔ݅ݎݐܽ݉	ݐݎܾ݈݁݅ܪ

 

Figure 4. Vertical axis: calculation time (seconds) 
Horizontal axis: matrix size     

The Mathematica code is following: 

Array[f,100]; 
For[i=5,i<105,i++,s = 
HilbertMatrix[i]*HilbertMatrix[i];f[i-4] 
= 

Timing[PseudoInverse[s];][[1]];Print[f[
i-4]]] 

During the calculation process, Mathematica uses 4 
cores of the CPU, while our data type takes full use of 
all the 8 cores of the CPU. If the input matrix is more 
complex, the  advantage of this new data type is more 
obvious. This observation can be shown by comparing 
Fig. 3 and Fig. 4. Calculating the Moore-Penrose 
Inverse is more complex than the general matrix inverse. 

5. Estimate The Data Sequence Length 

One of the important issues for using Multiple P-adic 
Data Type is to estimate the entry sequence length of 
Multiple P-adic Data Type. As we mentioned, we can 
estimate the largest possible value to determine the 
entry sequence length. But this way usually gives a huge 
length, which is far larger than actually needed.  The 
better way to calculate that is to establish estimate 
functions depending on the property of different matrix 
transforms. 
For example, we generate an estimate function for non-
singular matrix inverse. We collect data by the 
following experiment. Generate random matrices from 4 
by 4 to 60 by 60.  For each matrix size, we generate 
matrix elements with denominator and numerator values 
in the range of {[0, 10], [0, 50], [0, 100], [0, 500], [0, 
1000], [0, 5000], [0, 10000]}. For each range, we 
generate 15 random matrices. For each n by n 
matrix	݉௜௝, we collect the data as the following: 

ݑ ൌෑ ෍݉௜௝
ଶ.

௡

௝ୀଵ

௡

௜ୀଵ
 

And calculate  

ܮ ൌ log௉ሺ2ݑ
ଶ ൅ 1ሻ, 

where P means the prime value, in this experiment P = 
2147483647 
After doing matrix inverse, we collect the max value of 
denominator and numerator x from the inversed matrix, 
and calculate 

݈ ൌ log௉ሺ2ݔ
ଶ ൅ 1ሻ, 

ߠ ൌ
݈

ܮ
. 
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