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Abstract 

This paper focuses on stability control for the levitated positioning of the magnetic levitation vehicle system. For 
the nonlinear magnetic levitation system model, the output feedback linearization method is employed to derive a 
global linearization error model. However, there exists uncertain item in the error model. To stabilize this error 
model, the adaptive sliding mode control method is used here. Simulations show that the magnetic levitation system 
can be stability quickly under controlled by the proposed control scheme. 
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1. Introduction 

As the smart transportation establishing becomes a hot 
research issue in recent years, how to improve the 
operating efficiency and convenience of the entire city 
is becoming increasingly important. Therefore, it is 
necessary to establish a new high-speed and efficient 
means of transport. Up to 500km/h of speed, the maglev 
train can greatly improve the transport capability. 
Furthermore, magnetic levitation technology has seen a 
rapid development since the 20th century, and made the 
interesting in the field of real-life applications [1], such 
as transportation systems [2,3], wind tunnel levitation[4], 
magnetic bearing systems and antivibration table. 
However, the design of maglev system controller still 
presents plenty of formidable challenges [5] including 
the nonlinear solenoid model, instability, and inevitably 
uncertain parameters. Hence, a proper controlling mode 

should be designed for the suspension system to 
guarantee the robust stability of the entire system. For 
traditional methods, nonlinear magnetic levitation 
vehicle system model is linearized at one equilibrium 
point [6], which leads to the fact that the design of the 
controller seriously depends on the selected equilibrium 
point. So this type of linearization cannot be applied to 
the situation that the gap is a large range of variation. 
Thus if the traditional linearization method is applied to 
this situation, it may lead to the performance 
degradation or instability of the system. Hence, a new 
solution should be proposed. 
In this paper, latest control method is applied in allusion 
to the magnetic levitation planner. Firstly, output 
feedback linearization technique is applied to the 
nonlinear magnetic levitation vehicle system model, 
which derives a global linearization error model. 
However, the simplified model is unstable and includes 
uncertain factors, so the adaptive sliding mode 
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controller design method is used here, which makes the 
linearization error system stable. Finally, a series of 
simulation experiments are shown in this paper, which 
is used to demonstrate the effects of output feedback 
linearization method and adaptive sliding mode 
controller.  
This paper is organized in five sections. In the next 
section, model analysis of magnetic levitation vehicle 
system is formulated, and output feedback linearization 
is proposed. Section 3 is related to the controller design. 
Simulation results are presented in section 4. Finally, in 
section 5, some concluding remarks are outlined. 

2. Model Analysis of The Maglev System 

2.1. Nonlinear Solenoid Model Analysis 

The schematic diagram of the magnetic levitation 
system is depicted in Fig.1. For the sake of achieving 
the goal of high-precision positioning, a complex 
magnetic levitation system vehicle model needs to be 
analyzed thoroughly.  

 

Fig.1. Schematic diagram of magnetic levitation system 

Before deriving, we make the reasonable assumption 
that the air-gap flux leakage is zero. Then, the idealized 
nonlinear solenoid model can be calculated as 

                            

2 2
0

2

μ n σi (t)
F=

4x (t)
                                 (1) 

where F is the electromagnetic force between the coil 
and suspension; the constant -7

0μ =4π×10 H/m is the 
absolute magnetic permeability; n is the coil turn; σ is 
the magnetic cross section; i(t) is the coil current, and 
x(t) is the levitation height between coil and suspension. 
The coil model is given by 

                             
dψ(x,i)

u(t)=Ri(t)+
dt

                          (2) 

where u is control voltage, and R , Ψ are circuitous 
resistance and flux linkage respectively.  

2.2. System Dynamics 

The complete model of the maglev system can be 
derived by using Newton’s  Law as follow 

                              
F=mx(t)


                                      (3) 

Firstly, to obtain the system dynamics, we apply Eq.(1) 
and Eq.(2) to Eq.(3). As a result, the dynamic equations 
can be rewritten as 

                            

2 2
0

2

μ n σi
mx(t)= -mg

4x(t)
                        (4) 

where m is mass of the suspension; g is acceleration of 
gravity; andσ is magnetic area . 

2.3. Analysis of Nonlinear Model 

Let the states be chosen as 1x =x , 2x =x ,  3x =i . u is the 
input voltage of the system changing from 0 to 5 volts, 
and  T1 2 3X= x x x  is the state vector. Thus, the 
state-space model of the magnetic levitation system can 
be written as 

                               
1

X=F(X)+G(X)U(t)

Y(t)=x


                        (5) 
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2.4. Linearization of System Model 

For the purpose of the afterward controller design, the 
feedback linearization is applied to the system model 
shown as Eq.(5) in this subsection.  As a result, the third 
derivative of system outputs can be finally obtained as 
follows 
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                                   Y=B(C+KU)                              (6) 

where 3

1

x
K=

x
, 

1
B=

m
, and

2 2
3 2 3

3
1 1

Rx Sx x
C=- -

x 2x
. 

Obviously, when 1 3x ,x 0 ,then K 0 . In physics 
system, jx ,j (1,3) , which are Central levitation height 
of the suspension and coil current respectively，thus 
their product could not be zero, so the decoupling 
matrix K is invertible. 
Thus, the decoupling control inputs can be obtained as 

                                 
-1

cU=K (U -C)                                (7) 
where cU =v . 
Then the linearized system model can be arrived at by 
applying Eq.(7) to Eq.(6) and finally obtained as follows 

                                 
c

1
Y=BU = v

m
                                (8) 

3. Adaptive Sliding mode Controller Design 

The error output vector is defined as dE=Y-Y , 
where dY is the desired position and Y is the current 
position. Then, Eq.(8) can be rewritten as 

                                 
d

1
E= v-Y +W

m
                               (9) 

where W denotes the system’s uncertainty and is 
assumed bounded W P . Here, we assume that P is 
unknown.  
In order to design a controller which possesses a better 
ability to gain high robustness and self-tuning property, 
two advanced control methods have been intergrated. In 
this paper, we will introduce the controller design and 
provide the stability analysis. 
Based on the model Eq.(9), which is compactly re-
expressed as 

                            

1

2

3 c d

z =E

z =E

z =E=BU -Y +W





 

                          (10) 

Furthermore, we define the sliding surface variable S as 

                             3 1 2 2 1S=z +ς z +ς z                             (11) 

Where 1 2ς ,ς are positive constants. In this paper, we try 
to regulate the state  T1 2 2Z= z z z to zero, in other 
words, the current outputs will achieve the goal of 
precise tracking of positioning and attitude. In the 
context of SMC, asymptotical convergence of the 
variable S to zero will apparently imply asymptotical 
convergence of Z as well to zero. To validate this, we 

will need to investigate the dynamics of the sliding 
surface variable S as follows 

       3 1 3 2 2 c d 1 3 2 2S=z +ς z +ς z =BU -Y +W+ς z +ς z           (12) 

In addition to the SMC, an adaptive controller is applied 
for estimating the parameters of the system online while 
simultaneously controlling the system. After we have 
the estimates of the system parameters, these estimates 
can be adopted to the control command in Eq.(12) to 
form appropriate SMC with boundary layer as 

          
-1

c 1 d 1 3 2 2
ˆU =B [-k S-Psgn(S)+Y -ς z -ς z ]                (13) 

where 1k is a positive constant, P̂ is the estimate of  P , 
and sgn( ) is the symbolic function.  
 Thus, substituting Eq.(13) into Eq.(12), we obtain 

          

1 3 2 2 d

-1
1 d 1 3 2 2

1

S=(ς z +ς z -Y +W)+B

ˆ[B (-k S-Psgn(S)+Y -ς z -ς z )]

ˆ=-k S-Psgn(S)+W

 

                 (14) 

By appropriate gains 1k , P̂ , 1ς and 2ς , we can ensure the 
convergence of S . Hence, the state Z converges to zero, 
which means the tracking error E to zero, and the 
estimation error P converging to zero. 
Stability analysis: we define a Lyapunov function 
candidate V , which is a positive definite function 

                             

T -1 21 1
V= S S+ ρ P

2 2
                           (15) 

where the estimation error is defined as ˆP=P-P , P̂ is the 
estimates of P ,and ρ is positive.  
The time derivative of the Lyapunov candidate 
function V can be found to be 

                 

T

T
1

T
1

1
V=S S+ pp

ρ

1ˆ ˆ=S -k S-Psgn(S)+W - pp
ρ

1ˆ ˆ-S k S-P S + S P- pp
ρ

  



  





                 (16) 

Using the adaptive control theory to establish bounds of 
parameter estimates in the presence of modeling error 
terms, the adaptive laws is devised as 

                                 
ˆp=-p=- S                                 (17) 

After substituting Eq.(17) into Eq.(16), we can get 

                   

T
1

T
1

T
1

ˆV -S k S-P S + S P-P S

ˆ ˆ=-S k S-P S +P S

< -S k S < 0

 

                   (18) 
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where 1k >0 . 
According to Lyapunov stability theory, the tracking 
error E(t) will converge to zero. In other words, it 
achieves the goal of precise tracking of positioning. 

4. Simulation Results 

In this section, a number of typical simulation results 
are presented, including the transient and the steady-
state responses in different situations. The simulation 
results are provided to demonstrate the performance of 
the developed magnetic levitation system with 
controller presented in section 3. Based on these results, 
we will make some conclusions which are important for 
the future work in this research.  

 

Fig.2. Block diagram of magnetic levitation system 

In order to demonstrate the controlling performance of 
the magnetic levitation system more effectively, the 
block diagram of the system as shown in Fig.2. is 
constructed in this section. Base on the simulation block 
diagram, serials experiments are performed. 
The tracking response performance of magnetic 
levitation vehicle system is shown in Fig.3., where the 
central levitation height can track the desire 
signal x(t)=0.5sint+1 . From the position error curve 
shown in Fig.3., we can see that the error can be 
controlled within 0.03cm. The simulation result, as 
shown in Fig.4., demonstrates the ball can keep balance 
at the equilibrium point. The simulation results for 
repeating a 0.2cm step-train response in x-axis, as 
shown in Fig.5., indicates that the effective tracking 
performance of the proposed magnetic levitation vehicle 
system. 

 

 

 

 
Fig.3. Tracking response performance of central levitation 

height along the x-axis with uncertainty bound 

 

 

 

 

Fig.4.Results for central levitation height holding at 2cm 

 

 

Published by Atlantis Press 
Copyright: the authors 

172



 Maglev Vehicle’s Suspension Control 
 

 

 

 

 

Fig.5.Results for repeating a 0.2cm step-train response 

5. Conclusion 

This paper does a research on the suspension control 
problem of the magnetic levitation vehicle system, 
which in nature, is served as strongly coupling, 
nonlinear and instability. The related analysis had been 
applied in to the maglev system. The linearization 
method and adaptive sliding mode controller can stable 
the system effectively. 
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