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Abstract  
GARCH model has a long history and permeates the 
modern financial theory.  Most researchers use several 
thousands of financial data and maximum likelihood 
to estimate the coefficients of model. Statistically, 
more samples imply better estimation but are hard to 
obtain. How many samples are sufficient for 
estimation? What is the impact of the limited samples 
on the estimation? In this paper, we examined these 
questions using GARCH, MEM-GARCH models and 
NASDAQ composite index. The problems, raised 
from the limited samples, were discussed. Correlation 
of the conditional variances of the estimated models 
between the limited samples and the large samples 
were calculated. The effectiveness of model estimation 
for the limited samples was evaluated by the 
correlation. 
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1. Introduction 
Volatility permeates the modern financial theory. 
GARCH model is widely acknowledged to estimate 
time varying and predictable volatility. Engle[1] 
originally proposed autoregressive conditional 
heteroskedasty (ARCH) model to provide a tool for 
measuring the dynamics of inflation uncertainty. The 
coefficient of ARCH model is estimated by maximum 
likelihood. Bollerslev[2] extended his work to 
Generalized ARCH (GARCH) model by developing a 
technique that allowed the conditional variance to be 
an Autoregressive Moving Average (ARMA) process. 
The coefficients of GARCH model are also estimated 
by maximum likelihood. A collection of survey 
articles[3][4][5][6][7][8] appreciates the aspect of this 
research.  In 2002, Engle proposed a multiplicative 
error model (MEM) by considering a model of time 
series with non-negative elements [9]. The model 
specifies an error times the mean. He also estimated 

the coefficients of MEM-GARCH model by maximum 
likelihood.  

In the past decades, the researchers focused on the 
explanation of economic phenomenon using GARCH 
model. Different formulations of GARCH model such 
as TGARCH [10], AGARCH [11], EGARCH [12] and 
FIGARCH [13] were proposed. Since the researchers 
normally used thousands of financial data for model 
estimation, the sample size normally was not their 
concerns. The rapid development of high frequency 
finance recently may face the problem of the 
insufficient financial data for model analysis. 
Therefore, it is interesting to study how the sample 
size affects this classical model. In this paper, we 
explore the impact of the sample size on GARCH 
model estimation through the empirical studies. How 
many samples are sufficient for model estimation? 
How does it affect the estimated variances?  

A review on GARCH model, MEM-GARCH 
model and maximum likelihood is briefed in section 2. 
Estimation of both models using various sample sizes 
is given in section 3. Conclusion is drawn in section 4. 

2.  GARCH model 
Conventional GARCH(1,1) was introduced by 
Bollerslev in 1986. It is the most famous model in 
modeling the conditional variance 2

1| !tt" of the daily 
return rt among other GARCH model. The daily return 
refers to the difference of logarithmic close prices. The 
mean equation and the conditional variance equation 
are defined by 
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The innovations et is interpreted as the 
multiplication of conditional variance and the 
Gaussian noise. The Gaussian noise follows identical 
independent distribution (i.i.d) with zero mean and 
unit variance. Maximum log-likelihood function in Eq. 
2.3 is widely adopted for parameter set 

},,{ !"#$ =  estimation. The necessary constraints, 



which ensure that the conditional variances are 
positive, are 0,0,0 fff !"# .  
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Owing to the limitation of the conventional 

GARCH model for handling non-negative time series, 
parameter estimation using maximum likelihood is 
difficult and inefficient[9]. Engle proposed a 
multiplicative error model by considering the non-
negative series xt. The mean equation and conditional 
variance equation are defined by  
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t
!  is a unit-mean i.i.d process. Eq. 2.4 thus specifies 
an MEM with “an error that is multiplied times the 
mean” [9]. The parameter set },,{ !"#$ =

m
can be 

obtained using the conventional GARCH software and 
maximum likelihood approach by simply taking the 

positive square root 
t
x as rt and setting the 

dependent variable in the mean equation to zero.  
GARCH model considers the additive error model 

while MEM-GARCH model considers the 
multiplicative error model. It is interesting to study the 
impact of the sample size on two different models.  

3. Impact of sample size 
NASDAQ composite index from 5 February 1971 to 
20 Nov 1990 (in Fig. 1) are used in this paper. There 
are totally 5000 data.  The index price started at 100 
on 5 February and ended at 348.3 on 20 November. 
The extreme values of index are 54.87 and 487.  The 
volatility of NASDAQ composite index was plotted in 
Fig. 2. The peak volatility appears at the 4219th day 
while the volatilities on the other days have a great 
fluctuation.   

In this section, we studied the conventional 
GARCH(1,1) model and MEM-GARCH model using 
various sample sizes. Selection of appropriate model 
depends on the initial values of parameter set as they 
drive the estimation to different local optimal solutions. 
Carefully selection should be considered to avoid 
choose the wrong model. If the smallest sample size is 
200, we look into the relationship of the first 200 
conditional variances of the estimated model among 
different sample sizes. For example, suppose we 
consider 200 and 3000 samples to estimate their 
models. The first 200 conditional variances and 3000 
conditional variances for the first and second model 

respectively could be estimated. Since we have only 
200 variances for the first model, only the first 200 
conditional variances of both models are used to 
calculate their correlation. Intuitively, if the sample 
size is too small, the estimated conditional variances 
may be a noise only. Would 200 samples are sufficient 
for the estimation? If yes, what is the major difference 
of the estimated model between it and 3000 samples? 
If no, how much number of samples should we use? 
Since we also consider MEM-GARCH model, would 
this model reduce the sample requirement?  

3.1. Conventional GARCH model 
The initial values of parameter set, which drove the 
optimal solution, were set in advance. Empirical result 
showed that if the sample size was fewer than 1000, 
two optimal solutions might be found.   For example, 
600 samples of starting day of 1300 were used to 
verify this argument. The first and second initial 
values were set to {0.500, 0.100, 0.500} and {0.045, 
0.100, 0.100} respectively.  By taking the maximum 
log-likelihood, the optimal solutions of the parameter 
set θ were {2.3219e-5, 0.2149, -0.3224} and {1.5755e-
5, 3.2792e-3, 9.9825e-2} respectively. These conditional 
variances of both models were used to calculate the 
correlation with those of model using 3000 samples 
and the same starting day. The correlation was 0.4378 
and 0.5499 respectively. The second solution had 
higher correlation. Empirical result also showed that 
most of the initial values gave the first solution by 
maximum likelihood. To determine whether it is the 
correct solution, we check the condition of 

0,0,0 fff !"# . The first solution was rejected 
as β=-0.3224<0. Furthermore, we found that only a 
small change of the second initial values would make 
the solution dedicated to the wrong solution. 
 
#  200 300 400 500 600 
Correl 0.5478 0.9391 0.9849 0.9866 0.9805 
# 700 800 900 1k 1.1k 
Correl. 0.9810 0.9872 0.9830 0.9845 0.9815 
# 1.3k 1.5k 2k 3k  
Correl 0.9813 0.9859 0.9987 1  
Table 1: Correlation of the conditional variances of GARCH 
model using the sample size between x and 3000  

 
Based on the selection criterion, we extended our 

study to the different sample sizes. They included 200, 
300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1500, 
2000 and 3000. The correlation of the conditional 
variances of estimated model using the sample size 
between x and 3000 were computed and tabulated in 
Table 1.  “#” represents the sample sizes while 
“Correl” represents the correlation. The correlation 
increased with the sample size up to 0.98. When the 
sample size was 700, the correlation reached 0.98.  



Instead of looking at the same starting day, we 
conducted further experiments with different starting 
day. The starting days were {3, 300, 500, 800, 1k, 1.3k, 
1.5k, 1.8k, 2k}. For each starting day, we used the 
same number of sample sizes as those of the starting 
day 300 in the former experiment. The correlation  of 
the conditional variances of the estimated model with 
the same starting day between different sample sizes 
and 3000 sample size were calculated and were plotted 
in Fig. 3. For each curve, it represented the same 
starting day and different sample sizes. There were 
totally 9 curves. The lowest curve was the data sets 
with the starting day 1300. Citing this curve as an 
example, when the sample size was fewer than 700, 
the correlation varied greatly. The correlation with 
sample size greater than 700 was higher than 0.86.  
For the other curves, the correlation with sample size 
greater than 700 was higher than 0.86. Such high 
correlation implied that even though the estimated 
model using 700 samples was as good as that using 
3000 samples.  

3.2. MEM-GARCH model 
Similarly, we evaluated the MEM-GARCH model 
using the same starting values and the same sample 
sizes.  

Regarding the multiple optimal solutions, 
empirical results showed that it happened 
comparatively less frequent for  >700 sample sizes. 
Similarly, most initial values of parameter set directed 
to the wrong solution by maximum likelihood.  

Regarding different sample sizes with the starting 
day 300, the correlation of the conditional variances 
(in Table 2) increased with the sample size. However, 
the correlation for 200 samples size was lower than 
that of the conventional GARCH model. Unlike the 
conventional GARCH model, the correlation could 
reach 0.99 when 900 samples were used.  
 
# 200 300 400 500 600 
Correl 0.4983 0.9203 0.9805 0.9878 0.9956 
# 700 800 900 1k 1.1k 
Correl 0.9991 1.0000 0.9996 0.9980 0.9967 
# 1.3k 1.5k 2k 3k  
Correl 0.9946 0.9953 0.9993 1.0000  
Table 2: Correlation between x samples and 3000 samples 
 

Similarly, we conducted experiments using the 
different starting day and the same sample sizes as 
those in the conventional GARCH model. Their 
correlations were plotted with sample sizes in Fig. 4. 
Unlike the conventional GARCH model, the 
correlation could reach 0.88 for 600 samples only. It 
further reached 0.95 for 1k samples while that of the 

conventional GARCH model reached 0.90. In general, 
the correlation of conditional variance for MEM-
GARCH model is higher than that for the conventional 
GARCH model.  

4. Conclusion 
In conclusion, if the number of samples is less than 
700, two or more optimal solutions may be found by 
maximum likelihood.  Also, most initial values direct 
to the wrong optimal solution. By examining the 
parameters’ condition, the correct optimal solution can 
be identified. If the number of samples is more than 
1000, the correlation of conditional variances of 
estimated model between the limited samples and the 
large samples reaches the high values of 0.90. Thus, 
we recommend using 1000 samples for the model 
estimation for the conventional GARCH model.  On 
the other hand, the sample size requirement for MEM-
GARCH model is lower than the conventional 
GARCH model. Only 800 samples can give the 
comparatively high correlation of 0.90. 

Recently, the study of high frequency financial 
data plays important role in volatility study. The study 
of this paper supports the reduction of data 
requirement. However, the study on the intraday 
effects on volatility index is pending for the sufficient 
data.  
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Fig. 1: NASDAQ Composite index during 5 February 1971 to 20 November 1990 
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Fig. 3: Correlation of conditional variances for the GARCH mode using various sample sizes and starting days 
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Fig. 4: Correlation of conditional variances for MEM-GARCH model using various sample sizes and starting days 
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Fig. 2: Conditional variance of the conventional GARCH model during 5 February to 20 November 1990 


