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Abstract—Sustainability management systems are important 

technologies used by large organisations to monitor and control 

their CO2 emissions and other environmental impacts. So far, 

these systems have been designed to support data collection and 

reporting mandated by regulations, but they provide little support 

for decision making in order to improve an organisation’s environ-

mental sustainability. In this paper, we present a systematic 

method to help organisations make such decisions. Our method 

builds on goal-oriented requirements engineering for modelling an 

organisation’s sustainability goals and on statistical decision anal-

ysis for guiding decisions under uncertainty. By being explicit 

about uncertainty, our method provides a sound assessment of the 

risks associated with alternative options (including the “business 

as usual” option), and, through the concept of information value, 

informs decision makers whether reducing uncertainty through 

additional data collection will be useful for their decisions. We il-

lustrate our approach on real sustainability decision questions at 

UCL’s Department of Computer Science. 

Index Terms—Sustainability management, requirements engi-

neering, goal modelling, decision analysis, uncertainty, infor-

mation value. 

I. INTRODUCTION 

Climate change and its accompanying sustainability con-

cerns are widely considered to be the defining themes of the 21st 

century. Leading climate scientists and economic analysts have 

repeatedly established the severity of the issue and the scale of 

the challenge [1], [2]. Large organisations play an important role 

in helping to mitigate and adapt to the consequences of climate 

change – as recent World Resource Institute report suggested, 

the engagement of the private sector is vital to ensure widespread 

support for sustainability and climate action [3]. 

But making sustainability decisions at large organisations is 

hard. It involves trade-offs between multiple long- and short-

term objectives that must be made under strong budgetary con-

straints, uncertainties about the future evolution of many system 

variables, and sometimes simply the lack of shared understand-

ing of what the real objectives and the potential impacts of vari-

ous decisions on these objectives are [4]–[6]. 

Today, large organisations use sustainability management 

information systems to monitor and control their CO2 emissions 

and environmental impacts. The design of the current generation 

of these systems is however largely data-centric – it concentrates 

on data collection and reporting, mostly to satisfy new regula-

tions concerning the reporting and trading of carbon emissions. 

Deploying these systems allows organisations to make signifi-

cant reductions in energy use and carbon emissions in the first 

few years, but beyond mandatory reporting, it is difficult to iden-

tify the most effective actions that would efficiently address the 

risks associated with wider sustainability issues [7]. 

One limitation of these systems is that little attention has 

been given to the information needs of the decision makers when 

making sustainability-related decisions [8]. This leads to thwart-

ing value generation opportunities, as the right information is not 

available to the right people at the right time [9]. A recent Ernst 

& Young report on corporate sustainability concluded that inef-

ficient environmental management software systems pose chal-

lenges to find the right data and assess its credibility and rele-

vance [10]. 

Another limitation concerns the lack of support for reasoning 

about uncertainty, assessing the risks associated with uncer-

tainty, and assessing the cost and value of reducing uncertainty 

through additional data collection and analysis where possible. 

Uncertainty is the lack of complete knowledge about the actual 

value of some quantity of interest, for example, the current num-

ber of computers in the organisation or the price of energy in 5 

years’ time. Ignoring uncertainty may expose an organisation to 

significant risk of making wrong decisions and not achieving de-

sired strategic goals. Most policy decisions are however founded 

on deterministic analysis that ignore uncertainty [11]. 

Our objective is to address these limitations by presenting a 

systematic method for making sustainability decisions under un-

certainty where the decision makers’ information needs are de-

rived from the organisation’s sustainability goals, the decisions 

to be made, and the organisation’s current uncertainty about the 

quantities of interests to these decisions. Our method builds on 

goal-oriented requirements engineering techniques [12]–[14] to 

elicit and model an organisation’s sustainability goals, and on 

statistical decision analysis [15], [16] to support multi-objective 

decisions under uncertainty.  

We illustrate our method on a case study of sustainability de-

cisions at UCL Department of Computer Science in which we 

assess two projects for their impact on UCL strategic sustaina-

bility goals, analyse their financial implications, and identify 
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where reducing uncertainty about decision parameters is most 

profitable for the organisation. 

II. MOTIVATING EXAMPLE 

University College London (UCL) is a large university with 

its main campus located in the centre of London. Operating UCL 

resulted in 61,000 tonnes of CO2 in the 2011/12 academic year, 

contributed mainly by the university’s energy consumption re-

lated to heating, computing and construction activities [17]. The 

target for reducing carbon dioxide emissions was set to 34% of 

the 2005/06 baseline (64,000 t CO2) by year 2020. With a steady 

growth in the number of students and staff [18], expanding cam-

pus and tightening legislation, the university must implement 

measures to reduce its energy consumption in order to achieve 

its CO2 reduction targets. 

UCL’s Computer Science department (CS) is research ori-

ented with a heavy emphasis on experimentation. It operates on 

eight floors in three different buildings, employs around 600 

members of staff and yearly enrols more than 500 students.  In 

2013, the department consumed 9 GWh of energy and produced 

an equivalent of 6,000 tonnes of CO2 emissions. More than a 

third of this energy consumption (i.e. around 3 GWh) is related 

to computing. This is mainly due to a 130 m2 data centre and 

around 600 desktop computers used for teaching, research and 

administrative purposes.  

In the same year, the CS Technical Support Group consid-

ered two projects that would reduce the department’s energy use 

and CO2 emissions. The first, the Thin Clients (TC) project, 

would consist in replacing 100 desktop computers with low 

powered thin clients. The second, the Data Centre Migration 

(DCM) project, would consist in partially migrating the depart-

ment’s large data centre to an external data centre provider with 

a more efficient energy use. The Technical Support Group later 

decided to fund the TC project but rejected the DCM project due 

to data security concerns and other legal issues related to exter-

nal management of sensitive data. 

Regardless of what decision has been made, we will use the 

information about the two projects in retrospect to demonstrate 

the individual steps of our method. Different groups throughout 

UCL have similar sustainability-related project ideas but have 

difficulties assessing the impacts of their projects on the univer-

sity’s sustainability goals. There is thus a real need for manage-

ment tools to support these groups in evaluating the sustainabil-

ity impacts of their projects and to support the organisation as a 

whole to choose the most effective alternatives. 

III. RELATED WORK 

Software systems supporting the adoption of sustainability 

strategies have evolved as a response to growing regulatory pres-

sure from governments and non-governmental organisations. 

These systems are regarded in the literature mostly as environ-

mental enterprise resource planning (ERP) software [7], [8] that 

primarily aim at collecting large volume of data and show com-

pliance with regulations. Examples of the most popular software 

include Hara, Credit360 or CA ecoSoftware [5]. These software 

systems are particularly beneficial for corporations with a large 

customer base and presence in various countries with different 

legislation. They remain rudimentary, however, especially when 

compared with other tools used for reporting financial measures 

[10] and provide very little decision support. 

Others have previously applied goal-oriented requirements 

engineering techniques to sustainability decisions: Cabot et al. 

and Mahaux et al. have both applied goal modelling techniques 

to the organisation of large events [19], [20]; and Penzenstadler 

and Femmer proposed generic goal-modelling framework that 

supports the assessment of environmental sustainability impact 

of software engineering projects [21]. However, all take a qual-

itative approach where sustainability goals remain vague and im-

measurable. These methods help to identify the main sustaina-

bility concerns and the forces affecting them, but they provide 

limited support for complex decision-making. By contrast, we 

use a quantitative approach where goals are given formal, meas-

urable definitions [22]. Our models include multiple, organisa-

tion-specific sustainability goals defined in terms of domain-

specific variables that are related to each other through refine-

ment equations [13]. Such models allow one to reason quantita-

tively about the impacts of alternative options on the levels of 

goal attainment and make trade-offs among them. 

The Inflo tool provides support for collaborative elaboration 

and management of quantitative decision models, notably for 

supporting sustainability decisions [23], [24]. Using Inflo, one 

can, for example, develop an argument to compare the carbon 

emissions resulting from printing a text on a paper versus read-

ing the same text on a computer screen. Inflo provides support 

for model elaboration and execution, but not for decisions under 

uncertainty. Inflo models could be used as an input for the model 

elaboration step of our method. 

IV. SUSTAINABILITY DECISIONS UNDER UNCERTAINTY 

Our approach to the problem of making sustainability deci-

sions in large organisations is structured into four steps: 

1. Elaborating sustainability decision models 

2. Eliciting model parameter values 

3. Analysing costs, benefits, and risks 

4. Analysing information value 

These steps adapt existing goal modelling [12] and statistical 

decision analysis techniques [15] to the particular context of sus-

tainability decisions in large organisation. Our approach has 

been strongly influenced by our recent work on software require-

ments and architecture decisions under uncertainty [25]. 

The first step consists in elaborating a strategic sustainability 

goal model for the whole organisation, and a series of concern-

specific impact models relating detailed, low-level variables 

(such as the number and type of computers used in the organisa-

tion) to variables of interest to the decision makers in the strate-

gic sustainability goal model. The second step consists in elicit-

ing the model parameters’ probability distributions that charac-

terise uncertainty about their values. The third step involves 

computing the expected costs, benefits and risks of alternative 

choices through Monte-Carlo simulation. The fourth step con-

sists in measuring the expected value of perfect information [26] 
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for the decision problem. Measuring the expected value of per-

fect information allows decision makers to assess whether it 

would be profitable to reduce some of the decision problem un-

certainty before committing to a particular choice, and it guides 

them in identifying which uncertainty to reduce. 

The following sections present each of these steps in turn and 

illustrate their applications on our motivating example. 

V. ELABORATING SUSTAINABILITY DECISIONS MODELS 

The first step consists in elaborating sustainability decision 

models. We distinguish models at two different levels of abstrac-

tion: strategic sustainability goal model defines the overall sus-

tainability goals of the whole organisation and provides refer-

ence criteria against which to evaluate individual projects; con-

cern-specific impact models are partial models describing the 

impacts of a large number of low-level variables (such as the 

number of devices of various types, their usage patterns, their 

energy consumption, etc.) on leaf goals in the strategic sustaina-

bility goal model (e.g. overall energy consumption). In other 

words, the strategic sustainability goal model defines the “big 

picture”, and the concern-specific impact models allow one to 

relate details from various parts of an organisation to this big 

picture. 

A. Defining the organisation’s strategic sustainability goals 

We rely on an existing goal-oriented requirements engineer-

ing method [12]–[14] called KAOS (Knowledge Acquisition in 

Automated Specification) to elicit and elaborate the strategic sus-

tainability goal model. In the KAOS goal modelling approach, 

goals are prescriptive statements of intent to be satisfied through 

the cooperation of agents. Agents in this context refer to software 

systems, hardware devices and humans. Goals are defined pre-

cisely in terms of domain-specific phenomena. Levels of goals 

satisfaction can be defined through measurable objective func-

tions defined in terms of quality variables attached to each goal. 

A typical example of environmental sustainability goal for an 

organisation would be to minimise its greenhouse gas emissions. 

Goals can be refined into subgoals and domain assumptions. 

Domain assumptions are statements about the application do-

main that are outside the control of the organisation, for example 

statements concerning energy cost, or the amount of greenhouse 

gas emission per energy consumption for a specific external 

source of energy. In goal refinement links, refinement equations 

are defined to relate quality variables of a parent goal to quality 

variables of its subgoals and variables in the related domain as-

sumptions. 

In our application of goal modelling to sustainability deci-

sions in large organisation, we have not defined a clear-cut cri-

terion for deciding when to stop refining goals into subgoals. The 

refinement of strategic goals should proceed until when further 

refinements would lead to goals referring to variables that are 

too detailed and outside the immediate interests of strategic de-

cision makers. 

Case study. Figure 1 shows a portion of the strategic sus-

tainability goal model at UCL [27]. We have elaborated this 

model from information contained in the last UCL carbon man-

agement plan and sustainability strategy [17], [28], from infor-

mation elicited during interviews with sustainability programme 

managers and general data about UCL, energy prices, and green-

house gas emission conversion factors. 

Two important objectives are to minimize energy cost and 

greenhouse gas (GHG) emissions. The goal to minimize GHG 

emissions is further refined into two subgoals based on the defi-

nition of emissions’ scope by the Greenhouse Gas Protocol. Car-

bon emissions of scope 1 and 2 are produced either directly on 

the campus (e.g. by energy production of the on-site CHP plant), 

or result from an external production of energy used for the op-

eration of the university. Scope 3 emissions are all other indirect 

emissions related to activities of the institution such as travel, 

procurement, water usage, waste disposal, and energy consumed 

in leased buildings and facilities [29]. 

UCL’s objective to reduce its carbon emissions by 34% by 

2020 only concerns emissions of scope 1 and 2. The reduction 

target was set by the Higher Education Funding Council for Eng-

land (HEFCE) as a condition for universities to keep their full 

Minimise [Net 
Energy Cost] 

Minimise [Scope1&2 
Emissions] 

Minimise [Scope 3 
Emissions] 

Maximise [HEFCE 
Capital Funding] 

Minimise [CRC 
Liabilities] 

Minimise [Energy Cost] 
Maintain 

[Credibility] 

Minimise [Energy 

Consumption] 

Maximise [Benefits 

to Society] 

Maximise [CC-
related Research] 

Minimise [GHG 
Emissions] 

Minimise [Travel 
Emissions] 

Minimise [Procurement 
Emissions] 

Other goals 
not shown 

Fig. 1. A portion of UCL sustainability strategic goal model (adapted from [27]). 

 

Emission Conversion 
Factors 

CRC Tax Rate 

Rising Energy 
Price 
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level of capital funding, and is related to the Government’s gen-

eral targets of reducing UK carbon emissions by 80% by 2050 

against the 1990 levels [30]. Achieving this goal will also reduce 

UCL’s financial liability to purchase carbon emission allow-

ances under the CRC Energy Efficiency Scheme (CRC) which 

is a mandatory scheme aimed at improving energy efficiency 

and reducing emissions in large public and private sector organ-

isations in the UK [31]. The generic goal of reducing GHG emis-

sions will contribute to the goal of maintaining UCL’s credibility 

as a world-leading research and teaching institution, notably in 

areas related to energy, climate change, and environmental sus-

tainability. It will also help to maximize UCL’s benefits to soci-

ety by contributing to the effort of mitigating and adapting to the 

consequences of climate change. 

For the CS Thin Client and Datacentre Migration projects, 

we will focus on two goals: Minimise [Energy Costs] and Mini-

mise [Scope 1&2 Emissions]. In our model, the goal Minimise 

[Energy Cost] is defined in terms of a quality variable 

𝐸𝑛𝑟𝑔𝐶𝑜𝑠𝑡: 𝑌𝑒𝑎𝑟 → 𝑁 

that denotes the total energy cost per year. The value of this var-

iable is defined in terms of the refinement equation 

𝐸𝑛𝑟𝑔𝐶𝑜𝑠𝑡 = 𝑁𝑒𝑡𝐸𝑛𝑟𝑔𝐶𝑜𝑠𝑡 + 𝐶𝑅𝐶𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 

which refers to the variables attached to the subgoals Minimise 

[Net Energy Cost] and Minimise [CRC Liabilities], respectively. 

The net energy cost is itself computed from the following equa-

tion 

𝑁𝑒𝑡𝐸𝑛𝑟𝑔𝐶𝑜𝑠𝑡 = 𝐸𝑛𝑟𝑔𝑈𝑠𝑒 ∗ 𝐸𝑛𝑟𝑔𝑃𝑟𝑖𝑐𝑒 

and the CRC Liabilities computed from 

𝐶𝑅𝐶𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 = 𝑆𝑐𝑜𝑝𝑒1&2_𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 ∗ 𝐶𝑅𝐶𝑇𝑎𝑥𝑅𝑎𝑡𝑒. 

The full quantitative model with all refinement equations is 

available at http://davidstefan.org/ICT4S. 

Our strategic sustainability goal model has no quantitative 

definition and refinement equations for the goals Maintain [UCL 

Credibility] and Maximise [UCL Benefits to Society]. Defining 

meaningful, measurable quality variables for these goals is pos-

sible [16] but requires further work.  When evaluating the Thin 

Client and the Data Centre Migration projects, we will assess 

their impacts on minimising UCL scope 1 and 2 emissions which 

contribute to an unknown degree to the goals of maximising 

UCL reputation and positive impact on society. 

B. Defining Concern-Specific Impact Models 

The concern-specific impact models define equations relat-

ing detailed variables directly affected by some project to quality 

variables in the strategic sustainability goal model. These mod-

els allow projects’ champions to assess and communicate the im-

pact of their projects on the overall goals of the organisation. In 

order to avoid developing and validating these models from 

scratch, it would be useful for an organisation to curate a set of 

concern-specific impact models that could be reused across the 

analyses of different projects. The concerns addressed by differ-

ent models would include, for example, the impact of ICT on 

energy consumption, the impact of ICT on waste, the impact of 

heating on energy consumption, etc. A collaborative web-based 

modelling tool such as Inflo [23] would be extremely useful to 

develop, validate, manage, and reuse such models. 

IT Elec. Use 

AV Elec. 
Use 

Servers Elec. 
Use 

PC & LCD Elec. 
Use 

Printing Elec. 
Use Network Elec. 

Use 

Number of 
Printers 

Printer Elec. 
Use (active) 

Printer Elec. 
Use (idle) 

Printer Printing 
Hours/Day 

Number of 
Switches 

Switches 
Elec. Use Number of 

Wi-Fi APs 

Wi-Fi APs 
Elec. Use 

Number of House 
Servers 

House Server Elec. 
Use 

Number of Ext. 
Servers 

Ext. Servers Elec. 
Use 

House 
DCIE 

External 
DCIE 

Number of Stand. 
Desktops 

Stand. Desktop 
Elec. Use 

Number of Power 
Desktops 

Storage Elec. 
Use 

Power Desktop 
Elec. Use 

Number of GPU 
Desktops 

GPU Desktop 
Elec. Use 

Desktops 
Elec. Use 

LCD Elec. 
Use 

Laptop Elec. 
Use 

Number of 
Thin Clients 

Thin Clients 
Elec. Use 

Number of 
Laptops 

Laptop 
Elec. Use Number of 

LCDs 

LCD Elec. Use 
(active) 

LCD Elec. Use 
(sleep) 

LCD Active 
Hours/Day 

Number of 
Projectors 

Projector Elec. 
Use (active) 

Projector Elec. 
Use (sleep) 

Projector Active 
Hours/Day 

Fig. 2. Graphical representation of the ICT energy consumption impact model. Arrows assign child-nodes to their 

parent-nodes and appoint which lower-level variables are involved in the definition of higher-level variables. 
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These impact models are not goal models in the sense that 

the term is used in requirements engineering because the varia-

bles involved in these models, for example the number of thin 

clients used in the organisation, are not easily attached to goals. 

Case study. To compute the impacts of the Thin Client and 

the Data Centre Migration projects, we have use a standard 

model for estimating energy consumption of ICT estates in UK 

higher education institutions [32]. This model, which is imple-

mented as a spreadsheet, was originally developed by the UK 

government to help higher education institutions estimate the en-

vironmental impact of their ICT estate and is now being used by 

governmental departments and agencies to report their opera-

tional energy consumption footprints. Figure 2 shows a graph-

ical representation of the variables involved in this model and 

the relationships among them. 

VI. ELICITING MODEL PARAMETER VALUES 

The next step consists in eliciting the model parameter values 

for quantities that are known with certainty or their probability 

distributions for quantities that are uncertain. Simple, effective 

methods exists for eliciting such probability distributions [33]; 

for example, one common technique consists in eliciting a 90% 

confidence interval for a parameter’s value, i.e. the range of val-

ues that the estimators believe has a 90% chance of containing 

the true value [16]. Our method is however not constrained to 

the use of any particular elicitation technique – one could use 

normal distributions and well as uniform or triangular distribu-

tions to represent uncertainty about parameter values. 

Case Study. We have estimated the model parameter values 

of our strategic sustainability goal model, such as the current and 

projected future value for energy prices, CRC tax rate, and emis-

sion conversion factors from publicly available data and anal-

yses [31], [34]. For the model parameters of the ICT-energy im-

pact model shown in Figure 2, we have elicited values from the 

Head of Technical Support Group at CS. Some of these values 

are shown in Table I and II. When a parameter is known with 

certainty, the table shows a single value; when there is uncer-

tainty, the table shows the lower and upper bounds of the 90% 

confidence interval. 

VII. ANALYSING COSTS, BENEFITS, AND RISKS 

The next step consist in analysing the costs, benefits and 

risks associated with alternative decisions which can include the 

decision to implement either one of the proposed projects, a 

combination of the projects, but also the decision not to imple-

ment any of them (the “business as usual” option). 

 Costs may include expenditures related to the purchase of 

new capital, construction activities and other costs associated 

with projects implementation. 

Benefits are related to the satisfaction of strategic goals. This 

can be goals related directly to stakeholders’ financial interest, 

such as the savings resulting from reducing energy consumption, 

or other strategic goals, for example reducing CO2 emissions or 

improving reputation. 

Risks are associated with the possibility of not achieving de-

sired goals, or satisfying goals below a desired level. 

A. Computing projects’ impacts on goals’ attainment 

The computation is accomplished by evaluating the strategic 

goal model for inputs obtained from evaluating the concern-spe-

cific impact models for parameter values elicited for individual 

projects. 

It is generally not possible to evaluate the models analyti-

cally because the probability distributions of the input variables 

and the refinement equations can be arbitrarily complex. We 

therefore use Monte Carlo (MC) simulation which computes the 

outputs as sample probability distributions by evaluating the 

model for a large number of random draws of values from the 

input probability distributions. The result of a MC simulation is 

a vector where each element corresponds to one evaluation of 

the models associated to a single such draw. 

Once the model has been evaluated, we proceed with the 

analysis of the resulting levels of goal attainment. Since the lev-

els of goal attainment are computed as sample probability distri-

butions, we can infer statistical measures such as the expected 

level of goal attainment, or the probability that the level of goal 

attainment is below (or above) a desired target. 

Case study. The CS Technical Support Group is considering 

four alternatives. The “business as usual” scenario involves the 

replacement of 100 desktop computers that are approaching the 

end of their lifetime with desktops that have similar energy use 

profile. 

DR Replace old desktops with newer machines that have sim-

ilar energy use profile. 

TC Replace old desktops with thin clients that use less en-

ergy. 

TABLE I. Examples of a few parameter values for 

the ICT estate at UCL’s Computer Science Department. 

parameter value 

Number of House Servers 650 

House Server Elec. Use [100, 250] W 

House DCIM [2.1, 2.6] 

Number of Stand. Desktops [180, 220] 

Stand. Desktops Elec. Use [200, 300] 

Number of LCDs [500, 600] 

LCD Elec. Use Active [50, 80] W 

TABLE II. Examples of the changes in ICT parameters values 
after migrating 150 servers to an external datacentre. 

Datacentre migration 

parameter current change new 

In-house servers number 650 −150 500 

External servers number 0 +150 150 
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DR+DCM  Replace old desktops with newer machines with 

similar power use and migrate part of the data centre to 

an external data centre provider. 

TC+DCM  Replace old desktops with thin clients and migrate 

part of the data centre to an external data centre provider. 

Table III shows the results from the evaluation of our models 

for the four decision alternatives. Expected 5y Energy Cost 

shows the impact on the goal Minimize [Energy Cost] over the 

period of five years with an illustration of the expected overall 

alternatives’ cost below. Expected Scope 1&2 Emissions shows 

the impact on the goal Minimize [Scope 1&2 Emissions]. Further 

in the table are shown probabilities of the alternatives to reduce 

scope 1 and 2 emissions by 5% from the department’s current 

CO2 levels (first probability considers reducing ICT-related 

emissions only, second probability considers reducing the over-

all department’s emissions). 

B. Cost-Benefit Analysis 

It is important to know whether the expected overall benefit 

resulting from a decision outweighs the expected overall cost 

and by how much. A method commonly used for such compari-

son is the Cost-Benefit Analysis (CBA). It assumes that a model 

with cost and benefit functions exists which relates various lev-

els of goal attainment to financial interests of the stakeholders 

[35]. In our method, the cost benefit model can be defined in 

terms of the strategic goals that either directly represent the fi-

nancial interests of stakeholders or can be linked to them using 

appropriate techniques [16], [36]. 

If the cost-benefit model is evaluated for inputs that have 

been computed using Monte Carlo simulation, one can, for each 

decision alternative, estimate useful measures such as the ex-

pected net benefit (𝐸𝑁𝐵), loss probability (𝐿𝑃), and probable 

loss magnitude (𝑃𝐿𝑀), defined as 

𝐸𝑁𝐵(𝑝) = 𝐸[𝑁𝐵(𝑝)] 
𝐿𝑃(𝑝) = 𝑃(𝑁𝐵(𝑝) < 0) 

𝑃𝐿𝑀(𝑝) = 𝐸[𝑁𝐵(𝑝)|𝑁𝐵(𝑝) < 0] 

Case study. We have elicited parameter values for the cost 

function from the Head of Technical Support Group as 90% con-

fidence intervals. The cost of the “business as usual” scenario 

includes the cost of the renewal of ageing desktops. This has 

been estimated as a cost of [£325, £375] per machine, i.e. a cost 

of [£32,500, £37,500] for all 100 machines. The cost of the Thin 

Clients project is based on the cost of one thin client unit esti-

mated at [£250, £350], or [£25,000, £35,000] for all 100 units. 

The Data Centre Migration project involves a one-off migration 

cost and a yearly recurring fee for the external data management. 

The migration cost has been estimated to be [£32,000, £40,000], 

with a yearly hosting fee of [£25,000, £35,000]. 

The benefit is related to the financial savings achieved by a 

reduced energy consumption leading to smaller energy bills and 

lower CRC tax rate. The net benefit in our example is therefore 

defined as 

𝑁𝐵(𝑎) = 𝑇𝑜𝑡𝑎𝑙5𝑦𝐸𝑥𝑝𝑒𝑛𝑠𝑒𝑠(𝐷𝑅) − 𝑇𝑜𝑡𝑎𝑙5𝑦𝐸𝑥𝑝𝑒𝑛𝑠𝑒𝑠(𝑎) 

where 𝑎 is a decision alternative and 𝑇𝑜𝑡𝑎𝑙5𝑦𝐸𝑥𝑝𝑒𝑛𝑠𝑒𝑠(𝐷𝑅) 

returns the expected total expenses related to the “business as 

usual” scenario, i.e. the renewal of the ageing desktops. 

Table IV shows the results of our cost-benefit analysis. Al-

ternative TC+DCM is most profitable in terms of net benefit but 

has a relatively high loss probability. Second best in terms of net 

benefit is the alternative TC with zero probability of incurring 

loss. 

As mentioned previously, the Technical Support Group had 

rejected the DR+DCM and TC+DCM alternatives prior to this 

analysis mainly due to concerns about data security. Their deci-

sion could be retrospectively interpreted in the way that the 

group values data security more than satisfying their overall CO2 

reduction target by 31%. Data security objectives could be added 

to the UCL strategic goal model, albeit quantifying their rela-

tionship with other sustainability goals would be difficult. Either 

way, our analysis provides means for exposing trade-offs among 

sustainability goals and other objectives, and the underlying 

models can be further improved based on stakeholders’ feedback 

and reused for evaluating the impact of future project proposals. 

VIII. COMPUTING INFORMATION VALUE 

If the decision makers can acquire further information about 

the decision they face, that information may reduce their uncer-

tainty about the impact of their decision and possibly allow them 

to make a better decision resulting in higher net benefit. The in-

crease in net benefit due to the additional information is the 

measure of the value of this information [26]. Knowing the value 

of information helps decision makers prioritise which additional 

information they should seek – high-value information should 

be sought primarily, paying more for information than what it is 

worth should be avoided. 

The expected value of total perfect information (𝐸𝑉𝑇𝑃𝐼) is 

the expected gain in net benefit from having perfect information 

about all model parameters: 

TABLE III. Impacts of decision alternatives on key strategic goals. 

 DR TC DR+DCM TC+DCM 

Expected 5y Energy Cost £2,238,966 £2,203,077 £2,040,483 £2,004,594 

Expected 5y Project Cost £35,002 £29,983 £215,126 £210,108 

Expected Scope 1&2 Emissions 1,706 1,677 1,554 1,526 

𝑃(𝐼𝑇 𝑆𝑐𝑝1&2 𝑟𝑒𝑑𝑢𝑐𝑒𝑑 𝑏𝑦 5%) 0% ~0% 79% 88% 

𝑃(𝑆𝑐𝑝1&2 𝑟𝑒𝑑𝑢𝑐𝑒𝑑 𝑏𝑦 5%) 0% ~0% 20% 31% 
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𝐸𝑉𝑇𝑃𝐼 =  𝐸[max
𝑎∈𝐴

𝑁𝐵(𝑎)] − max
𝑎∈𝐴

𝐸[𝑁𝐵(𝑎)] 

where 𝐸(𝑥) denotes the expectation of a random variable. With 

perfect information, decision makers can decide based on the 

true maximal net benefit for the known values of model param-

eters. The gain from having the perfect information is computed 

as the difference between the net benefit with the perfect infor-

mation, i.e. 𝐸[𝑚𝑎𝑥 𝑁𝐵(𝑎)], and the net benefit without the ex-

act values, i.e. 𝑚𝑎𝑥 𝐸[𝑁𝐵(𝑎)]. The 𝐸𝑉𝑇𝑃𝐼 is always greater or 

equal to zero. It can be estimated from the net benefit values ob-

tained in the previous step as 

𝐸𝑉𝑃𝐼 = mean(maxRow 𝑁𝐵̂) − max (meanCol 𝑁𝐵̂) 

where 𝑁𝐵̂ is a net benefit matrix with columns formed of the net 

benefit vectors computed by Monte Carlo (MC) simulation in 

step 3, maxRow returns a vector with the per-row maximum val-

ues of its input matrix and meanCol returns a vector with the 

per-column mean values of its input matrix. An illustration of 

computing 𝐸𝑉𝑇𝑃𝐼 is shown in Table V for a MC simulation with 

only 5 scenarios (the 𝐸𝑉𝑇𝑃𝐼 in our motivating example was 

computed for a simulation with 100,000 scenarios). 

One can also compute the expected value of partial perfect 

information, i.e. the perfect information value of a single model 

parameter 𝜋 ∈ 𝑃𝑎𝑟 (𝑃𝑎𝑟 is the set of all model parameters). It is 

defined as the gain in net benefit from having perfect infor-

mation about a single model parameter 𝜋 

𝐸𝑉𝑃𝑃𝐼(𝜋) = 𝐸(max 𝑁𝐵(𝑎|𝜋)) − max 𝐸(𝑁𝐵(𝑎)) 

where 𝑁𝐵(𝑎|𝜋) is the net benefit given the exact values of the 

parameter 𝜋. Just like 𝐸𝑉𝑇𝑃𝐼, the 𝐸𝑉𝑃𝑃𝐼 is always greater or 

equal to zero. Computing 𝐸𝑉𝑃𝑃𝐼 is harder than computing 

𝐸𝑉𝑇𝑃𝐼 because it generally requires a computationally intensive 

two-level MC simulation. However, it can be substituted by an 

efficient, one-level simulation method that approximates the re-

sult using a segmentation approach [37]. 

Note that 𝐸𝑉𝑇𝑃𝐼 and 𝐸𝑉𝑃𝑃𝐼 computes the expected value 

of information about given parameters before the true values of 

these parameters are exposed. Once the true values of given pa-

rameters are exposed, the expected net benefit may increase or 

decrease. 𝐸𝑉𝑇𝑃𝐼 and 𝐸𝑉𝑃𝑃𝐼 thus compute how much the ex-

pected net benefit changes on average. 

Case study. For our decision problem, the 𝐸𝑉𝑇𝑃𝐼 is 

£37,245, a relatively high value. It means that eliminating all un-

certainties about model parameters on average improves the ex-

pected net benefit by this amount. While in reality it will be im-

possible to completely eliminate the uncertainty about every sin-

gle parameter, the 𝐸𝑉𝑇𝑃𝐼 measure is still useful in that it gives 

the maximum amount that should not be exceeded to collect ad-

ditional information. 

The 𝐸𝑉𝑃𝑃𝐼 computed for individual model parameters is 

shown in Table VI. We show only the top seven results because 

the 𝐸𝑉𝑃𝑃𝐼 about the remaining parameters was negligible. Rel-

atively high value is attached to eliminating uncertainty about 

the departmental server electricity use, the electricity use of the 

external data centre provider, the cost of an external server, and 

TABLE IV. Results of the cost-benefit analysis. 

 DR TC DR+DCM TC+DCM 

Expected 5y Energy Cost £2,238,966 £2,203,077 £2,040,483 £2,004,594 

Expected 5y Project Cost £35,002 £29,983 £215,126 £210,108 

Total 5y Expenses £2,273,968 £2,233,061 £2,255,609 £2,214,701 

Expected Net Benefit £0 £40,907 £18,359 £59,267 

Loss Probability 0% 0% 44% 30% 

Probable Loss Magnitude £0 £0 £80,519 £68,974 

 

TABLE V. Illustration of 𝐸𝑉𝑇𝑃𝐼 computation from Monte Carlo simula-

tion results. The second to fifth columns show the 𝑁𝐵̂ for the four decision 
alternatives in 5 random scenarios. Alternative TC+DCM has the highest 

expected net benefit in this illustration (£59,487). Last column shows the 

maximum net benefit for each scenario with a mean of £96,732. We thus 

compute 𝐸𝑉𝑇𝑃𝐼 = £96,732 − £59,487 = £37,245. 

Scenario 𝑁𝐵̂(𝐷𝑅) 𝑁𝐵̂(𝑇𝐶) 
𝑁𝐵̂(𝐷𝑅
+ 𝐷𝐶𝑀) 

𝑁𝐵̂(𝑇𝐶
+ 𝐷𝐶𝑀) 

Max 

1 £0 £32,980 £70,424 £89,000 £89,000 

2 £0 £18,934 -£70,140 -£144,343 £18,934 

3 £0 £57,463 £42,044 £114,345 £114,345 

4 £0 £49,821 -£3,100 £207,383 £207,383 

5 £0 £45,000 £54,000 £31,050 £54,000 

Mean £0 £40,840 £18,646 £59,487 £96,732 

 

TABLE VI. EVPPI for ICT impact model parameters. 

parameter name EVPPI 

House Server Elec. Use £28,710 

Ext. Server Elec. Use £12,841 

Ext. Server Cost £4,739 

House DCIM £3,680 

External DCIM £750 

Number of GPU Desktops £101 

Wi-Fi Elec. Use £73 
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the departmental DCIM. However, collecting additional infor-

mation about these parameters makes sense financially only if 

the cost of such additional information does not exceed the com-

puted 𝐸𝑉𝑃𝑃𝐼 values. 

IX. CONCLUSION 

Implementing sustainability strategy at large organisations is 

an increasingly important activity. Yet the current generation of 

software systems supporting this activity lacks the required level 

of decision support. In this paper, we have presented a method 

for the assessment of projects’ impact on key sustainability ob-

jectives under uncertainty. We believe that our application of the 

method to real decision alternatives at UCL provided useful in-

sight into the impact of these alternatives on UCL’s sustainabil-

ity goals and helped to expose important trade-offs among sus-

tainability goals and other objectives of the organisation. 

As future work, we intend to validate our approach on a 

larger number of case studies at UCL and CGI. Adapting our 

existing sustainability goal model to different organisational 

context will help us abstract a set of sustainability goal templates 

that would facilitate the future elaboration of complex sustaina-

bility goal models at large organisations. We believe that our ap-

proach can influence the design of the next generation of profes-

sional sustainability management systems and improve their 

support for making complex decisions under uncertainty. In par-

ticular, computing information value will help organisations de-

cide which measurements to improve based on the value that 

these measurements can bring to their decisions. 
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