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Abstract—Exoplanetary system HD 4732 harbors two planets 

(b and c) in elliptic orbits. The host star (HD 4732) is more 

energetic than the Sun, while the planets are Jupiter-class. In 

this work we deal with the triangular equilibrium points with 

respect to planet HD 4732c because, interestingly, its orbit is 

located in habitable zone. For this purpose, we set this system 

to the elliptical restricted three-body problem with primaries 

(two massive bodies) consisting of the host star and planet HD 

4732c. Based on Newtonian gravity in the rotating coordinate 

frame, we analytically derive the triangular equilibrium points 

by simply modeling the energetic radiation of the star. We then 

find that the triangular equilibrium points (Trojans) are 

stable. This implies an opportunity to discover stable Trojan 

objects (or a low-mass planet) residing around the triangular 

points and also in habitable zone. 

Keywords-exoplanetary system HD 4732; elliptic restricted 

three-body problem; triangular equilibrium points 

I.  INTRODUCTION 

In dynamical astronomy one among many motivating 
subjects is the Restricted Three-Body Problem (R3BP). The 
problem consists of three bodies, i.e. two primary bodies 
having finite masses and the third with a negligible-mass 
(infinitesimal) body whose motion is influenced by the 
primaries. There are two types of RTBP regarding the orbit-
shape of the primaries focused on their center of mass. It is 
classified to Circular R3BP (CR3BP) when the orbit is 
circular and Elliptic R3BP (ER3BP) for that of ellipse. Many 
analytical and numerical studies undertake CR3BP since it 
can explain suitably most cases in Solar System dynamics, 
especially the planetary trojans.  

As of July 2014 more than 1100 exoplanetary systems 
have been discovered, comprising no less than 1800 
exoplanets and at least 450 multiple planet system 
(http://www.exoplanet.eu). Star HD 4732 has been known to 
have two planets (b and c) [1]. The star belongs to class M  
spectral type, having smaller mass and temperature than the 
Sun, but more energetic (eruptions and flares). The planets 
are Jupiter-class and, intriguingly, the planet c (HD 4732c) is 
located in habitable zone. Unlike planets in Solar System, 
many exoplanets have eccentric orbits. Exoplanet HD 4732c 
is one of them whose orbital eccentricity is 0.23 [1] 

It has been known that exoplanet HD 4732b has 
insignificant influence to the motion of HD 4732c because 
the planet b has much smaller orbital distance [2]. Hence, 
orbits of the star (HD 4732) and the exoplanet (HD 4732c) 
can be assumed to be ellipses with respect to their center of 
mass. It is appropriate to consider the system as ER3BP to 
describe motion of the third infinitesimal body. Unlike the 
classical case that ponders just point-mass primaries without 
any other effect, we take into account the radiation pressure 
of HD 4732 because of its energetic radiation.  

The classical case has been improved by adding effects 
of radiation and body-shape of the primaries that lead to the 
enhanced potential experienced by the third infinitesimal 
body. Motion and stability of the third body moving around 
the Lagrangian equilibrium points under the radiation effect 
have been figured out [3]. Other studies consider (both) 
radiative primaries suitable for binary star (e.g. [4][5]), as 
well as (both) oblate primaries case [6][7]. Combined effects 
of radiation and oblateness or triaxial-shape have also been 
investigated (e.g. [8][9]).  

In this work, it is sufficient to set the ER3BP consisting 
of a radiative star and a point-mass planet because of 
unknown oblateness property. We investigate stability of the 
third infinitesimal body moving around the vicinity of 
triangular equilibrium points. The equations of motion and 
locations of the triangular equilibrium points are derived in 
Sections II and III, respectively. Section IV describes linear 
stability of triangular points. We discuss the result in Section 
V and give conclusions in Section VI.  

II. FORMULATION AND EQUATIONS OF MOTION 

In ER3BP orbits of the primaries share a common value 
of eccenticity, e. The problem can be expressed in a 
Cartesian barycentric system with the origin is on the center 
of mass of the primaries. Let m1 and m2 are masses of the star 
and the planet, respectively. The usual practice chose a 
system of units equals to the unity, i.e. the gravitational 
constant and the sum of mass of the primaries. This brings 
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Figure 1.  Illustration of inertial and rotating coordinate systems. 

The primaries are located in the x-axis of the inertial 
frame (x, y, z), at the points (x1, 0, 0) and (x2, 0, 0), 
respectively for the star and the planet (Fig. 1). According to 
Newtonian gravity, the distance (r) between the two 
primaries becomes 
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where f is the true anomaly of the system. This implies that 
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Radiation pressure emanating from the star acts on the 
third infinitesimal body, but it has negligible effect on the 
planet. The radiation exerts a small acceleration on the third 
body in the opposite direction to the gravitational 
acceleration of the star (Fgrav). A simple model of the net 
acceleration (Fnet) from the star working on the third body 
(e.g. [3][6]) can be expressed by 

 gravnet FqF 1  

where q1 is the radiation factor of the star that equals to one 
if no radiation. The more radiation, the smaller value of the 
factor. 

Following the standard formulation based on the rotating 

pulsating coordinate system (, , ) (Fig. 1), maintaining 
the primaries in fixed positions and normalizing the unit of 
length with the instantaneous distance r (see e.g. [3][5] for 
detailed derivation), the true anomaly f is chosen to be an 
independent variable rather than the time t which is common 
in Newtonian gravitation formula. Notice that motion of the 

third body is kept in planar ER3BP ( = 0). Hence, using the 
relation df/dt = 1/r
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 the equations of motion become: 
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Bars upon (, ) show a transformation to dimensionless 
system at the instantaneous distance r, so that separation 
between the primaries is constant and equals to one. Notice 
that the potential V is not dependent explicitly on f (and t). 

III. LOCATIONS OF TRIANGULAR EQUILIBRIUM POINTS 

In the classical case the primaries and the triangular 
equilibrium points configure an equilateral triangle. In this 
work the configuration may not be an equilateral or isosceles 
triangle. At the points the third body has zero velocity and 
zero acceleration in the rotating pulsating coordinate system. 

After performing partial derivatives to the potential (5), 
we obtain 
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The zero velocity condition leads to (6) equals to zero, from 
which we obtain 
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By substituting (7) into (5) we get the coordinate of the 
triangular points: 
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The points are written down by subscripts “0” that are 

symmetry with respect to –axis (Fig. 2). This is in 
accordance with the result by [3]. It is obvious that the 
locations depend on q1. If no radiation (q1 = 1) the points 
follow the classical case marked by squares in Fig. 2. The 
more radiative the star (decreasing q1, marked by triangles in 
Fig. 2), the closer the triangular points to the star. 

IV. STABILITY OF TRIANGULAR POINTS 

Suppose that the third body gets a small displacement 
from the triangular equilibrium points by small quantities of 
u and v, respectively, such that  


00    ,   vu  

30



 
Figure 2.  Locations of triangular points for q1 = 0.9 and 0.8 (triangles).  

Large black circle denotes the star, and grey circle is HD 4732c. The 

classical case (q1 = 1) marks by squares. 

The variation equations can be obtained by substituting 
(9) into (4) and then expanding in a Taylor series about the 
equilibrium points. By taking only the linear terms we yield 
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Note that the partial derivatives are evaluated at the 
equilibrium points. Analysing stability of motion of the third 
body around of the triangular points needs the characteristic 
equation of the system.  

Following e.g. [3][5], we derive a characteristic equation 

(11) with s are its roots, 
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After doing some algebra to (6) for second partial derivatives 
we obtain 
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and after evaluating (12) at the equilibrium points (8) 
(superscript “0”) yields 
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Following [8], along a cycle (f: 02) the factor (1+ecosf)
-1

 

turns out to be (1e
2
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The roots of (11) at the equilibrium points will be 
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To guarantee the stable motion, the roots should be pure 
imaginary. This can be achieved by two restrictions, i.e. the 

first term of (14) should be negative; and  in the second 
term must be zero or real positive: 


 

    044

04     04
2

1

2000200

0000









 VVVVV

VVVV
 

Both restrictions in (15) can eventually provide negative 

values of 2
, and yielding pure imaginary roots. 

After substituting (13) into (15) we obtain relation (16) 
that provides critical values of eccentricity of the system (ec) 

and mass-parameter (c). Smaller than these values, motion 
of the third object around the triangular points are stable. 
This is illustrated as a circle in Fig. 3 for stable motion of the 
third object around the triangular points of HD 4732c.  
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Figure 3.  Relation beween e and  in (16). Below the lines are area of 

stable motion. Unbroken and broken lines denote q1 = 1 and 0.8, 
respectively. The  circle stands for HD 4732c. 

Negative sign of the second term of c in (16) is chosen 
because of the boundary in (1). Equation (16) is consistent 
with the one given in [3] but (16) seizes a cycle. Fig. 3 shows 
the relation in (16) for q1 = 1 and 0.8.  
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V. APPLICATION TO HD 4732C AND DISCUSSION 

The radiation factor (q1) is actually close to the unity 
even for the energetic star such as HD 4732. However, this 
may displace slightly the locations of triangular equilibrium 
points compared to the classical case (see Fig. 2). Tab. 1 

shows values of  q1 and the corresponding c for HD 4732c 
whose e is 0.23. Because the minimum mass of HD 4732c is 
2.36 Jupiter-mass, and the upper limit can be ~2.95 Jupiter-

mass, values of  are 0.00130.0016, which stay much 

smaller than c given in Tab. 1 for several values of q1.  

TABLE I.  THE VALUES OF C AGAINST q1 FOR HD 4732C (e = 0.23) 

q1 c 

1.0 0.0304 

0.9 0.0298 

0.8 0.0291 

 
 Because motion of the third body around the triangular 

points (or known as Trojans) of HD 4732c is stable, it makes 
possible to be populated by many negligible-mass objects 

such as asteroids or a single object whose mass is much 
smaller than Jupiter, e.g. Earth-mass (~1/1000 Jupiter-mass). 
Because HD 4732c is located in habitable zone, the Trojan 
object is also in habitable zone because it has the same 
orbital distance with the planet from the host star. 

VI. CONCLUSIONS 

Analytical study about stability of triangular equilibrium 
points (Trojans) of HD 4732c has been described. This study 
include radiation effect of the energetic host star HD 4732. 
Conclusions of this study are: 

 Stability of motion around the triangular points is 
dependent on mass-parameter, eccentricity of the 
system, and radiation factor of the star. 

 Radiation pressure of the star affects the triangular 
points to shift closer to the star.  

 Motion of the Trojan(s) of HD 4732c can be stable. 
This imply that the Trojan(s) reside in habitable zone. 
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