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Abstract—A geothermal system is basically a system where 

heat is transferred from the internal part to the surface of the 

earth dominantly by conduction, convection, or both. The 

spatial variation of the magnitude of conductive heat transfer 

represented by lateral variation of observed surface heat flow 

values is heavily related to the subsurface temperature 

distribution, the pattern of which is directly controlled by the 

variation of rock thermal conductivity values. Therefore, the 

information about subsurface temperature distribution may 

provide insight for the interpretation of the thermal structure 

of a region, within a more regional framework of geothermal 

systems in particular. In this research, we performed a 

numerical forward modeling procedure of 2-D conductive heat 

transfer using finite difference solution of the steady state heat 

conduction equation via a Gauss-Seidel scheme. The main 

physical parameters used as the input in the modeling 

procedure are rock thermal conductivity values as well as 

temperature boundary conditions. The modeling scheme was 

applied on two different synthetic common geothermal system 

geometries, one within a volcanic setting and one within a 

sedimentary environment, by using appropriate thermal 

conductivities and temperature boundary conditions for the 

assumed lithologies within each respective setting. The results 

of the modeling procedure were able to effectively characterize 

the thermal structure and surface heat flow patterns of the 

geothermal system in both environments. 

Keywords: geothermal system, conductive heat transfer, 
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I. INTRODUCTION 

Geothermal systems are essentially the representations of 
natural mechanisms for which heat is transferred from the 
hotter, inner part to the cooler surface of The Earth [9]. In 
general there are three different mechanisms by which heat 
can be transferred, namely conduction, convection, and 
radiation [4]. However, within the earth the dominant mode 
of heat transfer is conduction through solid rocks, while 
convection only plays a significant role in areas with 
extensive magmatic and hydrothermal activities such as 
active volcanic arcs as well as some tectonically active 
regions [10], where heat is brought to the surface by magma 
in volcanic eruptions, circulating groundwater, and/or uplift 
and erosion [17]. On the contrary, radiation is the primary 
mechanism where heat is delivered from the Sun to the 

surface of The Earth and therefore is not of great relevance 
to geothermal systems, where the heat source is located 
inside The Earth. 

The portion of Earth’s heat transferred via conduction is 
proportional to the product of temperature difference 
between the surface and the subsurface at a particular depth 
and the thermal conductivity of the rocks through which heat 
is passing. The relevant physical quantity for this fraction of 
heat is called the terrestrial heat flow [2], which can be 
observed directly at the surface by drilling to a depth and 
measuring temperature between the surface and that depth as 
well as the thermal conductivity of the materials that were 
drilled into [1]. The spatial variation of the magnitude of 
heat flow provides an indication of the variation in the 
subsurface temperature distribution, the pattern of which in 
turn is directly controlled by the variation of rock thermal 
conductivity values as well as depths to heat sources and the 
presence of a geothermal system. 

Unfortunately, current drilling campaigns are limited to 
depths of only a few kilometers beneath the Earth and at 
certain places, rendering direct and complete 
characterization of the entire subsurface thermal regime that 
may be related to the presence of geothermal systems 
impossible to be carried out. Therefore it is necessary to 
predict these parameters using alternative ways, one of 
which is via the method of numerical modeling [16; 18]. It is 
worth noting that numerical simulations of geothermal 
systems are primarily focused on the behavior of the 
reservoir element of the system in question for engineering 
purposes (e.g. [19]) rather than on its entire thermal 
structure. Thus in this research, we performed numerical 
forward modeling of 2-D conductive steady state 
temperature distribution similar to previous work done by 
authors such as [6] and [14] to characterize the overall 
thermal regime of geothermal systems. The work was based 
on synthetic geological models representing two common 
environments that are known to host geothermal systems, 
namely volcanic [12] and sedimentary basin [3] settings. The 
results of the numerical modeling were then used as an aid to 
interpreting the thermal structure as well as causes of 
possible observed patterns of heat flow anomalies associated 
with each of these settings. 
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II. METHODOLOGY 

A. Governing Equation and Finite Difference 

Approximation 

In order to characterize the process of heat transfer in 
geothermal systems it is necessary to first understand the 
underlying physical principle. The general equation 
governing heat transfer mechanisms in The Earth is the heat 
equation, which can be written as follows [11; 7]: 
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Where ρb, Cb and ρ, C each is the bulk rock and fluid density 
(kg.m

-3
), bulk rock and fluid specific heat capacity (kJ.kg

-1
), 

λ is the rock thermal conductivity (W.m
-1

.K
-1

), V is the fluid 
velocity (m.s

-1
), and A is the rock internal heat production 

(W.m
-3

). The term on the left hand side of the equation is 
usually referred as the transient term, whereas the first, 
second, and third terms on the right hand side are called 
diffusive, advective, and source terms, respectively. The 
physical meaning of (1) is that the change of temperature 
over a control volume can be introduced by the difference of 
the heat fluxes between both ends of that volume, the 
redistribution of heat by fluid movement, the internal heat 
generation of the volume, or all of the three processes. In 
this research we only consider the mechanism of heat 
transfer by conduction, so that (1) can be simplified to: 
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By further assuming that the heat transfer process is in 
steady state and that the source term can be neglected due to 
its relatively small importance, (2) further reduces to the 
steady state heat conduction equation: 
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So that, 

02  T  
(4) 

Which is the Laplace’s equation, as mentioned in [13]. We 
utilized a discretized version of (3) in order to be able to put 
it into a numerical forward modeling scheme by replacing 
the continuous derivative with a difference equation using 
the so-called finite difference approximation [4]. The 2-D 
finite difference formulation of (3) is as follows [18]: 
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Which, to solve for the temperature at a particular node (Ti,j), 
becomes: 
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B. Synthetic Geological Models, Grid Node Geometry and 
Boundary Conditions  

The finite difference approximation (5) was applied on 

two pairs of geological synthetic cases of real geothermal 

systems, one hosted in a volcanic setting [12] and one in a 

sedimentary basin setting [3]. Each of the cases consists of a 

thermal conductivity and an initial temperature distribution 

models (Figure 1 and 2). These geological models were then 

used as input variables for the numerical modeling procedure 

[8]. 

The values of rock thermal conductivity were taken from 

available literature (e.g. [1; 11]). The initial temperature 

distribution was calculated by extrapolating to depth the 

temperature from a constant value-type surface boundary 

condition of 25 
0
C with a geothermal gradient value of 30 

0
C/km (except for nodes occupied by a heat source of fixed 

temperature). The model domains are composed of 25 rows 

x 50 columns of grid nodes, the spacing of each which was 

taken to be 200 meters, yielding a total model dimension of 

5000 x 10000 meters. For the two models, the lateral 

boundary conditions are set to zero heat flow value by 

enforcing zero thermal conductivity at the respective 

boundary cells. We adopted a Gauss-Seidel scheme [5] to 

iteratively solve (6) for the temperature value at each grid 

node. The method was selected due to it being simpler to 

code and implement, while achieving convergence as 

equally fast as other linear iterative solvers.  

The volcanic model pair is based on the replica of a 

stratovolcano which is assumed to be devoid of hydrothermal 

activities. The model geometries and initial temperature 

distributions are shown in Figure 1, with the difference 

between the two models lies only in the geometry and 

dimension of the heat source. For Model 1 (Figure 1.A), the 

cooling magmatic heat source is located beneath the center of 

the volcanic caldera at a depth of 4000 m, the shape of which 

more or less follows the topography of the volcanic edifice. 

Model 2 (Figure 1.B) displays a heat source distribution that 

is much more laterally extensive but is located at a higher 

depth (4400 m). The temperature of magmatic heat source is 

assumed to be 600 
0
C to simulate a more felsic intrusion. The 

basal boundary nodes are set to a constant value taken from 
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the initial temperature distribution, i.e. bottom grid nodes that 

are not occupied by heat source. The rock materials are 

composed of lava, pyroclastics, and the sedimentary 

basement rocks. Thermal conductivity values of these rocks 

are listed in Table 1. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Geometry of the synthetic stratovolcano model pair: Model 1 (A) and Model 2 (B). Values within the cells correspond to the initial temperature for 

each of the respective grid nodes. 

 

 

(A) 

 

 (B) 
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TABLE 1. Thermal conductivity values of the rock types used in the 

volcanic models.  

 

 

The basin model is based on an extensional sedimentary 
basin where heat transfer by conduction dominates and the 
effect of advective transfer of heat by circulating 
groundwater is negligible due to flat surface topography. 
The model geometry is shown in Figure 2. The basal 
boundary condition is set to constant temperature of 200 

0
C 

at depths. For Model 1 (Figure 2.A), the overall geometry of 
this constant temperature layer follows the basement rock 
configuration to some degree, while for Model 2 (Figure 
2.B) the layer is located at a fixed depth of 4400 m. The rock 
types and their corresponding thermal conductivity values 
included in the models are listed in Table 2. 

 
 
TABLE 2. Thermal conductivity values of the rock types used in the 

sedimentary basin models.  

 

 

III. RESULTS AND DISCUSSION 

A. Sensitivity Study 

We conducted a sensitivity study of the effect of model 
parameters, geometry, and boundary conditions to the 
proposed numerical algorithm prior to implementation on 
the synthetic geological model by utilizing simple models. 
The first model consists of a single rectangular box 
embedded in a medium with a different thermal conductivity 
(Figure 3.A and 3.B), while the second one consists of two 
rectangular boxes located at the edges of the model domain 
(Figure 4.A and 4.B). The thermal conductivity values 
assigned for the boxes as well as the medium are 1.5 and 5.0 
W.m

-1
.K

-1
. The model space dimension is similar to the 

previous geological synthetic models. The initial 
temperature distribution was assumed to be zero at every 
node except the boundary nodes. A zero lateral heat flow 
was imposed on each lateral side, with 0

0
 C and 500

0
 C 

constant surface and basal temperatures. 

The result of simulation for the single rectangular box 
model shows that the temperature field is distorted near the 
center of the model space for the two cases of thermal 
conductivity contrasts (Figure 5.A and 5.B). This suggests 
that the algorithm was able to resolve the presence of a 
single thermal conductivity anomaly that is represented by 
the pattern of temperature distribution. In contrast, the result 
of numerical simulation using the two-rectangular box 
model shows that the two temperature distributions follow a 
somewhat rather indistinguishable pattern (Figure 6.A and 
6.B). This was interpreted as having resulted from the effect 
of the imposed lateral boundary conditions, rather than the 
geometry of the thermal conductivity anomaly itself. It 
suggests that the presence of thermal conductivity anomalies 
can not be resolved well when they are situated near the 
boundary of the model space. 

  

B. Numerical Modeling using Synthetic Geological Models 

Based on the results of the previous sensitivity study, it 
was decided to enlarge the horizontal dimension of the 
model space up to three times of its original extent to reduce 
the influence of lateral boundary condition on the modeled 
temperature near the lateral sides [15]. This yielded a model 
space dimension of 5000 x 30000 meters (25 x 152 grid 
nodes) in size. All numerical computations were carried out 
with MATLAB software using a 2.4 GHz Intel Core i7-
3630QM-based CPU with 4.0 GB amount of RAM and a 2.0 
GB NVIDIA GEFORCE® GT 650M Graphics Processing 
Unit. The following results presented were obtained after 
200 iterations. Each computation takes approximately 84.67 
seconds to perform.   
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Figure 7.A shows the final result of the numerical 

modeling of 2-D steady state conductive temperature 
distribution for the synthetic volcanic Model 1. The overall 
pattern of modeled temperature structure shows a similarity 
with the shape of the magmatic intrusion. This is quite 
logical since we did not include, in our synthetic model, 
other types of heat sources at any other locations. It can also 

be argued that this behavior could have in some part resulted 
from the structural pattern of thermal conductivity itself that 
is strongly layered in most part of the volcano’s flanks. The 
residual temperature, obtained from calculated values of the 
last iteration minus the values from previous iteration, is 
given in (Figure 7.B). It also displays a distribution which 
nearly resembles the geometry of magmatic intrusion, with 

(A) 

 

 
(B) 

 

Figure 2. Geometry of the synthetic extensional sedimentary basin model pair: Model 1 (A) and Model 2 (B). Values within the cells correspond to the 

initial temperature for each of the respective grid nodes. 
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the highest values concentrated just above the intrusive 
body. This was interpreted as having resulted from the 
intrusion’s location, because the temperature values at grid 
nodes located at close proximity to the heat sources are the 
first that experienced the highest modification in each 
subsequent iteration. This is further enhanced by the 
geometrical relationship between the rock layers beneath the 
volcano’s caldera and the rock layers beneath its flanks, 
which we intentionally created so as to represent a lateral 
discontinuity in the model.  
 
(A) 

 
 

(B) 

 

Figure 3. Single rectangular box model used for sensitivity study where the 
thermal conductivity of the box is (A) higher (red) and (B) lower 

(green) than the thermal conductivity of the surrounding 

medium. 

 

(A) 

 
 

(B) 

 

Figure 4. Two rectangular box model used for sensitivity study where the 

thermal conductivities of the boxes are (A) higher (red) and 

(B) lower (green) than the thermal conductivity of the 
surrounding medium. 

 

(A) 

 

 
(B) 

 

Figure 5. Results of the numerical simulation of temperature distribution (in 
0C) for the single rectangular box model of (A) Figure 3.A and 

(B) Figure 3.B (after 200 iterations). The position of the box is 
given by the black rectangle superimposed on the simulation 

result. 

(A) 

 
 

(B) 

 
Figure 6. Results of the numerical simulation of temperature distribution (in 
0C) for the two-rectangular box model of (A) Figure 4.A and (B) Figure 4.B 

(after 200 iterations). The positions of the boxes are given by the black 

rectangles superimposed on the simulation result. 

 
In addition, we calculated the surface heat flow by 

multiplying the temperature gradient with the arithmetic 
mean of thermal conductivity values at a particular lateral 
grid position (Figure 7.C). This procedure results in a higher 
estimate of heat flow values as opposed to using the 
harmonic mean of thermal conductivity [1], but can be 
justified as we only desired to analyze their pattern and 
differences rather than absolute values. It can be observed 
that the heat flow profile over a volcanic caldera is 
extremely elevated relative to its flanks, the extent of which 
defines the lateral boundary of the causative magmatic heat 
source. The maxima of this anomaly is rather flat-topped 
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than forming a single prominent peak resembling the overall 
shape of the heat source, which provides an indication that 
the volcano’s topography may also be involved to an extent 
in dictating the shape of the observed heat flow anomaly. 

The result of numerical modeling based on the second 
volcanic model in Figure 8 further explains the extent of 
relative proportions of influence between the geometry of 
magmatic heat source and the rock thermal conductivity 
structure on the modeled temperature distribution. While the 
distribution of the residuals confirms the previous 
explanation for the observed residual pattern, it can be seen 
that the temperature structure does not strongly obey the 
pattern of thermal conductivity structure, suggesting that 
heat source geometry poses a much stronger influence.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

In contrast, the surface heat flow profile displays an 
inverted shape as compared to the one based on previous 
volcanic model. A combination of thermal conductivity 
distribution and topographical effect is a possible cause to 
this observed behavior. The average thermal conductivity 
values beneath the flanks of the volcano are increased 
relative to the values beneath the caldera due to the presence 
of thick sedimentary basement rocks, whereas the distance 
between the caldera floor and the heat source becomes the 
longest, thus elevating the surface heat flow values over the 
flanks relative to the caldera. This has convinced us that 
topography and thermal conductivity structure have a more 
profound impact on the observed heat flow anomaly than 
does the overall geometry of the heat source for this model. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(A) 

 

(B)        (C) 

 

Figure 7. The modeled temperature (A), distribution of residuals (B), and surface heat flow profile (C) from the result of numerical modeling of the 

volcanic Model 1. Arrows indicate the magnitude and direction of heat flux vectors. 
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The numerical modeling result for the sedimentary 

basin Model 1 and Model 2 can be seen in Figure 9 and 

Figure 10. Comparison between the two models clearly 

provides yet another confirmation on the relative influence 

of different parameters on the subsurface thermal 

characteristics of a particular geothermal setting. The 

relatively flat topography and vertically layered thermal 

conductivity structure reduces the effect of both parameters 

on the modeled temperature structure. Contrary to the former 

synthetic case, the pattern of observed heat flow profile in 

both sedimentary basin cases does not display a significant 

difference, except for the absolute magnitude due to the 

difference in the depth to 200 
0
C constant temperature layer. 

This fact implies that in the absence of topography, the only 

factor that matters to the observed heat flow anomaly is the 

subsurface distribution of rocks and their corresponding 

thermal conductivity values.  

IV. CONCLUSIONS 

We have performed a numerical forward modeling 

procedure of the conductive subsurface temperature 

distribution by the use of finite difference approximation of 

the 2-D steady state heat conduction equation via a Gauss-

Seidel linear solver algorithm. The algorithm was capable of 

resolving the temperature distribution of the synthetic 

geological models well while maintaining its simplicity, with 

the number of required iterations for achieving residual 

values in the order of as low as 10
-4

 being 200 iterations. 

 

 

(A) 

 

(B)        (C) 

 

Figure 8. The modeled temperature (A), distribution of residuals (B), and surface heat flow profile (C) from the result of numerical modeling of the 

volcanic Model 2. Arrows indicate the magnitude and direction heat flux vectors. 
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The modeling results using synthetic cases of two 

common environments of geothermal systems, which are the 
volcanic and sedimentary basin-hosted settings, were able to 
explain possible thermal characteristics and relationships 
between the thermal parameters associated with each system, 
namely the thermal conductivity, temperature distribution, 
heat source geometry, and surface topography.    

From the above discussions it may therefore be 
legitimate to deduce that theoretically, for a volcanic hosted 
geothermal system, the geometry of the magmatic heat 

source should be the primary control on the overall 
subsurface temperature distribution, while surface 
topography and subsurface rock thermal conductivity 
structure constitute a more important role in determining the 
observed surface heat flow pattern. The broader the lateral 
extent of the magmatic heat source, the more topographical 
and thermal conductivity factors will overwhelm the 
geometry of the causative heat source in defining the shape 
of the surface heat flow anomaly, and vice-versa.  

 

  

(A) 

 

(B)        (C) 

 

 

Figure 9. The modeled temperature (A), distribution of residuals (B), and surface heat flow profile (C) from the result of numerical modeling of the 

sedimentary basin Model 1. Arrows indicate the magnitude and direction heat flux vectors. 
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As for the sedimentary basin setting, while the 
subsurface temperature distribution is still mainly controlled 
by the geometry of the constant temperature layer, the same 
is not true for the observed surface heat flow. The geometry, 
depths, and lateral extent of the constant temperature layer 
do not significantly alter the pattern of surface heat flow due 
to the absence of undulating topography. Instead, thermal 
conductivity structure becomes the dominant factor in this 
particular kind of geothermal environment. Nevertheless, the 
presence of thick insulating sedimentary layers at the central 
part of the basin is represented by tighter contour line 
spacing in that particular zone than in adjacent areas. This 

suggests that the numerical modeling results were able to 
resolve the existence of a thermal conductivity anomaly 
within the basin, i.e. thick low-conductivity sediments 
overlying a deep, highly conductive granitic basement.   

The work has an important implication to the future 
thermal characterization of geothermal systems in that it will 
become possible to predict subsurface thermal characteristics 
by means of a simple numerical simulation to locate possible 
zones of economically high temperature at depths as well as 
to estimate the gross stored thermal energy for future 
development plans using data derived from shallow, 
inexpensive heat flow measurements. However, further 

(A) 

 

(B)        (C) 

 

 

Figure 10. The modeled temperature (A), distribution of residuals (B), and surface heat flow profile (C) from the result of numerical modeling of the 

sedimentary basin Model 2. Arrows indicate the magnitude and direction heat flux vectors. 
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studies involving numerical modeling of three-dimensional 
coupled conductive-convective heat transfer as well as 
comparative analyses using additional cases from other types 
of geothermal environments may become a necessity for a 
more rigorous and detailed investigation into the thermal 
behaviors of these systems. 
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