
Two-dimensional Encoding Schema and Genetic
Operators

Ming-Wen Tsai1 Tzung-Pei Hong2 Tung-Kuan Liu3
1Department of Management Information Systems, National Chengchi University

2Department of Computer Science and Information Engineering, National University of Kaohsiung
3Department of Mechanical & Automation Engineering, National Kaohsiung First University of Science and

Technology

Abstract
In this paper, we propose a new genetic algorithm
based on the two-dimensional encoding method.
Appropriate two-dimensional crossover and mutation
operations are designed based on the two-dimensional
representation to generate the next generations. A two-
dimensional repairing mechanism is also proposed to
adjust infeasible chromosomes into feasible ones.
Experiments are finally made to show the
effectiveness of the proposed genetic algorithm.

Keywords: genetic algorithm, chromosome, two-
dimensional representation, crossover, mutation, repair.

1. Introduction
Genetic algorithms (GAs) [2] have become increasing
important for researchers in solving difficult problems
since they can provide feasible solutions in a limited
amount of time. They were first proposed by Holland
in 1975 [5] and have been successfully applied to the
fields of optimization [3], machine learning [2], neural
networks [4][11], fuzzy logic controllers [7][12],
among others [6][10].

When genetic algorithms are used to solve a
problem, a representation that describes the problem
states must first be defined. In the past, most
representations adopted are linear or one-dimensional,
such as the bit string. Some real problems are in nature
suitable to two-dimensional representation. For
example, in a scheduling problem for assigning jobs to
staffs in different time intervals, a two-dimensional
array or table is often used to represent the assignment.
In this paper, we propose a new genetic algorithm
based on the two-dimensional encoding method.
Appropriate two-dimensional crossover and mutation
operations are designed based on the two-dimensional
representation to generate the next generations. The
proposed crossover operator may adopt either of the
horizontal and vertical ways to generate the offspring
chromosomes. A repairing mechanism is also

proposed to adjust infeasible chromosomes into
feasible ones. Several two-dimensional mutation
operators, including single-point swapping, string
swapping and substring swapping are presented.
Experiments are finally made to show the
effectiveness of the proposed genetic algorithm.

2. Review of Related Works
When genetic algorithms are used to solve a problem,
a representation that describes the problem states must
first be defined. A chromosome representation must
first be defined for GAs to proceed. It greatly affects
the behavior and performance of GAs. Several
chromosome representations have been proposed and
commonly used, such as binary strings, real-value
vectors, permutations, finite–state representation, and
parse-tree representation. Binary strings [2][5] are the
standard and the most commonly used representation
of solutions for genetic algorithms. They use only the
two symbols 0 and 1 to represent a chromosome. Real-
valued vectors [2] are another popular representation
used in GAs. Each position in a chromosome is a real
value. Real-value vectors are especially useful for
solving real-value optimization problems.
Permutations are a popular representation for some
combinatorial optimization problems [8]. They encode
the set of objects into numbers and then arrange them
into a chromosome. As to the finite-state
representation [1], it first constructs a state transition
table according to the given problems, and then
evolves according to the transitive table. This method
is used for the environment in which sequences of
states have some implicit relations and must be
generated with the relation. In addition, the parse-tree
representation [9] is often used for evolving
executable structures, such as a program. Each
chromosome is represented by a parse tree.

3. Two-dimensional Chromosome
Representation

The notation used in this paper is first defined below.

P: a population consisting of two-dimensional

chromosomes,
n: the number of chromosomes in P,
ci: the i-th chromosome in P, 1≤ i ≤n,
ci(x, y): the gene located at position (x, y) in the i-th

chromosome ci,
S: the number of rows in the two-dimensional

chromosome representation,
W: the number of columns in the two-dimensional

chromosome representation,
Pc: The crossover probability,
Pm: The mutation probability,
R: A random number,
Rc: A random number indicating the column for

crossover, 1≤ i ≤W,
Rr: A random number indicating the row for crossover,

1≤ i ≤ S.

A chromosome ci is thus encoded as an S × W
matrix, with each element ci(x, y) represents the gene
value located at (x, y), 1 ≤ x ≤ S and 1 ≤ y ≤ W.
Genetic algorithms require initializing a population of
individuals, then gradually update them by the
evolution process. The population initiation process
for the proposed two-dimensional encoding method is
stated as follows.

The population initialization process for the two-
dimensional representation:
Input: a number of rows S, a number of columns W,

and a set of m objects to be processed;
Output: the i-th two-dimensional initial chromosome;
Step 1: Set k = 1, where k is used to represent the

number of the object currently being processed;
Step 2: Randomly generate two numbers x and y, 1 ≤ x

≤ S and 1 ≤ y ≤ W;
Step 3: If the location ci(x, y) is empty, assign the k-th

object at location ci(x, y); otherwise, repeat
Steps 2 and 3 until an empty location is found;

Step 4: Set k = k + 1;
Step 5: If k > m, stop the algorithm; otherwise go to

Step 2.

After Step 5, a two-dimensional chromosome is
randomly generated.

4. Two-dimensional crossover
operations

A crossover operator conventionally exchanges some
bits between two chromosomes with probability Pc.
Some common crossover operators are multiple-point
crossover, uniform crossover, one-point crossover,

substring crossover, among others. In this section, a
two-dimensional sub-string crossover operator is
designed. It is stated as follows.

The two-dimensional sub-string crossover:
Input: two chromosomes cp1 and cp2;
Output: two chromosomes, co1 and co2, which are the

crossover results by cp1 and cp2;
Step 1: Generate two random integers Rr and Rc, which

represent the two-dimensional crossover point;
Step 2: Generate a random real number R between 0 to

1; if R > 0.5, execute the two-dimensional
horizontal sub-string crossover (Step 3);
otherwise, execute the two-dimensional vertical
sub-string crossover (Step 4);

Step 3: (Horizontal Crossover) Generate the two
chromosomes by the following sub-steps:

Sub-Step 3-1: If rowi < Rr, copy each gene cp1(rowi,
colj) to co1(rowi, colj) and copy cp2(rowi, colj) to
co2(rowi, colj) for 1 ≤ colj ≤ W, where W is the
number of columns;

Sub-Step 3-2: If rowi = Rr, copy each gene cp1(rowi,
colj) to co1(rowi, colj) and copy cp2(rowi, colj) to
co2(rowi, colj) for 1 ≤ colj ≤ Rc, and copy each
gene cp1(rowi, colj) to co2(rowi, colj) and copy
cp2(rowi, colj) to co1(rowi, colj) for Rc < colj ≤ W;

Sub-Step 3-3: If rowi > Rr, copy each gene cp1(rowi,
colj) to co2(rowi, colj) and copy cp2(rowi, colj) to
co1(rowi, colj) for 1 ≤ colj ≤ W;

Step 4: (Vertical Crossover) Generate the two
chromosomes by the following sub-steps:

Sub-Step 4-1: If coli < Rc, copy each gene cp1(rowi, colj)
to co1(rowi, colj) and copy cp2(rowi, colj) to
co2(rowi, colj) for 1 ≤ rowj ≤ S, where S is the
number of rows;

Sub-Step 4-2: If coli = Rc, copy each gene cp1(rowi, colj)
to co1(rowi, colj) and copy cp2(rowi, colj) to
co2(rowi, colj) for 1 ≤ rowj ≤ Rr, and copy each
gene cp1(rowi, colj) to co2(rowi, colj) and copy
cp2(rowi, colj) to co1(rowi, colj) for Rr < rowj ≤ S;

Sub-Step 4-3: If coli > Rc, copy each gene cp1(rowi, colj)
to co2(rowi, colj) and copy cp2(rowi, colj) to
co1(rowi, colj) for 1 ≤ rowj ≤ S.

After Step 4, the two offspring chromosomes co1

and co2 can thus be formed. Below, an example is
given to illustrate the proposed crossover operation.

Example 1: Suppose a chromosome is encoded as
a 3 × 4 matrix, in which each gene value represents a
unique index of a job. Also suppose the two
chromosomes at the left side of Figure 1 are selected
as the parents for crossover. Assume the crossover
point is randomly generated as Rr = 2 and Rc = 2. The
results after the horizontal sub-string crossover

operator is executed on the two parent chromosomes
are shown in Figure 1.

Parent 1 Offspring 1

1 3 9 8 1 3 9 8
5 4 7 2 → 5 4 5 3
6 12 11 10 2 12 7 8

Parent 2 Offspring 2
4 6 11 9 4 6 11 9

10 1 5 3 → 10 1 7 2
2 12 7 8 6 12 11 10

Figure 1. Horizontal sub-string crossover for Example 1

After the crossover operation is executed, the new
offspring chromosomes may become infeasible for
some problems. This situation usually occurs from
permutation representation. Appropriate two-
dimensional repairing mechanisms must thus be
designed. The repairing algorithm is based on the idea
that if two locations have the same value, the content
at one of them can be replaced with the value at the
same location of the parents, since genes at the same
locations may have similar properties.

The two-dimensional repairing algorithm:
Input: two parent chromosomes cp1, cp2, the adopted

crossover operation (horizontal or vertical),
crossover point (Rr, Rc), and two infeasible
offspring chromosomes co1 and co2;

Output: two repaired feasible chromosomes cr1 and cr2
from co1 and co1;

Step 1: For cok (k = 1 or 2), do the following steps;
Step 2: Generate a random real number R between 0 to

1;
Step 3: If the crossover is horizontal, execute Steps 4

and 5; otherwise, execute Steps 6 and 7;
Step 4: (Horizontal Repair) If 0 ≤ R < 0.5, repair cok

gene by gene from the point (Rr, Rc) forward to
(S, W) in a row-wise way by the following sub-
steps:

Sub-Step 4-1: If a gene located at (rowi1, colj1) of cok
also exists at the previous location (rowi2, colj2)
(according to the search direction), replace the
gene at (rowi1, colj1) of cok with the one at
location (rowi2, colj2) of cp(3-k);

Sub-Step 4-2: If the new replaced gene cok(rowi1, colj1)
(= cp(3-k)|(rowi2, colj2)) still exists at a certain
previous location (rowi2, colj2), repeat Sub-
Steps 4-1 and 4-2 until the gene at cok(rowi1,
colj1) does not appear in the previous locations;

Step 5: If 0.5 ≤ R ≤ 1, repair cok gene by gene from the
point (Rr, Rc) backward to (1, 1) in a row-wise
way by the following sub-steps:

Sub-Step 5-1: If a gene located at (rowi1, colj1) of cok
also exists at the previous location (rowi2, colj2)

(according to the search direction), replace the
gene at (rowi1, colj1) of cok with the one at
location (rowi2, colj2) of cpk;

Sub-Step 5-2: If the new replaced gene cok(rowi1, colj1)
(= cpk(rowi2, colj2)) still exists at a certain
previous location (rowi2, colj2), repeat Sub-
Steps 5-1 and 5-2 until the gene at cok(rowi1,
colj1) does not appear in the previous locations;

Step 6: (Vertical Repair) If 0 ≤ R < 0.5, repair cok gene
by gene from the point (Rr, Rc) forward to (S, W)
in a column-wise way;

Step 7: If 0.5 ≤ R ≤ 1, repair cok gene by gene from the
point (Rr, Rc) backward to (1, 1) in a column-
wise way.

Below, an example is given to illustrate the above

repairing algorithm.

Example 2: Continuing Example 1, the resulting
offspring chromosomes in Figure 1 need to be repaired.
The repairing process for the two possible repairing
mechanisms (forward and backward) in a row-wise
way is shown in Figure 2.

Offspring 1:
Repair by moving forward
in a row-wise way:

Repair by moving backward
in a row-wise way:

1 3 9 8 1 3→2→6 9 8→10
5 4 5→10 3→6 5→7→11 4 5 3
2 12 7 8→9→11 2 12 7 8

Offspring 2:
Repair by moving forward
in a row-wise way:

Repair by moving backward
in a row-wise way:

4 6 11 9 4 6→2→3 11→7→5 9
10 1 7 2 10→8 1 7 2

6→3 12 11→9→8 10→5 6 12 11 10
Figure 2. The repair results of Figure 1 in a row–wise way

5. Two-dimensional mutation
operations

Mutation is a genetic operator used to keep genetic
diversity of a population of chromosomes from one
generation to the next one. The conventional mutation
operator usually assigns a mutation probability with
which an arbitrary bit in a chromosome will be
changed. For permutation representation, a common
mutation operator is to swap the contents of two
arbitrary genes. It is appropriately modified here for
two-dimensional representation. The proposed two-
dimensional mutation operation is described as follow.

The two-dimensional single-point swapping mutation
operation:
Input: a chromosome ci and a mutation rate Pm;
Output: the resulting chromosome ci after it is mutated;

Step 1: Generate a random number R between 0 to 1;
Step 2: If R > Pm , stop the algorithm; otherwise do the

next step;
Step 3: Generate two random integers, Rr and Rc,

where 1 ≤ Rr ≤ S and 1 ≤ Rc ≤ W;
Step 4: Generate two random integers, Rr’ and Rc’,

where 1 ≤ Rr’ ≤ S and 1 ≤ Rc’ ≤ W; if Rr = Rr’
and Rc = Rc’, repeat this step to generate another
pair of Rr’ and Rc’;

Step 5: Swap ci(Rr, Rc) with ci(Rr’, Rc’).

6. The Experiments
This section reports on experiments made to show the
performance of the proposed two-dimensional genetic
algorithm. They were implemented by Borland C++
Builder on a Pentium III PC. A scheduling problem of
assigning jobs to staffs was used and tested by the
proposed algorithm. There are 88 jobs, S = 10, W = 10,
and two constraints might be satisfied in the problem.
The first constraint was that a staff could only do one
job at a time slot. The second one was a job could not
be done twice. There were different costs for a job to
be done by different staffs in different time slots. The
purpose was to find a good schedule for minimizing
the total costs. In all the experiments, the population
size was set at 100, the crossover rate was 0.8, and the
mutation rate was 0.01. The conventional roulette
wheel selection method was used. The relationship
between the fitness values and the generations is
shown in Figure 3.

Figure 3. The relationship between the fitness values and the
generations

It can be seen from Figure 3 that the population
converged after about 500 generations.

7. Conclusion
This paper has presented a two-dimensional encoding
schema and appropriate two-dimensional crossover
and mutation operators based on the schema. The
proposed crossover operator may adopt either of the
horizontal and vertical ways to generate the offspring

chromosomes. A repairing mechanism is also
proposed to adjust infeasible chromosomes into
feasible ones. Experiments for solving a two-
dimensional scheduling problem has been tested, with
the results showing the effectiveness of the proposed
genetic algorithm. In the future, we will attempt to
extend our approach to solving other problems.

8. References
[1] L. J. Fogel, A. J. Owens, and M. J. Walsh,

Artificial Intelligence Through Simulated
Evolution, Wiley, 1966.

[2] D. E. Goldberg, Genetic Algorithms in Search,
Optimization and Machine Learning, Addison
Wesley, 1989.

[3] J. J. Grefenstette, "Optimization of Control
Parameters for Genetic Algorithms," IEEE
Transactions on Systems, Man and Cybernetics,
Vol. 16, No. 1, pp.122-128, 1986.

[4] S. A. Harp, T. Samad, and A. Guha, "Towards
the Genetic Synthesis of Neural Networks,"
Proceedings of the Third International
Conference on Genetic Algorithms, pp.360-369,
1989.

[5] J. H. Holland, Adaptation in Natural and
Artificial Systems, University of Michigan Press,
1975.

[6] D. Jong, "Adaptive System Design: A Genetic
Approach," IEEE Transactions on Systems, Man
and Cybernetics, Vol. 10, pp. 566-574, 1980.

[7] C. L. Karr, "Design of an Adaptive Fuzzy Logic
Controller Using a Genetic Algorithm,"
Proceedings of the Fourth International
Conference on Genetic Algorithms, pp.450-457,
1991.

[8] R. M. Knuth, The Art of Computer Programming
volume 3: Sorting and Searching, Addison-
Wesley, 1973.

[9] J. R. Koza, Genetic Programming: on the
Programming of Computers by Means of Natural
Selection, MIT Press, 1992.

[10] L. Kuncheva, "Genetic Algorithm for Feature
Selection for Parallel Classifiers," Information
Processing Letters, 46, pp.163-168, 1993.

[11] G. F. Miller, P. M. Todd, and S. U. Hedge,
"Design Neural Networks Using Genetic
Algorithms," Proceedings of the Third
International Conference on Genetic Algorithms,
pp.379-384, 1989.

[12] P. Thrift, "Fuzzy Logic Synthesis with Genetic
Algorithms," Proceedings of the Fourth
International Conference on Genetic Algorithms,
pp.509-513, 1991.

