International Journal of Networked and Distributed Computing, Vol. 3, No. 1 (January 2015), 11-20

The Influence of Alias and References Escape

on Java Program Analysis

Shengbo Chen ! 2, Dashen Sun ! 2, Huaikou Miao ! 2

! School of Computer Engineering and Science, Shanghai University,
Shanghai 200436, P. R. China
2 Shanghai Key Laboratory of Computer Software Testing and Evaluating,
Shanghai 201112, P. R. China

E-mail: {schen, sundashen, hkmiao} @shu.edu.cn

Abstract

The alias and references escape are often used in Java programs. They bring much convenience to the de-
velopers, but, at the same time, they also give adverse affects on the data flow and control flow of program
during program analysis. Therefore, when analyzing Java programs, we must take the alias and references
escape into account. This paper proposes a static approach to detecting control flow information of pro-
grams with alias and references escape. Firstly, it computes the data flow information, including def-use
information and alias information caused by references assign and references escape. Secondly, it an-
alyzes the program and gets the control flow information based on the obtained data flow information.
Finally, a case study is presented to show that the proposed method can detect control flow information

exactly.

Keywords: reference escape, program analysis, control flow, data flow, alias information.

1. Introduction

Different programming languages have their own
special features. such as variable scope, exception-
handling constructs, pointer alias and references es-
cape. These features give a convenient way for the
developers to implement the functions of the pro-
gram. Java is a popular programming language that
integrates many useful features. specially, the alias
and references escape are wildly used in Java pro-
grams when we develop software applications using
Java programming language. But usually they may
change the control flow of the corresponding pro-
grams. As a result, the data flow and control flow
information of the program which we get may be

incorrect if we do not take the alias and references
escape into account when we analyze the Java pro-
grams.

Program analysis is the process of analyzing the
behavior of a computer program. Program analy-
sis has a very widely application range, it provides
support for compiler optimization, testing, debug-
ging, verification and many other activities. There
are many program analysis techniques, but accord-
ing to the principle “whether is needed to run the
program or not”, these techniques could be divided
into static analysis techniques and dynamic analy-
sis techniques. Static program analysis is performed
without actually executing the existing programs.
Generally, the static analysis object is source code.

Published by Atlantis Press
Copyright: the authors

11

S. Chen, D. Sun, H. Miao

Dynamic program analysis is performed by the way
of executing the programs, and the target programs
must be executed with sufficient test inputs to pro-
duce expected outputs. Because of dynamic analysis
needs to execute the programs manually, it needs too
many test cases and costs too much. Especially for
large programs, the disadvantages of dynamic anal-
ysis are more obvious. Current analysis techniques
are mostly based on static analysis, and in this paper
we focus on static program analysis.

Data flow analysis and control flow analysis are
the two most widely used static analysis techniques
for program analysis. Both of the two methods re-
fer to data flow information and control flow infor-
mation. Therefore, current popular analysis tech-
niques often combines these two methods. Data flow
analysis is used to accurately describe the function-
s of system, input, output and data storage logical-
ly. Usually, data flow diagram (DFD) is employed
in data flow analysis. DFD graphically describe the
flow of data and data process which is an important
part of the system logic model. While control flow
analysis is a static code analysis technique for deter-
mining the control flow of a program. As usually,
the control flow is expressed as a control flow graph
(CFG) 2. In this paper, we use data flow analysis
to get data flow information, and then we use the da-
ta flow information to get control flow information.
For Java programs, if the influence of alias and ref-
erences escape is ignored, the data flow information
and control flow information we get may be influ-
enced. Therefore, in order to improve the accuracy
of data flow analysis, and get the control flow infor-
mation of the program, we must take the influence
of alias information and references escape into ac-
count.

In this paper, we propose an approach to get-
ting control flow information of Java programs us-
ing static programming analysis with large numbers
of conditional branch statements and alias and ref-
erence escape are been considered. The method
is based on traditional data flow analysis technolo-
gy and it takes alias information and references es-
cape into account. It first constructs the control flow
graph of the program by identifying the basic blocks
of the program, then it computes the def-use infor-

mation and alias information, and finally it uses the
def-use information and alias information to ana-
lyze the program and get the control flow informa-
tion. From the results of the program analysis, all of
the feasible and infeasible program paths are given
out.

This paper is organized as follows. Section 2
gives some primary knowledge about alias and ref-
erence escape which will be used in the rest of this
paper. The def-use information and alias informa-
tion are presented in Section 3. The case study and
analysis of our approach are given out in Section 4
which shows the influence of alias and references es-
cape on Java program analysis. And Section 5 states
some related work. Additionally, some conclusion
remarks and future work are given out in Section 6.

2. Primary Knowledge

In Java programs, there are two data types: primi-
tive types and reference types. Primitive types de-
fine a range of basic data values that can be stored in
a variable. The reference types define references to
objects of classes, which contain collections of vari-
ables and methods that are described by the classes.
Data of primitive types can be of either arithmetic or
Boolean type. Class and array types are the exam-
ples of reference types. Any declared variable in a
Java program can be of any of the primitive or refer-
ence types. In the rest of the paper, we refer to the
reference types as usage types.

When reference types are used in a program,
alias or references escape may occur. And the da-
ta flow information and control flow information of
the program may be influenced. So, we will study
how the alias and reference escape influent the pro-
gram paths. For the sake of facilitating understand-
ing the proposed approach, the preliminary knowl-
edge is given out in this section.

2.1. Reference Escape

If an object is created in a corresponding method,
and immediately it is assigned to a non-local vari-
able or a field of non-local variable, or it is passed to
another method as the form of parameters or passed
out of the internal method as return values, then the

Published by Atlantis Press
Copyright: the authors

12

lifetime of the object is beyond to the lifetime of its
creation environment. The objects which meet the
above conditions are called escaped objects.

In this paper, we focus on two different kinds of
escape information: 1) A reference escapes if it is
returned to other part of the program. 2) A reference
escapes if it is passed as a parameter to a method .
If an object is created outside the current scope and
is accessed via a reference created outside the cur-
rent scope, the object is already accessible to some
part of the current scope. In this case we say that the
object has escaped. If an object has not escaped but
will be returned via a reference by the method to its
caller, we say that the object will escape. Here, we
give two classes A and B as the examples to address
our method, as shown in Fig. 1.

Class A{
Public void change (Student a){ .. }
Public void something() {
Student s = new Student():;
this.change(s);

}

(a). Example one.

Class B{
Student doSomething () {
Student s = new Student () ;
return s;

}

(b). Example two.

Fig. 1. Motivating Examples of Reference Escape.

In Class A, a method something() is located in it,
and in the method, an object is created and we use a
reference s point to it. Then the reference s is passed
into another method change() as a parameter in the
same class. Then the method change() can use the
reference s to change the state of the object which
s points to, but other regions know nothing about
this operation except the method change(). There-
fore, we say that the reference s is escaped into the
method.

The Influence of Alias and References Escape

In Class B, a method doSomething() is located in
it. An object is created within the method and it has
a reference s pointing to it. Different from the first
example, it then returns s to the method as a return
value. For the caller of this method, it can get the
reference s and change the state of the object which
s points to. Therefore, we say that the reference s
will escape out of the definition method as a return
value.

2.2. Aliases

In this paper we focus on two different types of alias-
es in Java program. One type of aliases occurs when
a variable with reference types is assigned to another
variable, the two references share the same memory
location, such as statement “p = ¢”. The other is im-
plicit aliases caused by references escape in method
calls. In the previous section, we point out that there
are two types of references escape: An object es-
capes if it is returned to other part of the program or
passed as a parameter to a method. In this part, we
regard both of the two types of references escape as
a kind of reference aliases. For example, if a refer-
ence p is passed as parameter ¢ to a method, then g
is regarded as an alias of p. Similarly, in statement
“q=a.change()”, if the method change() returned a
reference p to its caller g, then p and ¢ actually alias.

For both of the two types of aliases, the reference
p points to the object which the reference ¢ points to,
and here we can give the definition of aliases in Java
programs.

Definition 1. [aliases] Two or more references are
bound to the same object in some executions of the
program.

When aliases occur in a program, and one ref-
erence changes the state of the object it holds, the
other object holders may be affected by this change
in the condition that they do not know what have
happened, the results which caused by this operation
may be fatal.

3. Data Flow Information

In order to get the control flow information of the
program, first, we construct the control flow graph,

Published by Atlantis Press
Copyright: the authors

13

S. Chen, D. Sun, H. Miao

and then we use data flow analysis to analyze the da-
ta flow of the program, finally we will get the control
flow information. At present, there are many pro-
grams which have large numbers of branches, and
each branch can determine a control flow. Which
branch to choose is determined by the value of the
conditional statement, and the value of the condi-
tional statement refers to the data flow information.
Therefore, in order to get control flow information,
we should firstly get the data flow information of the
program.

Most approaches of data flow analysis involve
decomposing the whole-program analysis into sev-
eral sub-analyses of individual components, for ex-
ample blocks, then summarizing the results of these
sub-analyses, and memorizing those results for pos-
sible later re-use in other calling contexts. Basic
block is a basic unit during program execution *,
each basic block has only one entrance and one ex-
it statement, and could only contain no more than
one conditional branch statement. The first step of
our approach is to compute the def-use informa-
tion and alias information of each basic block in the
control flow graph.

3.1. Def-use Information

Data flow analysis is a common technique for stat-
ically analyzing programs and it is used widely for
a long time. Traditional data flow analysis include
def-use information: 1) reaching definitions, which
propagates sets of variable definitions that reach a
program point without any intervening writes, and
2) liveness, which determines the set of variables at
each program point that have been previously de-
fined and may be used in the future °.

In Java programs, if the data type of the variable
is primitive types, its value could be changed when
it is used. But if the data type of the variable is ref-
erence types, when it is used, the state of the object
which the reference points to may be changed. Here
are some sets © used in this paper:

— Def|[B]: the set of variables which is defined
or assigned in block B;

— In[B]: the set of definition variables which
could reach block B;

— Gen|B]: the set of variables which is defined
in block B and could reach the exit of the
block;

— Kill[B]: the set of variables which has been
defined previously and defined again in block
B;

— Out[B]: the set of variables which can reach
the exit of block B.

— Use|B]: the set of variables which is used in
block B.

— Pred[B]: the set of blocks that immediately
proceed B in the control flow graph.

Each block has an associated in and out data flow
set, and some other sets which has been listed. The
sets including Def[B|, Gen|B], Kill[B], Use[B] and
Pred|B], are easy to compute according to the basic
information of block B. In|B] is the data flow set of
definition variables that reach block B, it is related to
the set Pred[B]. Out[B] is the set of variables which
can reach the exit of block B, it has something to
do with set Gen[B|, In[B] and Kill[B]. Both of In[B|
and Out[B] can be received by iteratively evaluating

the equations until convergence to a solution. The
7

equations ’ are shown as follows:
InB]= | J oOu[B] (1)
pEpred|B]

Out[B] = Gen[B]|_J(In[B] — kill[B]) ~ (2)

3.2. Alias Information

In Java programs, due to the usage of references type
variables, there may be a large number of alias in-
formation. In section 2, we mentioned that there are
two types alias information: one is caused by as-
signing a reference to another reference, the other
is implicit aliases information caused by references
escape in method calls. In this section, all alias re-
lations are of the form (p,), where p and t are ref-
erences that represent the same object. In most in-
traprocedural alias analysis, the following sets ® are
used to compute the alias information:

Published by Atlantis Press
Copyright: the authors

14

— Pred(B): the block that immediately proceed
B in the control flow graph of the program.

— GEN Alias(B): the set of aliases that gener-
ated in block B and can reach the exit of the

block.
— KILL Alias(B): the set of aliases that de-
stroyed in block B.

— IN Alias(B): the set of aliases that can reach
the entry of block B.

— OUT Aias(B): the set of aliases that can reach
the exit of block B.

Here are some explanations about the alias informa-
tion set:

IN_Alias(B) = OUT _Alias(p), p € Pred(B)
GEN Alias(B) = {(p,t)|p € Alias(p),t € Alias(t)}

Our method first analyzes all methods which
may be called later and summary the alias informa-
tion at the exit of the method. Then when the method
calls occur, the summaries which we have stored be-
fore can be re-used to get the alias information with-
out re-analyzing the method. Due to the existence of
method calls, here we introduced a new set to gather
the alias information caused by method calls.

CALL_Alias(B): the set of aliases which is
caused by method calls in block B.

In this paper we focus on the programs which
have condition branches, and we use the flowing e-
quation to compute OUT_Alias[B]:

OUT _Alias|B] =(IN|B]_Alias — KILL Alias|B]) U
GEN Alias[B]|_JCALL Alias|B))
3)

4. Case Study

A control flow graph (CFG) is a directed graph
CFG = (N,E,entry,exit), where N is a set of nodes,
each node represents a basic block (i.e., a straight-
line piece of code without any jumps or jump tar-
gets); E is a set of edges which are used to denote

The Influence of Alias and References Escape

jumps in the control flow, entry and exit are the entry
block and exit block, respectively. The entry block
is the block through which control enters into the
CFG, while the exist block is one through which all
control flow leaves the CFG.

class Example({
int a;
public int getA()
public void setA(int a)

{return a;}
{this.a = a;}
}
public class Program {

""" public static void changeValue (Example e) {
e.setA(10);

public static Example returnExample () {
Example ee = new Example () ;
ee.setA(2);

,,,,,, return ee;

public static void main (String[]

int x=1,y=2,z=5,m=3,n;

Example exl = new Example () ;

Example ex2 = new Example();

exl.setA(x);ex2.setA(y);

n = new java.util.Random() .nextInt (10)

if (n<3) {

————————————— exl = ex2;

exl.setA (m);

if (ex2.getA(

args) {

}else{

}
BB === }else if (n<7) {

changeValue (exl) ;
B[6] if (exl.getA() == 1) {
z = m-2
}else{
BE] ———— z = m+2;
}
}else{
,,,,,,,, exl = returnExample () ;
BlO] if (exl.getA() == 2){
BO] === z = m+10;
}else(
B[ll] ,,,,,,,, : z = m-10;
}
B[lZ] ******** System.out.println(z) ;

Fig. 2. Motivating Example for The Program P.

We use the Java program shown in Fig. 2 to illus-
trate our approach. This program is extracted from a
large program and it includes alias information and
references escape. The alias information is caused
by references assign and the two kinds of references

Published by Atlantis Press
Copyright: the authors

15

S. Chen, D. Sun, H. Miao

escape which we mentioned above. As control flow
graph is a directed graph, we firstly identify all of
the basic block, i.e., all straight-line pieces of code
without any jumps or jump targets. Then, accord-
ing to the jump between the basic blocks, we can
get the control flow graph of this program as shown
in Fig. 3, which we got by means of control flow
analysis for the partial Java program as presented in
Fig. 2.

int x=1,y=2,2z=5,m=3,n;
Example ex] = new Example();
Example ex2 = new Example();
exl.setA(x);ex2.setA(y);
n = new java.util.Random().nextInt(10);
if(n<3)

T
B[2] /

ex] =ex2;
exl.setA(m);
if(ex2.getA() == 2)

B[1]

B[9]

changeValue(ex1);
if(ex1.getA() == 1)

z=m+l; ‘ T/ \F

z:m+2;‘

ex1 = returnExample();
if(ex1.getA() == 2)

/e

z=m+10;

zZ=m-2;

z:m—lO;‘

System.out.println(z);

B[12]
Fig. 3. Control Flow Graph of The Example Program P.

In this paper, we use program paths ° to describe
the control flow information. Program paths are an
approach to presenting a dynamic control flow of a
program that can capture the complete control flow
information of a program in a compact and tractable
form. So, we can use the program path to describe
the entire control flow of the program to capture a
complete dynamic behavior of the program. Pro-
gram paths here present the basic block sequences
of the programs. They include executable paths and
infeasible paths. Each program path starts from the
entry block B[1] and ends at the exit block B[12].
So, by traversing the whole control flow graph (see
Fig. 3) , we can get the whole program paths of our

program P as listed in Table 1.

Table 1. All of the program paths.

No. Program Path(s)

1 B[1] - B[2] - B[3] - B[12] - exit;

2 B[1]-B[2] - B[4] - B[12] - exit;

3 B[1]-B[5] - B[6] - B[7] - B[12] - exit;
4 B[1]-B[5]- B[6] - B[8] - B[12] - exit;
5 B[1]-B[5]-B[9] - B[10] - B[12] - exit;
6 B[1]-B[5]-B[9]-B[11] - B[12] - exit;

4.1. Data Flow Analysis

In this section, we use traditional data flow analysis
and ignore the alias information and the influence of
method calls. The def-use information, including
Out[B] and Use[B] of each block, is computed by the
methods which we mentioned in section 3. Then, af-
ter identifying the basic blocks of the program, we
can use the def-use information to get the control
flow information. This means that we can get all of
the program paths and determine the program paths
whether are executed or infeasible.

In the control flow graph, the control flow of the
program is determined by the value of the predicate
expression in the condition branches. In order to get
the control flow information, we should use the def-
use information to decide the value of predicate ex-
pression in each condition branches. First, we an-
alyze the def-use information of variable » in con-
dition branch statement “if (n < 3)”, after querying
the set Out[B] and Use|B] of each block, we find that
the variable is defined in block B[1] and only used in
the same block. The value of variable n is a random
number between 1 and 10. Therefore, the value of
the condition branch statement cannot be identified.
In this situation, both the truth branch and the false
branch of the block B[1] can be regarded as feasible
ones which can be reached. Similarly, for condition
branch statement “if (n < 7)” in block B[5], since
the value of variable n is a random number between
1 and 10, we regard both the true and false breach
as executable ones.

Then we analyze the condition branch statement
“if(ex2.getA() == 2)” in block B[2], the type of the
variable ex2 is reference types. After searching the

Published by Atlantis Press
Copyright: the authors

16

sets Out[B] and Use|B] of each block, it is easy to
find that the reference ex2 is defined in block BJ[1]
and then ex2 is used to change the state of the object
which it point to in block B[1]. The reference ex2 is
also used in block B[2], but it does not change any-
thing. Therefore, we can conclude that the value of
the predicate expression “ex2.getA() == 2” is true,
and the truth branch of block BJ[2] is executable and
the false branch can never be reached. For the condi-
tion branch statement “if(ex1.getA() == 1)” in block
BI6], the variable ex] is also a reference, and it is
both defined and used in block B[1]. Therefore, the
value of the predicate expression “ex1.getA() ==1"
is true, the truth branch of the block B[6] is exe-
cutable and the false branch can never be reached.
For the condition branch statement “if(ex1.getA()
==2)" in block B[9], we can use the result of block
BI6]. After analyzing block B[6], the value of pred-
icate expression “exl.getA() ==1" is true, so the
value of predicate expression “exl.getA() ==2" is
false. Therefore, the truth branch of the block B[9]
can never be reached and the false branch is exe-
cutable.

According to the above analysis of the program
P, the control flow information of program P can be
displayed as Table 2.

Table 2. The feasibility for each program path using traditional
program analysis methods.

No. Program Path(s) Feasibility
1 B[1]-B[2]-B[3]-B[12]-exit; executable
2 B[1]-B[2]-B[4]-B[12]-exit; infeasible
3 B[1]-B[5]-B[6]-B[7]-B[12]-exit; executable
4 B[1]-B[5]-B[6]-B[8]-B[12]-exit; infeasible
5 B[1]-B[5]-B[9]-B[10]-B[12]-exit; infeasible
6 B[1]-B[5]-B[9]-B[11]-B[12]-exit; executable

4.2. Our Method

Here, we take the alias information and the influ-
ence of method calls into account and we regard
C[1] and C[2] as two particular basic blocks. The
def-use information, including Out[B] and Use|B|
of each block, is computed by the method men-
tioned in subsection 3.1 of section 3, and the alias in-

The Influence of Alias and References Escape

formation, including CALL _alias|B], GEN _alias[B],
OUT _alias|B], is computed using the method men-
tioned in subsection 3.2 of section 3. Then, we can
use the def-use information and the alias informa-
tion to get the control flow information. That means
we can get all program paths and determine the pro-
gram paths which are executable or infeasible.

For condition branch statement “if (n < 3)” in
block B[1] and “if(n < 7)” in block B[5], since
there is no alias information in OUT _alias[1] and
OUT _alias|5], the analysis result of the two blocks
is similarly to the result in previous part. As for the
value of predicate expression “n < 3” and “n < 77
cannot be determined. Therefore, both branches of
block B[1] and B[5] are executable.

For condition branch statement “if(ex2.getA()
== 2)” in block B[2], after analyzing the alias infor-
mation and def-use information of the block, we find
that it generates an alias pair (ex1,ex2) in this block,
the alias pair is in set OUT _alias|2]. Then the refer-
ence ex1 and the reference ex2 are aliases and they
point to the same object. Since the reference ex1 is
in the set Use[2], the statement “‘ex1.set(m)” changes
the state of the object which ex1 points to, the refer-
ence ex2 is influenced by this change. Therefore,
the value of predicate expression “ex2.getA() == 2”
is false. The false branch of block B[2] is exe-
cutable and the truth branch will never be reached.
For the condition branch statement “if(ex1.getA()
== 1)” in block BI6], it is easy to find that there is
an alias pair (exl,e) in CALL_alias[6] and also in
OUT _alias[6]. This alias pair is caused by calling
the method chageValue() and passing the reference
ex1 to it. Then references ex1 and e point to the same
object. Since the reference e is in the set Use|[6)
and it is used in the statement “e.set(10)” in method
body C[1], the state of the object which e points to
has changed, the variable ex1 is influenced by this
change. Therefore, the value of predicate expres-
sion “ex1.getA() == 1" is false, the false branch
of block B[6] is executable and the truth branch
could never be reached. For the condition branch
statement “if(ex1.getA() == 2)” in block B9, it is
easy to find there is an alias pair < exl,ee > in
CALL _alias[9] and OUT,lias[9]. This alias pair is
caused by calling the method rerurnExample(), af-

Published by Atlantis Press
Copyright: the authors

17

S. Chen, D. Sun, H. Miao

ter querying the def-use information of the method
body C[1], we find that reference ee is defined and
used in C[1], the method returns reference ee to it-
s caller ex1 at the end of the method. Therefore, it
is obvious that the reference exl does not point to
the object which is defined in block B[1]. In block
B[9], the variable exl and ee are aliases and they
point to the same object. So we can conclude that
the value of the predicate expression “ex1.getA() ==
2” is true, and the truth branch of block B[9] is ex-
ecutable and the false branch will never be reached.

According to the above analysis of the program
P, the control flow information of program P can be
achieved as shown in Table 3.

Table 3. Feasibility for each program path using our method.

No. Program Path(s) Feasibility
1 B[1]-B[2]-B[3]-B[12]-exit; infeasible
2 B[1]-B[2]-B[4]-B[12]-exit; executable
3 B[1]-B[5]-B[6]-B[7]-B[12]-exit; infeasible
4 B[1]-B[5]-B[6]-B[8]-B[12]-exit; executable
5 B[1]-B[5]-B[9]-B[10]-B[12]-exit; executable
6 B[1]-B[5]-B[9]-B[11]-B[12]-exit; infeasible
4.3. Analysis

For Table 2, since we analyze the program using the
traditional methods without considering alias infor-
mation and the influence of method calls, we get the
results that program paths, like No.1, 3, 6, are exe-
cutable, and other program paths are infeasible. For
Table 3, we take alias information and the influence
of method calls into account, we get the results that
program paths, like No.2, 4, 5, are executable, and
other program paths are infeasible. After compar-
ing the result of Table 2 and Table 3, we can con-
clude that, since the traditional data flow analysis
does not consider alias information and the influ-
ence of method calls, it may miss some important
data information. As we can see in the Table 3, s-
ince we consider alias information and the influence
of method calls, the program paths which are exe-
cutable in traditional data flow analysis may become
infeasible, and the program paths which are infea-
sible in traditional data flow analysis may become
executable. Consequently, we can find that the alias

and reference escape can influent the control flow of
the program. The the program is analyzed, the alias
and reference escape must be considered.

5. Related Work

As an important technology of program analysis,
data flow analysis is widely applied into kinds of
programs. As for some programming languages
have their own features, such as variable scope,
exception-handling constructs, pointer alias and ref-
erences escape. These features give a facility and
convenient way for the developers to implement the
functions of the program. However, if they are not
considered during data flow analysis, the analysis re-
sults may be influenced.

The variables may be hidden and covered for
their scope in a program, if this situation is not taken
into account in traditional data flow analysis, we will
get inaccurate data flow information. An improved
data flow analysis method based on variables scope
and traditional dataflow analysis method was pro-
posed to solve the problem of variables being hidden
and covered in C program language °. For data flow
analysis of C++ and Java programs to be correct and
precise, the flows induced by exception propagation
must be properly analyzed.

Zhang and Jiang et al. ' adopt a static analysis
approach to detecting infeasible paths of program-
s with exception-handling constructs. In their case
study, they only considered the different condition-
al statements of C++ program, and the pointer alias
and reference escape are not taken into account.

As for Java programming language, it also in-
tegrates many useful features of modern languages,
such as alias, reference escape, exceptions and so on.
furthermore, exceptions are also widely used in Java
programs which pose new challenge to developers to
have data flow analysis. Shelekhov and Kuksenko !
proposed a method to analyze the exception han-
dling in java programs. The control flow structures
for analysis of exception handling are constructed
using the information of data flow analysis. Howev-
er, the alias and reference escape are not considered
in their work.

In some new approaches, the implicit control

Published by Atlantis Press
Copyright: the authors

18

flow for a raised exception is represented explicitly.
Exception branches, exception plateaus, and excep-
tion exits for methods and method calls are intro-
duced as additional control flow structures for anal-
ysis of exception handling 7-'1:12. Data flow analysis
can be classified into two categories: flow-sensitive
and flow-insensitive. A flow-sensitive interproce-
dural pointer alias analysis algorithm and a flow-
insensitive interprocedural pointer alias analysis al-
gorithm were presented to improve the efficiency of
alias analysis >!?. References escape could only
occur in Java programs, the data flow information
may be hard to obtain when analyzing a program
with references escape. Some new program analy-
sis methods which considering escapes analysis are
proposed to get more accurate data flow informa-
tion 31314, The paper 3 combined pointer and escape
analysis for Java programs, and corresponding algo-
rithm was given out. The complete or incomplete
Java programs can be analyzed using this method.
While in the paper '3, they gave a algorithm for
escape analysis of Java objects, and a program ab-
straction for escape analysis was introduced, using
connection graph to build reachability relationships
between these objects and references, which can be
used to identify the non-escaping objects. And the
paper !4 presents a escape analysis for specific run-
s of Java programs. All possible escape objects at
runtime are tracked and which object will escape is
determined.

Blanchet "> used two interdependent analysis,
one forward and one backward, for the design and
correctness proof of escape analysis for Java. And
a method was introduced to prove the correctness of
escape analysis.

In this paper, we give out a static approach to
detecting control flow information and data flow in-
formation of Java programs, and the alias and refer-
ences escape are considered.

6. Conclusions and Future Work

How the alias and references escape influence on Ja-
va program analysis is a challenging work. In this
paper, we have proposed an extension approach to
the traditional data flow analysis to analyze Java pro-

The Influence of Alias and References Escape

grams. In our method, the alias information and
references escape are taken into account. We show
how implicit alias information occurs when calling
a method and the way the alias and references es-
cape influence the control flow information of the
program. The analysis of our method is performed
in two steps: 1) compute the def-use information and
alias information of each basic block in control flow
graph. 2) Use the information to analyze the pro-
gram and get control flow information. The analy-
sis results of the example we give out show that our
method can detect the control flow information and
demonstrate the influence of alias and references es-
cape on Java program analysis. From the analysis
of the alias and reference escape in our program, we
can achieve practically all of the feasible and infeasi-
ble program path. Consequently, using our proposed
method, according to the analysis results of the spe-
cific programs, based on the feasible program paths,
we can give out the test data. By this means, the test
cases can be obtained. So, this method can reduce
the quantity of test cases.

However, our approach could only be used in
the programs with branches. And we only consid-
er the part of the features of Java programs, such as
alias and reference escape. Our future work is to
verify the effectiveness of our approach and extend
our work to analyze different kinds of Java programs
with more features.

Acknowledgements

This work was supported by the National Natural
Science Foundation of China (NSFC) (61073050,
61170044), Shanghai Leading Academic Discipline
Project (J50103). Key Laboratory of Science and
Technology Commission of Shanghai Municipali-
ty under Grant No. 09DZ2272600. The authors
are grateful to the anonymous referee for a careful
checking of the details and for helpful comments
that improved this paper.

References

1. F. E. Allen, “Control flow analysis,” SIGPLAN Not.,
5(7), 1-19 (1970).

Published by Atlantis Press
Copyright: the authors

19

. Chen, D. Sun, H. Miao

. N. D. Jones, “Flow analysis of lambda expressions
(preliminary version),” Proc. of the 8th Colloquium on
Automata, Languages and Programming. London,
UK, UK: Springer-Verlag, 114-128 (1981).

. J. Whaley and M. Rinard, “Compositional pointer
and escape analysis for java programs,” Proc. of the
14th ACM SIGPLAN Conf. on Object-oriented Pro-
gramming, Systems, Languages, and Applications, s-
er. OOPSLA’99, New York, NY, USA: ACM, 187-
206 (1999).

. R. Chen, Infeasible path identification and its applica-
tion in structural test (In Chinese). Doctoral Disser-
tation, Institute of Computing Technology of Chinese
Academy of Sciences, China (2006).

. M. Hind, M. Burke, P. Carini, and J.-D. Choi, “Inter-
procedural pointer alias analysis,” ACM Trans. Pro-
gram. Lang. Syst., 21(4), 848-894 (1999).

. S. Jiang and X. Zhao, “Data flow analysis based on
the variable scope (In Chinese),” Computer Science,
39 (3), 131-134 (2012).

. A. Stone, M. Strout, and S. Behere, “May/Must anal-
ysis and the DFAGen data-flow analysis generator,”
Information and Softw. Technol., 51 (10), 1440-1453
(2009).

. Y. Zhang, S. Jiang, Q. Wang, and X. Zhao, “Static
approach to detecting infeasible basis paths (In Chi-
nese),” Journal of Frontiers of Computer Science and
Technology, 6 (2), 144—-155 (2012).

. J.R. Larus, “Whole program paths,” Proc. of the ACM
SIGPLAN Conf. on Programming Language Design

10.

11.

12.

13.

14.

15.

and Implementation, ser. PLDI’99. New York, NY,
USA: ACM, 259-269 (1999).

Y. Zhang, S. Jiang, Q. Wang, and X. Zhao, “Infeasi-
ble basis paths detection of program with exception-
handling constructs,” IJACT: Int. J. of Advancements
in Comput. Technol., 4 (1), 492-503 (2012).

V. I. Shelekhov and S. V. Kuksenko, “Data flow anal-
ysis of Java programs in the presence of exceptions,”
Proc. of the 3rd Int. Andrei Ershov Memorial Conf. on
Perspectives of System Informatics, ser. PST'99. Lon-
don, UK, UK: Springer-Verlag, 389-395 (2000).

S. Jiang, B. Xu, and L. Shi, “An approach of data-
flow analysis based on exception propagation analysis
(In Chinese),” Journal of Software, 18 (4), 832-841
(2007).

J. D. Choi, M. Gupta, M. Serrano, V. C. Sreedhar, and
S. Midkiff, “Escape analysis for Java,” Proc. of the
14th ACM SIGPLAN Conf. on Object-oriented Pro-
gramming, Systems, Languages, and Applications, s-
er. OOPSLA’99. New York, NY, USA: ACM, 1-19
(1999).

K. Lee, X. Fang, and S. P. Midkiff, “Practical es-
cape analyses: How good are they?”’ Proc. of the
3rd Int. Conf. on Virtual Execution Environments, s-
er. VEE’07. New York, NY, USA: ACM, 180-190
(2007).

B. Blanchet, “Escape analysis for Java™: Theory and
practice,” ACM Trans. Program. Lang. Syst., 25 (6),
713-775 (2003).

Published by Atlantis Press
Copyright: the authors

20

