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Abstract

Our research group has been working on the P-adic theory and its implementation. Based on the Chinese
Remainder theorem and the Hensel code a new data type, called Multiple P-adic Data Type, has been established to
realize rational calculation. With this data type all rational number operations are converted to integer calculations,
and the fast integer multiplication of modern computer architectures can be fully taken advantage of. This data type
can be significantly effective in the parallel and cloud computing environment due to its independent computation

at each node during the calculation process.
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1. Introduction

Solutions of very large dense linear systems are required
for the estimation of the Earth’s gravitational field,
boundary element formulations in electromagnetism and
acoustics, and molecular dynamics simulations [1]. One
of the most important issues is to guarantee the accuracy
of the results. The floating-point number system
naturally has the defect of generating truncation error.
When the matrix size is very large, the accumulated
errors make the computational results unreliable and
unacceptable. For example, using Gaussian elimination
to calculate the matrix inverse of Hilbert matrix 15 by
15, with the double floating point number data type, the
result is,
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151
—11348 1138179

While the actual result is

225
—25200 3763200

Even when the matrix size is 15 by 15, the accumulation
of truncation errors make the results unacceptable under
the double floating point number system. Error free
rational calculation is necessary. But most of the
existing symbolic data type, such as in Matlab or
Mathematic, the time cost is considered too much.
During the past few years, we have been working on P-
adic theory and its implementation. Based on the
Chinese Remainder Theorem and Hensel code, a new
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data type has been established to realize a rational
calculation called Multiple P-adic Data Type [2-4].
With this data type all rational number operations are
converted to integer calculation, and the fast integer
multiplication of modern computer architectures can be
fully used. This data type can be significantly effective
in the parallel and cloud computing environment due to
its independent computation at each node during the
calculation process. Furthermore, the existing C++
programs can be converted to run with this data type
with no (or minimal) changes to the source code. We
have developed a computational library based on the
data type and the object oriented program using C/C++.
Computational algorithms have been developed using
the data type for the calculation of matrix inverse,
Lower Hessenberg form transformation, Wilkinson
form transformation, Frobenius form transformation,
post processing from all the transformations, reflexive
general matrix inverse, Moore-Penrose inverse,
e4t calculation, Laplace’s method for FTA
(Fundamental Theorem of Algebra), Bézoutian
formulation of the Resultant and etc.

2. Background

We introduce the theoretical background of the Multiple
P-adic Data Type briefly here. The main idea is coming
from the Hensel code and the Residue Number System
[14]. Hensel code was originally defined by
Krishnamurthy, Rao and Subramanian, which was
developed from the P-adic number system first
proposed by Hensel in the 1900s. The purpose was to
realize exact computation for rational numbers. Based
on the Chinese Remainder Theory, Morrison devised
the method to realize paralleled P-adic arithmetic for
rational numbers [2]. The detail can be found in our
previous papers [4-8].

2.1. Finite P-adic (Hensel code) Arithmetic[8-11]

Any rational number can be code(%) into P-adic sequence
by the following algorithm: ¢ = - p™,a,b,n € N,b #
0, and GCD(a,b) , GCD(a,p), G&D(b,p) =1 can be
written as o= Y°, a;p‘, k € N.

The conversion process is following:

Sep 1. x modp = a,

Sep 2. x= (x —a;)/p, go to Step 1 to get a,.
Continue Step 1 and Step 2, to get a;
Finally, a = p" - £iZo a;p' = L2, ai_np"’

The P-adic sequence with point position n will have the
following form:

a,a,,, ---a,a .a,aa, - forn<o0
a8, forn=0
.000a,a,a, - for n>0

Conventionally, we write P-adic sequence as:

a_.a point position = n

i-n~Ni-n+l 0

point position means the position of a,

2.1.1.  Addition/Subtraction

The addition of P-adic is similar to the binary numeral
addition. The difference is that P-adic addition process
is calculating from left to right.

For example of computing % + % = g forp=>5:

§==.140404040." %::.32222222.“

In the process, the position of the point should be kept
in alignment,

.140404040- --
322222222
413131313

We can check that the 5-adic of

2
3= 413131313 ...

2.1.2.  Multiplication/Division

The multiplication of P-adic is similar to the binary
numeral multiplication, the difference is that P-adic
multiplication is calculating from left to right. The point
position of the result equals: point] + point2.

For example of% X % = 1is withp=5:

=.231313131---

= 140404040 -

The multiplication can be shown:

2313131313131 - - -
x.1404040404040 - - -

2313131313131 - - -
331313131313 - -
00000000000 - - -

3313131313 - - -
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000000000 - - -
33131313 - - -
0000000 - - -

331313 - - -

00000 - - -

3313 - -

000 - - -

33

+ 0 -

2103341103341 - - -

Check the result with S-adic representation:

%:.21033411033411 .....

Division can be carried out as a multiplication process.
First we use the recursive method to get the inverse of
the dividend then complete the multiplication. The point
position for division equals: pointl - point2.

2.1.3. Hensel code

The encoded P-adic sequence is usually infinite. The
way to choose a finite P-adic sequence used in exact
rational computation is called Hensel code arithmetic.
The Hensel codes are closed with respect to basic
arithmetic operations
(ADD/SUBTRACT/MULTIPLY/DIVIDE).

For each Hensel code H(p,r, %), p means the prime, r
means the length of the P-adic sequence, & means the
finite P-adic sequence.

2.2. Multiple P-adic Algorithm

Multiple P-adic algorithm is first introduced by
Morrison [2]. The algorithm is based on extending the
Chinese remainder theorem from integers to rational
numbers [4].

The decoding process is as follows,

If r~{r,r, -, 15} is the residue representation of a
rational number r with respect to moduli {p;,p,, - Ds}
where GCD(pi,pj) =1 for i #j, then the decoding
algorithm is given as follows [10] [13]:

Mulitiple P-adic Data Type

Decoding algorithm
Chinese remainder theorem
p =Ili-1p:
Fori=1tos
Using extended Euclidean algorithm

to find p; by ﬁpi = 1 mod p;
End
= 35 Ly mod p

Step 1:

Step 2: Euclidean algorithm

U1 =D, Uy =T

v_1 =0, =1

i=-1

While u; < ﬁ
qi = lui—1/w
Ujpr = Uj—1 — qiU;
Viy1 = Vi1 +qiV;
i++

End

Rational solution:

r=((=D'u;/v)

Combining P-adic arithmetic [7-10] with the extended
Chinese remainder theorem (CRT), the multiple P-adic
algorithm is established. The implementation flow chart
follows:

‘ Rational number entries ‘

l

l—
l—
l—

a1pe-1 4 NI 0} o))
a1pe-g4 AUl 0} 3po))
d1pe-Ug ALy 0} o)
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(1d)4D Ut nAwyLIE d1pe-g
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(ug)0) ur onawyLe A1pe-g

k. »

Decoding back to rational number

Figure 1. Extended CRT combined with P-adic arithmetic for
parallel implementation
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2.3. Overflow Detection [5] [10]

Extended CRT overflow:

For the extended CRT systems with the prime set
{p1, s},
S mod p; set r~{ry,--, .}, GCD(a,b) =1, satisfies
la,b| > A\/E,p =Jl.;p; (A=0.618- is a root of
A% + 1 — 1 = 0), the rational number, whose set cannot
be uniquely recovered by the inverse transformation.
We call this situation extended CRT overflow. One way
to detect the overflow is to predict the bound, then
decide the size of the prime set {p;,py **pn} by
Newman [14]. Another way to detect overflow is to
provide extra digits [5]. This method can detect the
overflow by using the prime set {p;, - p,} and the
residue number set itself. In this method, each number
set should have extra digits used for verification, the

when a rational number

length is kept by K.
With prime set {py, P2, Pi, Pir1,*» Pivk}, for any
rational number X, we get the

set{r; = x mod py, -+, Ty, = x mod p;, i}, we record it
as: X~{T1, T ToTivn ri+k}'

During the overflow detection process, it will be treated
as

x~(rory Ty Tigr - Tigr )
verification part
Notation: Decoding(x, i) and Decoding(X, i) will be
used to donate decoding rational number set X and
matrix X into rational number and rational number
matrix by first i digits.
Overflow happened, if:

Decoding(x,i) # Decoding(x,i + k).
Overflow did not happen, if:
Decoding(x,i) = Decoding(x,i + k).

3. The Main Properties of Multiple P-adic Data
Type

3.1. Error-free Computing in Rational Number
Field

Each rational number is represented by a finite sequence
of integers. The integers’ values are the module results
of prime numbers, which can be chosen by developers
and also depend on the CPU architectures. The
arithmetic calculation process is in a rational number
field, thus there will be no truncation error. The

arithmetic is transformed to integer arithmetic and
module operations.

The structure of the data type can be explained as the
following:

g : [Integer 00|[Integer 01]-|[Integer Ok|

module results of Py

- [Integer n0|[Integer n1|--[Integer nk|

module results of Py

For example, form prime number set [257, 251, 241],
then,

e R (6]
10234567 — ———
module results of 257 module results of 251

St
module results of 241

1
18

10234567

179,235; 6,193; 229,114.

The integer sequence for

The size of the prime number set and the length for the
integer sequence can be self-defined. The size of the
prime number set can affect the efficiency of parallel
computing. The detail explanation will be introduced in
the natural parallel ability section. Because the
arithmetic operation is in rational number field as
integers, there will be no truncation error. For example
of the calculation of 1/2+1/3 with the prime
set[257,251,241],

%: 129,128; 126,125; 121, 120
%: 86, 171; 84,167; 161, 160

129 128 126 125 121 120
86 171 84 167 161 160
215 42 210 41 41 40

The sequence: 215,42; 210,41; 41,40 is transformed to
5

6

+

3.2. Integer Calculations Taking Full Use of
Computer Architecture

Usually the rational calculation is using arbitrary length
integers to represent the numerator and denominator.
For example, we use one character (1 byte) to represent
each digit of an integer and then link the data structure
to realize the arbitrary length of the integer. For
example, when calculating 1234567 + 7654321
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Including the carry-out operations, there will be 16
possible character operations. While using the Multiple
P-adic Data Type, and choosing [46337] as the prime
set, the calculation process will be

29805 26 0
8716 165 0
38521 191 0

There are only 3 additions and 3 module operations.
For rational operation, the numerator and denominator
will cost more due to the reasons shown below:
Addition process:
a; 4 a; a;by +aby
by by biby
_ (a1b; + azb1)/GCD((a1h; + azby), biby)
by b /GCD((a1b; + azby), byby)

Multiplication process:

a % a, a1a; _a1a;/GCD(ayay, biby)
by b, h bib, a bib,/GCD(a,a;, byby)

During these calculation processes,
GCD (numerator, denominator) must be found and
extra calculation steps will be needed. However, for
Multiple P-adic Data Type there will be no difference
between fractions and integers.

The Multiple P-adic Data Type can be easily
implemented on 32 and 64-bit platforms. The only
difference is to choose the right prime number set. On
the 32-bit platform, the maximum prime is P = 46337,
the largest prime numbers smaller or equal to 46337 can
be used, while on the 64-bit platform, the maximum
prime will be P = 2147483647, the largest prime
numbers smaller or equal to 2147483647 can be used.

3.3. Natural Parallel Structure Taking Full Use of
Multi-core System

According to the features of the Multiple P-adic Data
Type, parallel computing can be implemented on any
algorithm with basic arithmetic operations and do not
depend on the specific algorithm. The parallel structure
depends on the size of the chosen prime set. For

Mulitiple P-adic Data Type

example, we calculate (1—17— 1) xi with  prime

set[257,251,241],

1
—:121,60;192,14; 156,212

17
1:1,0;1,0; 1,0
1
E:129,128;126,125;121,120
257 Line Process| (251 Line Process 241 Line Process
121 60 192 14 156 212
1 0 _ 1 0 _ 1 0
120 60 191 14 155 212
129 128 126 125 y 121 120
60 30 221 132 198 226

3 Separated Process

After the 3 separated computing processes, we can get
the final result: —18—7: 60,30;221,132; 198,226.

Most of the linear processes can directly use this data
type to realize parallel computing without modification
algorithm We have
implemented this data type to calculate matrix inverse,
Moore-Penrose inverse (General Inverse) and e“f.

at the mathematical level.

3.4. Easy for Task Allocation in Cloud
Environment

Using the Multiple P-adic Data Type, the total work
load is homogeneously allocated into small parts which
is as many as the size of the prime set. It will be easier
for making task allocations in a cloud environment.
Furthermore in the symbolic (numerator-denominator)
rational number calculation process, as the size of the
arbitrary length number grows, the memory cost will
increase quickly, while the Multiple P-adic Data Type
will not have that kind of problem. The memory cost for
each key will not grow during the calculation process. It
is easy to estimate the memory cost before the
calculation.

4. Practical Considerations In A Cloud
Environment

Using Multiple P-adic Data Type, each module is
independent of others, so that each can be computed on
a different cluster node and can be done not necessarily
at the same time. At each cluster node, a parallel
algorithm can also be implemented during the matrix
calculation process on multi CPU cores. If the matrix
size is too large, the block algorithm can be freely
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implemented in the calculation process. The efficient
formula for calculation time is the following:

Total Calculation Time Cost
= Basic Integer Calculation Time Cost
y [Calculation Complexity

Number of CPU Used

Basic Integer Calculation Time means the time cost on
one node calculation by one module prime (64bits
integer type or 32bits integer type). Calculation
Complexity means the necessary prime set length with
no overflow happening. Of course, the total time cost
must also include the communication cost between
nodes and the host at the beginning and the end of each
node calculation.

The implementation process is the following:

1) Analyze the work load. According to the matrix
size, the complexity of the number and the matrix
calculation algorithms, the size of prime set s and the
length of the P-adic sequence r will be decided. For a
specific matrix transform, there will be a specific
algorithm chosen or created for the work load
evaluation. For example, to calculate Ax =b ,
Hadamard’s inequality will be used:
2max(nzM(A)", n(n — 1)'7 M(A)" M (b)) <
AJITiZ, p}, where A = 0.618-- is a root of A* + A —
1 = 0, M(X) means the largest value of denominator or
numerator among elements in matrix X, S means the
number of cluster nodes assigned, and r usually can
represent the calculation efficiency. The smaller r
means the less calculation time and less memory usage
for a cluster node, while the smaller r requires larger s,
which means to assign more cluster nodes.

2) Work load separation. The original matrix data
and a specific prime from a prime set will be sent to
different cluster nodes. In each node, the original matrix
elements will be module by the prime and generate P-
adic sequence with length equals to r. Then the matrix
transformation will be calculated. During this process,

parallel and block algorithms can be freely implemented.

3) Generate the final result. All the temporary
results will be collected from various nodes in the cloud
by the master (host). The final rational result will be
generated on the host machine. The Hensel code
overflow detection will be used for verification. If
overflow does not happen, we get the final result.
Otherwise, keep the temporary results and choose a
different prime set, then go to step 1).

4.1. Compare with the MATLAB Symbolic
Toolbox

This new data type can significantly shorten the
calculation time by using more CPU-cores. We have
compared the calculation time for matrix inverses with
the symbolic toolbox in MATLAB, the experimental
results are given in Fig. 2. The computer used is the
Intel(R) Core(TM) i7-2600 CPU @ 3.40 GHz for the
experiment. This CPU has 8 CPU cores.

The following results (Fig. 2) show the calculation time
of the inverse of Hilbert matrix X Hilbert matrix.

1400
1200 n
1000 = == Matlab
! Symbolic
800 1
600 /
e " e Multiple P-
4 adic Data
200 - / Type
O
N M~NOOO I O~ O
N <t N O N

Figure 2. Vertical axis: calculation time (seconds)
Horizontal axis: matrix size (N x N)

The MATLAB code is following:

forn=5:100
A = hilb(n);
B =sym(A);
B=B *B;
n
tic
inv(B);
t1(n) = toc;
toc

end

During the calculation process, Matlab uses only one

core of CPU to do the calculation, while our data type
takes full use of all the 8 cores.

4.2. Compare with the Mathematic Symbolic
Toolbox

We have compared the calculation time for Moore-
Penrose inverses with a symbolic toolbox in
Mathematica 8, the experimental results are given in Fig.
3 and Fig. 4.

Intel(R) Core(TM) i7-2600 CPU @ 3.40 GHz is used to

do the experiment. This CPU has 8 CPU cores. The
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following results (Fig. 3) show the calculation time of
the inverse of Hilbert matrix X Hilbert matrix.

50
40 !
4 = == [Mathemat
ica
30 )
! Symbolic
20 4 /
’| I/ e Multiple
10 4 /4 P-adic
0 7 Data Type
N ™~ OO I MmO i~ O
AN N O N

Figure 3. Vertical axis: calculation time (seconds)
Horizontal axis: matrix size (N x N)

The Mathematica code is following:

Array[f,100];
For[i=5,1<105,i++,s =
HilbertMatrix[i]*HilbertMatrix[i];fLi-4]
= Timing[Inverse[s];1[[1]1];Print[f[i-
4111

The following results (Fig. 4) show the calculation time

of the Moore-Penrose inverse of Hilbert matrix X
Hilbert matrix.

1500
I = == Mathemati
1000 7 ca
/ Symbolic
500 7 Multiple P-
/ adic Data
P Type
0 -rrT————
NN A MmN
A N < 10D O N0

Figure 4. Vertical axis: calculation time (seconds)
Horizontal axis: matrix size

The Mathematica code is following:

Array[f,100];
For[i=5,i<105,i++,s =
HilbertMatrix[i]*HilbertMatrix[i];f[i-4]

Mulitiple P-adic Data Type

Timing[Pseudolnverse[s]:1[[1]1];Print[f[
i-4]111

During the calculation process, Mathematica uses 4
cores of the CPU, while our data type takes full use of
all the 8 cores of the CPU. If the input matrix is more
complex, the advantage of this new data type is more
obvious. This observation can be shown by comparing
Fig. 3 and Fig. 4. Calculating the Moore-Penrose
Inverse is more complex than the general matrix inverse.

5. Estimate The Data Sequence Length

One of the important issues for using Multiple P-adic
Data Type is to estimate the entry sequence length of
Multiple P-adic Data Type. As we mentioned, we can
estimate the largest possible value to determine the
entry sequence length. But this way usually gives a huge
length, which is far larger than actually needed. The
better way to calculate that is to establish estimate
functions depending on the property of different matrix
transforms.

For example, we generate an estimate function for non-
singular matrix inverse. We collect data by the
following experiment. Generate random matrices from 4
by 4 to 60 by 60. For each matrix size, we generate
matrix elements with denominator and numerator values
in the range of {[0, 10], [0, 50], [0, 100], [0, 500], [O,
1000], [0, 5000], [0, 10000]}. For each range, we
generate 15 random matrices. For each n by n
matrix m;;, we collect the data as the following:

n
n
u= | | Zmijz.
L=1j=1

And calculate
L =logp(2u? + 1),

where P means the prime value, in this experiment P =
2147483647
After doing matrix inverse, we collect the max value of
denominator and numerator X from the inversed matrix,
and calculate

[ =logp(2x? + 1),
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Fig. 5 shows the experimental results.

a

Figure 5. Vertical axis: 8
Left Horizontal axis: matrix size
Right Horizontal axis: In(range)

From Fig. 5, we can find the value of 6 in a specific
range. We calculate the average value § = 0.45 and
standard deviation ¢ = 0.01.
Usually for the convenience of separating resources, we
choose the same length for each P-adic sequence. The
estimate function for non-singular matrix inverse is

= T
If the results fail on overflow detection, we will keep
the temporary results and choose a new prime as P-adic
sequence to calculate with the length r;,; = 30L.

6. Analysis and Conclusion

Multiple P-adic Data Type has a natural parallel
structure, and is completely independent at each node
during the calculation process, which is significantly
effective in the parallel and cloud computing
environment. Experimental results of the matrix inverse
calculation with various matrix sizes are given to
illustrate computational efficiency. When the matrix
sizes are large and the computation is complex, the
advantage of the Multiple P-adic Data Type will be
more obvious if the computer has more cores/CPUs. An
estimation method for choosing the sequence length of
Multiple P-adic Data Type is provided for practical
implementation.
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