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Abstract 
In this paper, we propose a new genetic algorithm 
based on the two-dimensional encoding method. 
Appropriate two-dimensional crossover and mutation 
operations are designed based on the two-dimensional 
representation to generate the next generations. A two-
dimensional repairing mechanism is also proposed to 
adjust infeasible chromosomes into feasible ones. 
Experiments are finally made to show the 
effectiveness of the proposed genetic algorithm. 
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1. Introduction 
Genetic algorithms (GAs) [2] have become increasing 
important for researchers in solving difficult problems 
since they can provide feasible solutions in a limited 
amount of time. They were first proposed by Holland 
in 1975 [5] and have been successfully applied to the 
fields of optimization [3], machine learning [2], neural 
networks [4][11], fuzzy logic controllers [7][12], 
among others [6][10]. 

When genetic algorithms are used to solve a 
problem, a representation that describes the problem 
states must first be defined. In the past, most 
representations adopted are linear or one-dimensional, 
such as the bit string. Some real problems are in nature 
suitable to two-dimensional representation. For 
example, in a scheduling problem for assigning jobs to 
staffs in different time intervals, a two-dimensional 
array or table is often used to represent the assignment. 
In this paper, we propose a new genetic algorithm 
based on the two-dimensional encoding method. 
Appropriate two-dimensional crossover and mutation 
operations are designed based on the two-dimensional 
representation to generate the next generations. The 
proposed crossover operator may adopt either of the 
horizontal and vertical ways to generate the offspring 
chromosomes. A repairing mechanism is also 

proposed to adjust infeasible chromosomes into 
feasible ones. Several two-dimensional mutation 
operators, including single-point swapping, string 
swapping and substring swapping are presented. 
Experiments are finally made to show the 
effectiveness of the proposed genetic algorithm. 

2. Review of Related Works 
When genetic algorithms are used to solve a problem, 
a representation that describes the problem states must 
first be defined. A chromosome representation must 
first be defined for GAs to proceed. It greatly affects 
the behavior and performance of GAs. Several 
chromosome representations have been proposed and 
commonly used, such as binary strings, real-value 
vectors, permutations, finite–state representation, and 
parse-tree representation. Binary strings [2][5] are the 
standard and the most commonly used representation 
of solutions for genetic algorithms. They use only the 
two symbols 0 and 1 to represent a chromosome. Real-
valued vectors [2] are another popular representation 
used in GAs. Each position in a chromosome is a real 
value. Real-value vectors are especially useful for 
solving real-value optimization problems. 
Permutations are a popular representation for some 
combinatorial optimization problems [8]. They encode 
the set of objects into numbers and then arrange them 
into a chromosome. As to the finite-state 
representation [1], it first constructs a state transition 
table according to the given problems, and then 
evolves according to the transitive table. This method 
is used for the environment in which sequences of 
states have some implicit relations and must be 
generated with the relation. In addition, the parse-tree 
representation [9] is often used for evolving 
executable structures, such as a program. Each 
chromosome is represented by a parse tree. 

3. Two-dimensional Chromosome 
Representation 



The notation used in this paper is first defined below. 
 
P: a population consisting of two-dimensional 

chromosomes, 
n: the number of chromosomes in P, 
ci: the i-th chromosome in P, 1≤ i ≤n, 
ci(x, y): the gene located at position (x, y) in the i-th 

chromosome ci,  
S: the number of rows in the two-dimensional 

chromosome representation, 
W: the number of columns in the two-dimensional 

chromosome representation, 
Pc: The crossover probability, 
Pm: The mutation probability, 
R: A random number, 
Rc: A random number indicating the column for 

crossover, 1≤ i ≤W, 
Rr: A random number indicating the row for crossover, 

1≤ i ≤ S. 
 

A chromosome ci is thus encoded as an S × W 
matrix, with each element ci(x, y) represents the gene 
value located at (x, y), 1 ≤ x ≤ S and 1 ≤ y ≤ W. 
Genetic algorithms require initializing a population of 
individuals, then gradually update them by the 
evolution process. The population initiation process 
for the proposed two-dimensional encoding method is 
stated as follows. 
 
The population initialization process for the two-
dimensional representation:  
Input: a number of rows S, a number of columns W, 

and a set of m objects to be processed; 
Output: the i-th two-dimensional initial chromosome; 
Step 1: Set k = 1, where k is used to represent the 

number of the object currently being processed; 
Step 2: Randomly generate two numbers x and y, 1 ≤ x 

≤ S and 1 ≤ y ≤ W; 
Step 3: If the location ci(x, y) is empty, assign the k-th 

object at location ci(x, y); otherwise, repeat 
Steps 2 and 3 until an empty location is found; 

Step 4: Set k = k + 1; 
Step 5: If k > m, stop the algorithm; otherwise go to 

Step 2. 
 

After Step 5, a two-dimensional chromosome is 
randomly generated. 

4. Two-dimensional crossover 
operations 

A crossover operator conventionally exchanges some 
bits between two chromosomes with probability Pc. 
Some common crossover operators are multiple-point 
crossover, uniform crossover, one-point crossover, 

substring crossover, among others. In this section, a 
two-dimensional sub-string crossover operator is 
designed. It is stated as follows. 
 
The two-dimensional sub-string crossover: 
Input: two chromosomes cp1 and cp2; 
Output: two chromosomes, co1 and co2, which are the 

crossover results by cp1 and cp2; 
Step 1: Generate two random integers Rr and Rc, which 

represent the two-dimensional crossover point; 
Step 2: Generate a random real number R between 0 to 

1; if R > 0.5, execute the two-dimensional 
horizontal sub-string crossover (Step 3); 
otherwise, execute the two-dimensional vertical 
sub-string crossover (Step 4); 

Step 3: (Horizontal Crossover) Generate the two 
chromosomes by the following sub-steps: 

Sub-Step 3-1: If rowi < Rr, copy each gene cp1(rowi, 
colj) to co1(rowi, colj) and copy cp2(rowi, colj) to 
co2(rowi, colj) for 1 ≤ colj ≤ W, where W is the 
number of columns; 

Sub-Step 3-2: If rowi = Rr, copy each gene cp1(rowi, 
colj) to co1(rowi, colj) and copy cp2(rowi, colj) to 
co2(rowi, colj) for 1 ≤ colj ≤ Rc, and copy each 
gene cp1(rowi, colj) to co2(rowi, colj) and copy 
cp2(rowi, colj) to co1(rowi, colj) for Rc < colj ≤ W; 

Sub-Step 3-3: If rowi > Rr, copy each gene cp1(rowi, 
colj) to co2(rowi, colj) and copy cp2(rowi, colj) to 
co1(rowi, colj) for 1 ≤ colj ≤ W; 

Step 4: (Vertical Crossover) Generate the two 
chromosomes by the following sub-steps: 

Sub-Step 4-1: If coli < Rc, copy each gene cp1(rowi, colj) 
to co1(rowi, colj) and copy cp2(rowi, colj) to 
co2(rowi, colj) for 1 ≤ rowj ≤ S, where S is the 
number of rows; 

Sub-Step 4-2: If coli = Rc, copy each gene cp1(rowi, colj) 
to co1(rowi, colj) and copy cp2(rowi, colj) to 
co2(rowi, colj) for 1 ≤ rowj ≤ Rr, and copy each 
gene cp1(rowi, colj) to co2(rowi, colj) and copy 
cp2(rowi, colj) to co1(rowi, colj) for Rr < rowj ≤ S; 

Sub-Step 4-3: If coli > Rc, copy each gene cp1(rowi, colj) 
to co2(rowi, colj) and copy cp2(rowi, colj) to 
co1(rowi, colj) for 1 ≤ rowj ≤ S. 

 
After Step 4, the two offspring chromosomes co1 

and co2 can thus be formed. Below, an example is 
given to illustrate the proposed crossover operation. 
 

Example 1: Suppose a chromosome is encoded as 
a 3 × 4 matrix, in which each gene value represents a 
unique index of a job. Also suppose the two 
chromosomes at the left side of Figure 1 are selected 
as the parents for crossover. Assume the crossover 
point is randomly generated as Rr = 2 and Rc = 2. The 
results after the horizontal sub-string crossover 



operator is executed on the two parent chromosomes 
are shown in Figure 1. 
 
Parent 1  Offspring 1 

1 3 9 8  1 3 9 8 
5 4 7 2 → 5 4 5 3
6 12 11 10  2 12 7 8

Parent 2  Offspring 2 
4 6 11 9  4 6 11 9 

10 1 5 3 → 10 1 7 2
2 12 7 8  6 12 11 10

Figure 1. Horizontal sub-string crossover for Example 1 
 

After the crossover operation is executed, the new 
offspring chromosomes may become infeasible for 
some problems. This situation usually occurs from 
permutation representation. Appropriate two-
dimensional repairing mechanisms must thus be 
designed. The repairing algorithm is based on the idea 
that if two locations have the same value, the content 
at one of them can be replaced with the value at the 
same location of the parents, since genes at the same 
locations may have similar properties. 
 
The two-dimensional repairing algorithm: 
Input: two parent chromosomes cp1, cp2, the adopted 

crossover operation (horizontal or vertical), 
crossover point (Rr, Rc), and two infeasible 
offspring chromosomes co1 and co2; 

Output: two repaired feasible chromosomes cr1 and cr2 
from co1 and co1; 

Step 1: For cok (k = 1 or 2), do the following steps; 
Step 2: Generate a random real number R between 0 to 

1; 
Step 3: If the crossover is horizontal, execute Steps 4 

and 5; otherwise, execute Steps 6 and 7; 
Step 4: (Horizontal Repair) If 0 ≤ R < 0.5, repair cok 

gene by gene from the point (Rr, Rc) forward to 
(S, W) in a row-wise way by the following sub-
steps: 

Sub-Step 4-1: If a gene located at (rowi1, colj1) of cok 
also exists at the previous location (rowi2, colj2) 
(according to the search direction), replace the 
gene at (rowi1, colj1) of cok with the one at 
location (rowi2, colj2) of cp(3-k); 

Sub-Step 4-2: If the new replaced gene cok(rowi1, colj1) 
(= cp(3-k)|(rowi2, colj2)) still exists at a certain 
previous location (rowi2, colj2), repeat Sub-
Steps 4-1 and 4-2 until the gene at cok(rowi1, 
colj1) does not appear in the previous locations; 

Step 5: If 0.5 ≤ R ≤ 1, repair cok gene by gene from the 
point (Rr, Rc) backward to (1, 1) in a row-wise 
way by the following sub-steps: 

Sub-Step 5-1: If a gene located at (rowi1, colj1) of cok 
also exists at the previous  location (rowi2, colj2) 

(according to the search direction), replace the 
gene at (rowi1, colj1) of cok with the one at 
location (rowi2, colj2) of cpk; 

Sub-Step 5-2: If the new replaced gene cok(rowi1, colj1) 
(= cpk(rowi2, colj2)) still exists at a certain 
previous location (rowi2, colj2), repeat Sub-
Steps 5-1 and 5-2 until the gene at cok(rowi1, 
colj1) does not appear in the previous locations; 

Step 6: (Vertical Repair) If 0 ≤ R < 0.5, repair cok gene 
by gene from the point (Rr, Rc) forward to (S, W) 
in a column-wise way; 

Step 7: If 0.5 ≤ R ≤ 1, repair cok gene by gene from the 
point (Rr, Rc) backward to (1, 1) in a column-
wise way. 

 
Below, an example is given to illustrate the above 

repairing algorithm. 
 

Example 2: Continuing Example 1, the resulting 
offspring chromosomes in Figure 1 need to be repaired. 
The repairing process for the two possible repairing 
mechanisms (forward and backward) in a row-wise 
way is shown in Figure 2. 
 
Offspring 1:  
Repair by moving forward 
in a row-wise way: 

Repair by moving backward  
in a row-wise way: 

1 3 9 8 1 3→2→6 9 8→10
5 4 5→10 3→6 5→7→11 4 5 3
2 12 7 8→9→11 2 12 7 8

Offspring 2:  
Repair by moving forward 
in a row-wise way: 

Repair by moving backward  
in a row-wise way: 

4 6 11 9 4 6→2→3 11→7→5 9 
10 1 7 2 10→8 1 7 2

6→3 12 11→9→8 10→5 6 12 11 10
Figure 2. The repair results of Figure 1 in a row–wise way 

5. Two-dimensional mutation 
operations 

Mutation is a genetic operator used to keep genetic 
diversity of a population of chromosomes from one 
generation to the next one. The conventional mutation 
operator usually assigns a mutation probability with 
which an arbitrary bit in a chromosome will be 
changed. For permutation representation, a common 
mutation operator is to swap the contents of two 
arbitrary genes. It is appropriately modified here for 
two-dimensional representation. The proposed two-
dimensional mutation operation is described as follow. 
 
The two-dimensional single-point swapping mutation 
operation: 
Input: a chromosome ci and a mutation rate Pm; 
Output: the resulting chromosome ci after it is mutated; 



Step 1: Generate a random number R between 0 to 1; 
Step 2: If R > Pm , stop the algorithm; otherwise do the 

next step; 
Step 3: Generate two random integers, Rr and Rc, 

where 1 ≤ Rr ≤ S and 1 ≤ Rc ≤ W; 
Step 4: Generate two random integers, Rr’ and Rc’, 

where 1 ≤ Rr’ ≤ S and 1 ≤ Rc’ ≤ W; if Rr  = Rr’ 
and Rc = Rc’, repeat this step to generate another 
pair of Rr’ and Rc’; 

Step 5: Swap ci(Rr, Rc) with ci(Rr’, Rc’). 

6. The Experiments 
This section reports on experiments made to show the 
performance of the proposed two-dimensional genetic 
algorithm. They were implemented by Borland C++ 
Builder on a Pentium III PC. A scheduling problem of 
assigning jobs to staffs was used and tested by the 
proposed algorithm. There are 88 jobs, S = 10, W = 10, 
and two constraints might be satisfied in the problem. 
The first constraint was that a staff could only do one 
job at a time slot. The second one was a job could not 
be done twice. There were different costs for a job to 
be done by different staffs in different time slots. The 
purpose was to find a good schedule for minimizing 
the total costs. In all the experiments, the population 
size was set at 100, the crossover rate was 0.8, and the 
mutation rate was 0.01. The conventional roulette 
wheel selection method was used. The relationship 
between the fitness values and the generations is 
shown in Figure 3. 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. The relationship between the fitness values and the 
generations 
 

It can be seen from Figure 3 that the population 
converged after about 500 generations.  

7. Conclusion 
This paper has presented a two-dimensional encoding 
schema and appropriate two-dimensional crossover 
and mutation operators based on the schema. The 
proposed crossover operator may adopt either of the 
horizontal and vertical ways to generate the offspring 

chromosomes. A repairing mechanism is also 
proposed to adjust infeasible chromosomes into 
feasible ones. Experiments for solving a two-
dimensional scheduling problem has been tested, with 
the results showing the effectiveness of the proposed 
genetic algorithm. In the future, we will attempt to 
extend our approach to solving other problems. 
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