
A Distributed Storage System with Dynamic Tiering for iSCSI Environment

Atsushi Nunome 1 , Hiroaki Hirata 1 , Kiyoshi Shibayama 2

1 Department of Information Science, Kyoto Institute of Technology,
Matsugasaki Sakyo-ku,
Kyoto, 606-8585, Japan

E-mail: {nunome, hrt}@kit.ac.jp
2 Department of Information Science, Kyoto Institute of Technology,

Matsugasaki Sakyo-ku,
Kyoto, 606-8585, Japan

E-mail: shibayam@kit.jp

Abstract

We propose a distributed storage system which relocates data blocks autonomously among the storage
nodes. In order to optimize I/O performance with slight administrative workload, our system is aimed
at the realization of the following two functions; (i) Run-time construction of the storage tiers from the
heterogeneous storage devices, and (ii) Automated block migration among the tiers. We also show a
technique to reduce management traffic in iSCSI environment.

Keywords: Distributed Storage System, Block Migration, Storage Tiering, iSCSI

1. Introduction

Recently, even a client computer has enough storage
space owing to inexpensive mass storage devices. In
small organizations such as a small office or a lab-
oratory in a university, a client computer is used for
various tasks as a single node, and it is often not
configured to cooperate with other client comput-
ers. Such a computer is apt to remain lots of free
space on the storage device. Therefore, the storage
devices on the client computers should be organized
as a distributed storage system in order to be utilized
effectively.

Storage management is one of the most impor-
tant tasks of system administrators. They have to
monitor the performance of the devices whether they
are operating at expected I/O performance. Access

concentration or device overload will cause perfor-
mance degradation of the whole system. The data
files which are seldom accessed by the user in spite
of locating on the high performance storage should
be migrated to another storage device.

However, this relocation task is a heavy burden
on the administrators because file access pattern and
storage workload are dynamically changed. If they
statically decide the location of a file and never re-
locate it, the system may not be able to utilize the
potential performance of the storage devices. On the
other hand, excessive dynamic tuning brings consid-
erable overhead.

We propose a distributed storage system which
migrates file data blocks into the suitable storage de-
vice for their access pattern.

International Journal of Networked and Distributed Computing, Vol. 3, No. 1 (January 2015), 42-50

Published by Atlantis Press 
Copyright: the authors 

42



A. Nunome et al.

2. Related Works

Virtualization generally helps to utilize various types
of storage devices on the basis of a single principle.
The modern file system has ability of storage virtual-
ization. ZFS1 file system which has been originally
designed by Sun Microsystems is widely used for
virtualizing storage. The virtualized storage which
is called a storage pool may be composed of mul-
tiple storage devices. In ZFS, an administrator can
manually attach a high performance storage, such as
an SSD, as a cache or a log device to the storage
pool. Once it is attached to the storage pool as such
functions, it can not be used for data storage. Thus
the purpose of the storage device is statically fixed.
Also, even if the storage pool is composed of several
types of devices and there is a large performance gap
between the heterogeneous devices, we can not ex-
plicitly designate the location for storing a file.

Lustre2 file system is one of the cluster file sys-
tem, and it consists of the following two types of
servers; the meta data server (MDS) and the object
storage server (OSS). The former manages the meta-
data of the files, and the latter provides the contents
of the files. Actual storage devices are connected to
the OSS, and the physical devices are hidden from
Lustre clients. Although many storage devices can
be used through multiple OSSs in the network, the
administrators have to be aware of the existence of
the performance differences between the storage de-
vices. Thus, they might need to adjust the block al-
location manually.

The simplest way to manage multiple storage de-
vices is to unify the type of all of them. Recently,
the combination of different types of storage device
(storage tiering) is widely used in the environment
where used various types of storage devices. It aims
at optimizing the balance of cost and performance.

Easy Tier3 and FAST (Fully Automated Stor-
age Tiering)4 are commercial storage tiering sys-
tems implemented for storage server products. They
support up to three storage tiers which are classified
by device technologies. Because no effective per-
formance evaluation is needed, administrators can
easily assign the storage devices to the appropriate
storage tiers. If there are large performance gap be-
tween the devices in the same tier, the actual effect

of block migration is difficult to estimate.
Btier,5 formerly named tier, is a block device

with automatic migration for Linux kernel. It scans
storage devices in the statically defined interval in
order to find the blocks which should be migrated to
another tier. The number of tiers can be controlled in
accord with performance differences in the storage
devices. However, too many tiers bother an admin-
istrator for configuring migration thresholds. Actu-
ally, most systems use only two tiers such as an SSD
tier and an HDD tier. Because btier is designed for a
stand-alone Linux box, the block migration over the
network is not supported.

For network environment, autonomous disks6 is
proposed as clusters of disks, which aims at achiev-
ing of data distribution, fault tolerance, and hetero-
geneity. Although autonomous disks itself does not
provide the function of storage tiering, an attempt
to combine an autonomous disk cluster of magnetic
disks (HDDs) with a solid state autonomous disk
cluster has been proposed.7,8 The system uses the
solid state cluster as a cache of the magnetic disk
cluster, and does not perform block migration.

In conventional tiering techniques, the storage
devices are statically classified according to their
theoretical performance or device technologies. Al-
though such static classification helps to reduce the
run-time overhead, it cannot respond to fluctuation
of effective I/O performance. Because of a high
level of the management overhead, it is hard to de-
cide dynamically the storage tiers over the network.

3. System Assumptions

In this paper, we assume the following system as a
main target to examine.

First, the target system is assumed to be con-
structed with heterogeneous components. This het-
erogeneity is not the system’s intention, but a result
of components’ partial replacement. Hence, the per-
formance of nodes and storage devices might vary
widely. Since we assume that storage servers and
client PCs coexist on the same network. So, they
can directly transfer network frames to destination
nodes.

Furthermore, the storage server could simultane-

Published by Atlantis Press 
Copyright: the authors 

43



Distributed Storage System

ously act as a client for the other server. In this pa-
per, we classify network nodes in this environment
into the following three types.

Storage node The node which has a storage device
and shares it with clients.

Client node The node which mounts a remote stor-
age to use.

Bi-functional node The node which has a public
storage device and also accesses another re-
mote storage.

Network Switch

Public
Storage 
Device

Public
Storage 
Device

Client
Node
(C)

Server Nodes

Private
Storage Device

Storage
Node
(A)

Bi-functional
Node
(B)

Private
Storage 
Device

Fig. 1. An example of network nodes’ classification.

An example of network nodes’ classification is
shown in Fig. 1. In this figure, three network nodes
(A), (B), and (C) are connected via a network switch.
Both the storage node (A) and the bi-functional node
(B) attach their own storage device to share. Here-
inafter, such the node which provides public stor-
age service is also referred to as a server node. The
client node (C) without shared storage device ac-
cesses two server nodes over the network. The node
(B) accesses the remote storage on the node (A) as
the role of a client.

There are situations of which a server node not
only performs I/O operation but also runs some kind
of application software. For example, some of re-
cent NAS products also provide various network
services, such as database management and me-
dia streaming with dynamic transcoding. Because
each node in an assumed environment could inde-
pendently use various software or network services,
such a complex task brings unbalanced I/O work-
load. Thus the apparent throughput and latency of
the nodes will fluctuate continuously. The target of
our scheme is such environment which is composed
of nodes with dynamical heterogeneity. This situ-
ation is ordinarily observed in environments where
obsolete nodes are gradually replaced with the new.

The free space of a storage device is provided as
a shared block device. Other nodes which need more
storage area use the device over the network. The
client node constructs an arbitrary file system on it.
If a server node has sufficient free area on multiple
storage devices, it first integrates their devices as a
logical storage. After that the server node shares the
logical storage for client nodes with iSCSI.9 iSCSI
is one of the major protocol to use in storage area
network (SAN). In iSCSI, a SCSI command block
is encapsulated within an IP packet, and it is sent
over ordinary IP networks. The node which provides
storage is called an iSCSI target, and the node which
connects to the remote storage is called an iSCSI ini-
tiator.

Modern operating systems, such as Windows or
Unix-like systems, have ability to be the iSCSI ini-
tiator. Because the iSCSI target simply provides a
raw storage device, the iSCSI initiator can construct
and use arbitrary file system independent of the tar-
get’s OS. Therefore, our scheme targets the environ-
ment where iSCSI is used as the protocol for access-
ing the storage in order to make efficient use of free
storage.

4. Dynamic Storage Tiering Scheme

In this section, we describe the details of a scheme to
dynamically construct storage tiers and migrate data
blocks across the tiers.

Published by Atlantis Press 
Copyright: the authors 

44



A. Nunome et al.

4.1. Overview

In our scheme, each server node scans data blocks
for migrating to the appropriate storage. Data blocks
which are frequently used are preferentially located
on high performance storage devices (the upper stor-
age tier). On the other hand, data blocks which are
seldom used are gathered on relatively poor perfor-
mance storage devices (the lower storage tier). This
makes a contribution to maintain enough size of free
area on a fast storage device for frequently used data
blocks.

The destination node for block migration is de-
cided in consideration of the run-time performance
gap between the server nodes. A maximum I/O
throughput described in the specification sheet does
not reflect the actual transfer speed. In our scheme,
the server nodes relocate data blocks based on the
dynamic aspects.

In order to obtain the dynamic aspects of the
server nodes, we propose the method to improve
utilization of packet payload for iSCSI protocol.
Short length packets are exchanged frequently in
iSCSI protocol. On the other hand, in order to im-
prove efficiency of transmission and reduce over-
head, the frame size tends to be long in recent net-
work standards. Even a short frame costs con-
stant time for processing its header on the network
nodes or switching equipment. Hence, we propose
the scheme which merges some small data into one
frame in order to utilize the space in the iSCSI
packet.

4.2. Migration strategy

The server nodes perform an actual migration when
I/O workload is estimated to be low. Because there
is no explicit migration initiator in the fully decen-
tralized environment, the inquiry for starting the mi-
gration may occur continuously. There is a possi-
bility that random and complex inter-node commu-
nications cause temporary network congestion. Ac-
cordingly, each server node exchanges information
about storage utilization in a controlled manner.

There are two points of examination to determine
a destination of data blocks. One is the size of the
free storage area of the destination, the other is the

effective data transfer rate of the destination node.
The concentration of frequently used data blocks on
a specific server node might degrade its effective
data transfer rate. However, it is possible to avoid
such problems by relocating the data blocks onto the
different nodes in order to prevent the simultaneous
access. Accordingly, our scheme exchanges the sta-
tus of each node using iSCSI messages which are
sent at frequent intervals.

In our scheme, an iSCSI target is responsible for
block migration. Generally, the migration can be ini-
tiated in the following two manners. One is receiver
initiation, the other is sender initiation. In case of
the former, idle server nodes randomly seek for data
blocks which should be received. This task tends to
obstruct proper I/O operations on the network. The
server node which performs heavy I/O transactions
knows which data block should be migrated to more
powerful server node. Furthermore, it is also suf-
ficiently functional in case to begin migration of a
seldom accessed data block when the need for stor-
age space arises. Consequently we choose the latter
as a suitable policy for block migration.

4.3. Storage information

The migration initiator determines the destination on
the basis of information about other server nodes.
This information (hereinafter referred to as storage
information) is actually the state of block utilization
on each server node. However, keeping track of all
data blocks will be a hard task for the nodes. For that
reason, we define a bunch of several data blocks as
a migration unit which has fixed length of data. It is
made so as to contain continuous data blocks which
belong to the same file as far as possible. In order
to manage the utilization of each migration unit, the
server node uses a table named a migration manage-
ment table (MMT). The fields of each MMT entry
are the time of the last migration and a degree of
migration priority. The MMT is located on the local
storage area which is removed from the list of blocks
to be migrated.

The number of blocks included in the migration
unit should be defined by considering the sender’s
overhead. Because of the performance differences
among the server nodes, the number of blocks in the

Published by Atlantis Press 
Copyright: the authors 

45



Distributed Storage System

migration unit will not be constant over the whole
system.

While larger size of migration unit helps reduc-
ing overhead, there is a strong possibility that data
blocks of different files coexist on the same unit.

The storage information includes the following
data.

(i) Storage ID:
This is used for identifying the storage de-
vice. In a simple way, it can be set same as
iSCSI qualified name9 which has the maxi-
mum length of 223 bytes. This ID is unique
in the whole system.

(ii) The amount of free storage in megabytes:
This is used for notification of how much data
the server node can receive. If the value is zero,
the node will reject incoming migration units.
When this field has two bytes of data width, it
can express the size of free storage up to 64
gigabytes. If it is insufficient to represent the
actual size of free area, the maximum number
can be used for that.

(iii) A degree of access concentration:
This is used for decision whether the storage
device is in overloaded condition. Each server
node compares these values which are col-
lected from other server nodes. If a server node
finds that it is relatively in overloaded, it be-
gins to migrate some of the blocks which are
accessed frequently.

If the third field is represented in four bytes, each
storage information can be composed in 230 bytes.

This storage information should be exchanged
frequently in order to observe the precise condition
of other server nodes. Therefore, it has to be ex-
changed efficiently for reducing overhead.

4.4. Storage information exchange scheme

In order to migrate a data block onto proper node,
each node should collect fresh information about
candidate destinations. We propose the method for
reducing the number of individual packets which de-
liver storage information.

A network node analyzes the header of every
incoming packet for the purpose of accepting it.

Therefore, a number of short packet cause great pro-
cessing overhead of analysis. Our scheme merges
several short packets into one long packet in order
to reduce such overhead. We attempt to utilize lots
of short packets which are exchanged in iSCSI pro-
tocol.

iSCSI is the protocol which provides the capabil-
ity of transferring SCSI command and data over IP
networks. In traditional SCSI, a command is sent in
a command descriptor block (CDB).10 In iSCSI, it is
transferred as a part of an iSCSI protocol data unit
(PDU). The most CDB has short length as compared
with a network frame. For example, the so-called
Jumbo Frame11,12 which has the capacity of payload
over 1,500 octets is often used in recent high-speed
Ethernet. IP over InfiniBand also supports larger
size of payload than traditional Ethernet.13,14

Because there are great differences between the
actual size of the SCSI CDB and the transfer capac-
ity of the network frame, the iSCSI packet still has
the space to attach some useful information. In the
SAN using iSCSI protocol, a large number of small
packets are observed between an iSCSI initiator and
target. In general, the initiator and target send a mes-
sage to each other in order to verify whether or not
its counterpart is alive. This ping-like mechanism
using a pair of NOP-Out request and NOP-In re-
sponse is defined in RFC.9 An iSCSI initiator sends
the NOP-Out request every tens of seconds.

MAC
Header

IP
Header

TCP
Header

iSCSI PDU
(NOP-In/Out) FCS

14 20 32 48 4

Length
(bytes)

Fig. 2. An Ethernet frame structure of iSCSI NOP-In/Out.

As an example, we present the actual structure
of the network frame. Fig. 2 shows an Ethernet
frame structure of the iSCSI NOP-In or NOP-Out.
The frame is constructed with 48 bytes of iSCSI
PDU, 32 bytes of TCP header including optional
field, 20 bytes of IP header, 14 bytes of media ac-

Published by Atlantis Press 
Copyright: the authors 

46



A. Nunome et al.

cess control (MAC) header, and trailing four bytes
of frame check sequence (FCS). The total length of
the frame reaches 118 bytes. The part of the frame
except MAC header and FCS is included in Ether-
net payload. Because the maximum transmission
unit (MTU) of Jumbo Frame reaches 9,000 bytes or
more, it is able to contain not only one NOP-In/Out
PDU but also more additional information. In this
way, our scheme uses the space of the iSCSI packet
to exchange the storage information.

The storage information is appended to the iSCSI
NOP packets by the extended TCP layer (hereinafter
referred to as ExTCP). The ExTCP layer observes
a communication of iSCSI. When a NOP PDU is
about to be sent to the destination, the layer appends
the appropriate amount of the storage information to
the iSCSI NOP PDU according to the MTU size.

As mentioned above, the length of the normal
iSCSI NOP packet is 100 bytes. For example, in the
environment using 9,000 bytes of MTU, the remain
payload of iSCSI NOP can contain 38 pieces of the
storage information. Hereinafter, the NOP packet
which is appended such storage information is re-
ferred to as the extended NOP packet. The storage
information is stripped off from the extended NOP
packet by the ExTCP layer on the receiving node.

The storage information which is collected by
the extended NOP packets is stored into an on-
memory table by each iSCSI node. The ExTCP
layer picks a certain number of the storage informa-
tion from the table for making the extended NOP
packet. Therefore, each iSCSI node can obtain in-
formation about the node with which it has relations
by the iSCSI sessions.

4.5. Block migration procedure

Each server node can acquire information about the
state of block utilization on neighbor server nodes by
the scheme described in the previous section. It peri-
odically checks whether there are data blocks which
have been accessed consecutively. When it detects
intensive access to a particular data block, it marks
the migration unit which includes the block for relo-
cating later.

The migration reservation queue (MRQ) is lo-
cated on every server node for management of future

migration. The MRQ is implemented as a priority
queue and it stores information about which migra-
tion unit should be migrated preferentially. Here-
inafter, the priority of the MRQ is referred to as a
migration priority.

Migration Reservation Queue (MRQ)

Top

Migration Management Table (MMT)

Entry
number

Time
stamp

Migration
priority

#1

#2

#3

#4

#5

#0

0

4

2

16

0

2

1000

2000

0

3000

0

4000

MU #

1

0

7

2

4

5

Fig. 3. An example of the migration reservation queue.

An example of the MRQ is shown in Fig. 3. Each
entry of the MRQ points a record of the MMT. This
example shows four entries queued in the MRQ. The
top entry of the MRQ points the entry #0 which has
the highest migration priority in the MMT. In this
MMT, both the entry #1 and #4 have the same mi-
gration priority. To prevent contiguous migration,
the entry #4, which has longer elapsed time than the
entry #1 since the last migration, is given priority
over the entry #1 in the MRQ. The MMT entry #3
and #5 are not pointed from the MRQ because they
have no migration priority.

Because the migration priority must be calcu-
lated for every migration units, it should be found
by simple and easy way. If there is no concurrent
access to a storage device even if the number of ac-

Published by Atlantis Press 
Copyright: the authors 

47



Distributed Storage System

cess to the device per a unit time is high, degradation
of the I/O performance will not occur. Therefore, we
define the migration priority as the influence on the
other accesses to the same device, not a simple total
of the access. In concrete terms, each server node
calculates the average queue length during the ac-
cess to a data block. At both the time of receiving
and completing the access request, the server node
logs the number of requests waiting in the queue.
The average queue length can be found by the sim-
ple average of the two numbers. If this value is zero,
it indicates that the access to the data block does not
disturb any other accesses. Each server node sums
up these values per data block, and considers the
maximum value in the migration unit as the migra-
tion priority. This indicator, the migration priority,
is utilized for decision of the migration unit to be
transferred when it is necessary to migrate some data
blocks from the server node.

Data Blocks

Migration Priority

longshort

0 4 8 12

Migration Units

0 4 8 12

MU-0 MU-1 MU-2 MU-3

sum of the average
queue length

highlow

Fig. 4. An example of getting the migration priority.

Fig. 4 shows an example of getting the migra-
tion priority of the migration units. The upper side
of this figure shows the sum of the average queue
length per data block. Darker block indicates that

the sum of length is long, and should be migrated to
faster storage device. The data block number 12 has
the longest sum of the average queue length in this
figure. This means that a number of access has been
disturbed by the access to the block number 12.

Each migration unit consists of four data blocks
in this example. The lower side of Fig. 4 shows
four migration units from MU-0 to MU-3. Each of
them is composed of four data blocks. The migra-
tion priority of the fourth migration unit (MU-3) is
represented by the sum of the average queue length
of the block number 12. In this example, the server
node arranges the pointer to the migration unit in the
MRQ by the migration priority, in the order of MU-
3, MU-1, MU-2 and MU-0.

The server node periodically evaluates a degree
of access concentration for decision whether some
blocks should be migrated or not. The degree of
access concentration is calculated from the average
time required to complete access requests. The time
for waiting access completion is logged for every re-
quest in order to obtain the average completion time.

When the server node takes the longest average
completion time and the time exceeds a threshold,
it becomes the migration initiator. This means that
relatively the storage device has been exposed to in-
tense access or it has poor I/O performance, i.e.,
insufficient throughput or high latency. Hence, we
consider the node which has long average comple-
tion time as the member of the lower storage tier in
spite of its potential performance. The upper storage
tier is also defined in the same way.

The migration initiator begins to transfer the
blocks included in the migration unit which is lo-
cated at the top of the MRQ. The server sends the
blocks included in the migration unit as a unit of
transfer. However, there is no guarantee that the
effect of the migration appears without delay. If
a server node performs contiguous block migra-
tions for the reason that the effect has not been
clear, a number of useless migration might obstruct
other network traffic. Therefore, the block migration
should be performed in sufficient intervals in order
to prevent burst migration.

On the other hand, when the size of the free stor-
age area is below the threshold defined statically,

Published by Atlantis Press 
Copyright: the authors 

48



A. Nunome et al.

the server node picks up the infrequently accessed
blocks and recognizes them as the candidacy of mi-
gration. The migration initiator looks for the migra-
tion units which have not been accessed in a certain
period of time. We prepare two threshold levels in
order to prevent contiguous migration. The thresh-
old levels are based on the amount of free storage,
and used for the determination of the beginning and
the end of the migration. When the size of free space
is below the lower threshold, the server node starts
the block migration to the lower storage tier. It con-
tinues until the size of free space reaches the upper
threshold.

Since our method is fully decentralized, no spe-
cific node manages imbalance of I/O workload in
the whole system. Therefore, each migration is per-
formed based on local information only. Because
each server node begins the block migration in order
to mitigate the performance degradation accompa-
nying access concentration to a storage device, the
effect of the migration cannot be confirmed imme-
diately. As the migration effect appears after a cer-
tain time period, drastic block migration should be
avoided.

In order to prevent excessive migration, a server
node initiates the migration procedure only when
enough performance gap is observed between the
server node and the destination node. As the result
of the aforementioned migration procedure, storage
tiers are organized dynamically. The number of stor-
age tiers is decided upon by the performance differ-
ences among the nodes in the system.

4.6. Accessing to migrated blocks

To shorten the time required for the block migra-
tion, the scheduling priority of the migration should
be set at highest. When a client node attempts to
read a block which is being migrated, the migration
source node continues the process and transfers a re-
quired data block to the client node from its own
storage device. On the other hand, when a migration
source node receives a request to write data onto a
migrating block, it first aborts the migration and then
restarts it from the beginning after completion of the
write operation.

After the block migration, the migration source

node keeps the original data blocks. If the node re-
ceives a request to read or write the block and it
has been already updated by the destination node,
the migration source node discards the original data
block and forwards the request to the destination
node.

If the migrated block has not been updated yet,
the migration source node which is received the re-
quest follows following procedure. When the migra-
tion source node receives a read request, it replies
the requested block immediately. The reply mes-
sage also contains information about the destina-
tion node of the migrated data block. After that,
the client node directly sends a request for access
to the migration destination node. When the migra-
tion source node receives a request to write the mi-
grated block, it first updates the original block and
then it re-transmits the updated block to the desti-
nation node. The migration source node notifies the
client node about the migration destination node af-
ter updating the data block. Afterward the client ac-
cesses directly to the destination for the block. After
updating the migrated block, the migration destina-
tion node notifies the source node to invalidate the
migrated source block.

5. Conclusion

In this paper, we proposed a distributed storage sys-
tem which provides an automated block migration
mechanism.

Our system aims to utilize various types of stor-
age devices effectively in a network of heteroge-
neous computers. Detailed and fresh information
about the devices is needed for appropriate data
block migration. However, exchanging such infor-
mation in short interval generally causes unignor-
able overhead. In order to reduce the overhead, we
show a scheme to append such information on peri-
odic iSCSI communication. Our system configures
dynamically storage tiers according to effective per-
formance of the device. Data blocks are migrated
among the tiers.

We plan to simulate our system in order to fix pa-
rameters and thresholds. Afterward, we would like
to implement an experimental system for evaluating

Published by Atlantis Press 
Copyright: the authors 

49



Distributed Storage System

its performance and actual overhead.

Acknowledgment

This work was supported in part by JSPS KAKENHI
Grant Number 25330058.

References

1. “OpenZFS,” http://www.open-zfs.org/, OpenZFS
Project.

2. “Lustre community,” http://lustre.opensfs.org/.
3. B. Dufrasne, B. A. Barbosa, P. Cronauer, D. De-

marchi, H.-P. Drumm, R. Eliahu, X. Liu, and M. Sten-
son, IBM System Storage DS8000 Easy Tier. IBM
Corporation (2013).

4. “EMC VNX FAST VP — A detailed re-
view,” http://www.emc.com/collateral/software/
white-papers/h8058-fast-vp-unified-storage-wp.pdf,
EMC Corporation (2013).

5. “btier,” http://sourceforge.net/projects/tier/.
6. H. Yokota, “Autonomous disks for advanced database

applications,” Proc. Intl. Symp. on Database Applica-
tions in Non-Traditional Environments (DANTE ’99),
435–442 (1999).

7. T. Hanai, A. Watanabe, M. Yamaguchi, R. Taguchi,
N. Hayashi, T. Uehara, and H. Yokota, “Hierarchi-
cal architecture of autonomous storage with solid state
disks,” DBSJ Letters, 2(3), 41–44 (2003).

8. T. Hanai, A. Watanabe, D. Kobayashi, M. Yamaguchi,
R. Taguchi, N. Hayashi, T. Uehara, and H. Yokota,
“A performance improvement method of presuming
a request-forwarding target in a hierarchical storage
cluster,” DBSJ Letters, 3(1), 25–28 (2004).

9. J. Satran, K. Meth, C. Sapuntzakis, M. Chadalapaka,
and E. Zeidner, “Internet small computer systems
interface (iSCSI),” RFC 3720, Internet Engineering
Task Force (2004).

10. SCSI commands reference manual, rev. C, Seagate
Technology LLC (2010).

11. “Extended frame sizes for next generation
ethernets,” http://staff.psc.edu/mathis/MTU/
AlteonExtendedFrames W0601.pdf, Alteon Net-
works White Paper.

12. “Ethernet jumbo frames version 0.1,” http:
//www.ethernetalliance.org/wp-content/uploads/
2011/10/EA-Ethernet-Jumbo-Frames-v0-1.pdf,
Ethernet Alliance (2009).

13. J. Chu and V. Kashyap, “Transmission of IP over In-
finiBand (IPoIB),” RFC 4391, Internet Engineering
Task Force (2006).

14. V. Kashyap, “IP over InfiniBand: connected mode,”
RFC 4755, Internet Engineering Task Force (2006).

Published by Atlantis Press 
Copyright: the authors 

50




