
Agent-Based Analysis of Annual Energy Usages for 
Domestic Heating based on a Heat Pump 

 

Seyed Amin Tabatabaei, Dilhan J. Thilakarathne, Jan Treur 
Agent Systems Research Group, Department of Computer Science 

VU University Amsterdam 
Amsterdam, The Netherlands 

{s.tabatabaei, d.j.thilakarathne, j.treur}@vu.nl 
http://www.cs.vu.nl/~treur 

 
 

Abstract— This paper describes an agent-based analysis 
approach to determine in which way a net zero house can be 
obtained. In particular, it addresses agent-based simulation to 
estimate annual energy usage for heating based on an air to water 
heat pump. Based on the introduced approach house owners will 
be able to decide on the specifications for further renewable 
energy production systems to be installed, for example, solar or 
wind energy production systems in order to obtain a net zero 
house in the present and in future years. 

Index Terms— net zero house, annual energy usage, heat 
pump, SPF 

I. INTRODUCTION 

One of the grand challenges of this time is to reduce the 
overall energy usage based on non-renewable sources of 
energy. A particular area to address this is that of domestic 
energy usage. In designing new houses nowadays, often the 
aim is to come as close as possible to an energy neutral or net 
zero house; e.g., [1–4]. Also for renovation of existing houses 
often the aim is to get close to a net zero house. A net zero 
house is a house that on an annual basis doesn’t use any 
energy. During the year there may be times that such a house 
still uses energy, but in the same or other periods of the year it 
produces energy in such a way that the net total over the year is 
zero. For more details and overviews of net zero houses, see 
[5–7]. Given the dynamics of both environmental and 
household factors, the emerging system is a complex system 
and modelling both the energy consumption and energy 
production over time is a research challenge. 

For households in many countries much of the annual 
energy usage is spent on domestic heating; overall it is 
estimated at 43% from the totel energy usage of heat related 
needs in the Europian Union in 2006 (cf. [8]). To get closer to 
the ideal of a net zero house, in addition to good isolation of the 
house, also more and more domestic heating systems are 
considered that allow the use of renewable energy, in contrast 
to most of the tradional heating systems that fully depend on 
non-renewable energy such as coal, gas and oil. Often heat 
pumps are suggested as an alternative; e.g., [9]. They take most 
of their energy (up to 80%) from the heat available in the 
ambient air, water or soil. The remaining energy usage 
concerns electrical energy to run the heat pump, which can be 

less than 40% of the energy usage based on  traditional heating 
systems. Moreover, if the amount of electrical energy that is 
still needed is also produced based on renewable energy 
sources such as solar or wind energy in the same or different 
periods in a year, the total energy usage for heating can become 
net zero over a year. To obtain this, it is important to have an 
adequate estimation of the annual energy usage of a heat pump 
over years. Such an estimation can be taken into account when 
deciding, for example, for the dimensions of a solar energy 
production system to be installed. However, domestic heat 
pump users are facing a challenge to estimate their own energy 
usage on heating mainly because of the performance indicators 
given by heat pump manifacturers are far away from the 
dynamic conditions of using it (e.g. indoor and outdoor 
temperatures) and therefore, those measures are not directly 
helpful to plan an economical net zero house. This paper 
focuses on how agent-based methods can be used to get this 
estimation in case of an air to water heat pump (using the air as 
a source). Here the main agent considered is the (heat pump 
based) heating agent, and the main focus is on its ongoing 
interaction with the (strongly dynamical) environment. Other 
agents that play their role are energy production agents (e.g., 
based on a photovoltaic solar energy production system; e.g., 
[10]) and a thermostat agent. 

Both the energy demand of a house and the efficiency of an 
air to water heat pump strongly depend on ambient 
temperature. This temperature varies much over the days of a 
year, and due to climate change it may change over the years as 
well. As the effect of variation of this temperature on the 
efficiency of a heat pump is nonlinear, simply taking average 
temperatures does not provide adequate estimations. In this 
paper, this variation of outdoor temperature is analysed and it is 
determined by agent-based simulation over days in different 
years how this variation affects the energy needed for heating. 
A main advantage of this approach is that by having some 
limited data for a short period of time the system itself is able 
to start to do the prediction, and over time of the system use the 
quality of the estimation will be naturally refined and 
improved. Furthermore, due to the continuouss analysis of 
energy consumption and energy generation, this methodology 
includes features like monitoring the performance of the 
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heatpump and solar panels (this is useful for prompt repairs and 
even for replacements), form a small scale smart grid with 
neighbours and further reducing the risk of higher energy 
demands (in special situations) with low or zero cost. 

In the paper, first in Section II some background theory on 
heating based on a heat pump is presented. Next in Section III 
it is shown how parameters representing characteristics of a 
given house and heat pump can estimated based on empirical 
data on energy usage and outdoor temperature. This provides a 
well-tuned model of the heat pump in the given house. In 
Section IV based on this model the (hypothetical) energy 
usages for the past 10 years are analysed using empirical data 
on the temperature over days in these years. Section V does the 
same for the future 10 years, thereby using prediction models 
for temperature variation over days and over years. Section VI 
includes a discussion and future directions. 

II. DOMESTIC HEATING BY A HEAT PUMP 

In this section, some background knowledge on domestic 
heating is discussed, needed to model the heating agent. The 
modeling approach used here is single agent-based. This agent 
has the responsibility to take care of the heating via the action 
of controlling the water temperature of the central heating 
system. The agent is goal-directed and reactive to information 
about the indoor and outdoor circumstances.  This information 
is acquired by the agent by sensing and monitoring the outdoor 
temperature and the indoor and heating system water 
temperature. Moreover, the goal concerns the desired indoor 
temperature. This is obtained by communication with the 
human(s) in the house (via the thermostat as a communication 
mean). Three important elements in domestic heating are: 

 The characteristics of the environment 
E.g., how is the temperature over the year, how much 
wind is there 

 The characteristics of the house 
E.g., how well isolated is the house, in how far it uses 
passive solar energy 

 The characteristics of  the heating system used 
E.g., efficency, performance depending on 
circumstances 

Heat pumps have often been proposed as efficient heating 
systems, as they use renewable heat sources such as ambient 
air, water or soil, and to run use only a fraction of this as 
electrical energy [9]. The heating capacity and efficiency of a 
heat pump strongly depends on the temperature of the ambient 
heat source used. During a frost period in a winter season this 
ambient temperature may become quite low, compared to 
milder periods [11], thus implying a lower performance in 
times when most heating is needed. More specifically, the 
efficiency of a heat pump is closely related to the difference 
between the ambient temperature (heat source) and the output 
temperature of the heat pump [11], in addition to some other 
factors (cf. [12, 13]). A commonly used measure on the 
performance of a heat pump by those manufacturers is referred 
as Coefficient of Performance (COP): which is the ratio of the 
heat delivered by the heat pump (energy output) and the 

electrical energy supplied to it (energy input), both measured in 
kWh [14]:  

	
	
	

																												 1  

The main concern over the COP is that it is calculated 
under a set of controlled conditions with defined input and 
output temperatures: for the European standards (EN 14511) it 
is to be tested at 7ºC external temperature and 20ºC indoor 
temperature, with 35ºC output (hot water) from the pump [14, 
15] (for American standards see [14]). These operating 
conditions are very different from real life situations: for 
example, outdoor temperature may vary widely and indoor 
temperature is always a subjective parameter that may includes 
a series of values over a day. This indication is far away from a 
heat pump’s actual efficiency where the both indoor and 
outdoor temperatures are dynamically changing over the time 
and therefore, consumers may continuously observe that a 
given heat pump is consuming more electricity than they had 
been expected or informed. Seasonal Performance Factor SPF 
is a different measure for the efficiency of a heat pump which 
utilizes both the outdoor temperature and output temperature of 
heat pump into the calculation (usually this is considered for a 
particuler period of time: for a season (e.g. winter) or a year) 
[14, 15].  It is the main indicator of the efficiency of a heat 
pump relatively with more accuracy. For air to water heat 
pumps in the marketplace, the Seasonal Performance Factor 
usually varies between 2 and 5 (e.g., for outdoor temperatures 
between -5°C and 15°C) [16]. Often it is around 3 (e.g., for 
ambient temperatures between 0°C and 10°C). Given its strong 
dependence on the outdoor temperature, SPF can be 
approximated by a mathematical function of the outdoor 
temperature Tod. For this paper a linear approximation is used 
(adopted from [10, 17]): 

7.5 0.1 																	 2  

Here Twater is the heating system water temperature. The 
values of the parameters (i.e., the 7.5 and 0.1) in this 
approximation are in accordance with empirical data from 
www.liveheatpump.com (see also [10, 18]). For example, 
based on this function for Twater = 50°C it holds: 

SPF(10)=3.5  SPF(0)=2.5 SPF(-10)=1.5 

The energy usage also depends on the energy demand of 
the house. To determine the energy demand, equation (3) can 
be used: 

, 	
24

t t dt 

24 :	 _ _ 								 3  
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Here Tod(t) is the outdoor temperature at time t, Tid(t) is the 

indoor temperature at time t, and Tid_avg is the average indoor 
temperature over a 24 hour, and ε is the energy loss per degree 
day (summation of individual deviations between the outdoor 
temperature Tod and a given indoor temperature Tid_avg in each 
time step over a 24 hours). The energy usage can be calculated 
from the energy demand tmed and SPF by equation (4); see 
also [10, 18]. By averaging over the day, with Tod_avg the 
average day temperature, this povides the energy usage for that 
day: 

	 	
	 _ _

7.5 0.1 _
					 4  

 
In summary, overall the following characteristics are used 

in this model: 
 The characteristics of the environment: 

Tod_avg over days 
 The characteristics of the house: 

Tid_avg over days, ε 
 The characteristics of  the heating system: 

Twater, 0.1, 7.5 
 
All these characteristics are represented in the model (4) for 

the heating agent. By tuning these model parameters to a 
specific situation, by simulation for the 365 days of a given 
year (given by the 365 day temperatures), the agent’s year 
usage can be determined. This is what will be discussed in the 
next sections. Note that the first two types of characteristics 
depend on the house itself and on its location on the globe 
(which determines its environment). The last type of 
characteristics is more general and independent of these, and 
therefore can be taken over from other situations using the 
same technical equipment, for example those described at 
www.liveheatpump.com. 

III. PARAMETER ESTIMATION FOR THE USAGE OF A HEAT 

PUMP 

To determine the annual energy demand of a given house 
over a certain time period, first it is necessary to determine the 
constant values of the parameters in the heating agent model 
expressed in equation (4) (i.e., ε and Tid_avg) with dynamic 
changes of Tod_avg. Besides, Twater is set at 50°C. For the 
parameter estimation, three months (mid October 2013 to mid 
January 2014) of collected empirical data on daily energy 
usage of the heat pump in the given house (Amsterdam area 
Netherlands) was used together with the collected average 
outdoor day temperatures (Tod_avg) of each day for that period. 
In the process of parameter estimation, the sum of squares of 
residuals was used as the error function to be minimized. A 
residual is the deviation of the calculated energy usage through 
the model (4) on particular selected values for the above 
mentioned parameters, from the actual energy usage of that 
given day. The goal of this approach is to minimize the above 

mentioned error (sum of squares of residuals) with appropriate 
values for the parameters (least square method [19]). To 
implement the least square method the ‘lsqcurvefit’ function in 
MATLAB was used which is specifically recommended for 
nonlinear curve fitting [19]; a summery of the implementation 
is in Prog. Code 1. 

It was found that the best values for the parameters are: 

 ε = 3.0160  
 Tid_avg = 17.6016°C 
 
Fig. 1 presents two graphs of the heat pump energy usage 

over average outdoor temperature (part a) and over days (part 
b) for both the real and predicted (with the mentioned 
parameter values) energy usage of the heat pump. These graphs 
clearly show that with the parameter values as determined, the 
predictions mostly align with the empirical data. 

 

% Collected data on energy usage of heat pump for 
domestic heating 
actualEnergyUsage = [ ... ]; 
% Collected data of average outdoor temperature 
tod_avg = [ ... ]; 
% To store time in days 
day = 1 : 1 : length(actualEnergyUsage); 
% Function F is: tmeu = (epsilon*(Tin_avg – 
Tod_avg)) / (7.5 - 0.1*(50 - Tod)). 
F = @(x,time)(x(1).*(x(2) - tod_avg(day))) ./  
    (7.5 - (0.1.*(50.0 - tod_avg(day)))); 
% Initial parameter values (can be any random 
values) 
x0 = [3.5, 17]; 
% To find the best values for parameters which 
makes the sum of squares of residuals the 
smallest 
[x, resnorm, ~, exitflag, output] = 
lsqcurvefit(F, x0, day, actualEnergyUsage); 

Prog. Code 1: MATLAB implementation for parameter estimation 

 
The cumulative absolute error (from the residuals) is 

0.2051. For all the different initial parameter value 
combinations that were tried, Prog. Code 1 always generated 
the same parameter value estimations, which gave some 
confidence that the obtained parameter values represent the 
global minimum. Thus, with these values it will be possible to 
predict the energy usage for the different days in any annual 
heating scenario for the given house with a higher degree of 
assurance. Though the current parameter estimation is based on 
three months of empirical data, this will be naturally extended 
in a real application mode. New data can be added at each day 
and the parameter estimation performed on the more extended 
data (for this the measurement of Twater value also can be 
periodically checked and used to eliminate the error from 
variable values of the model). Furthermore, it is clear that 
depending on the weather seasons (autumn, winter, spring, and 
summer), energy usage will be significantly different and when 
considering the annual energy usage it will be benificial to find 
this as a combination of different seasonal energy usage values, 
which is confirmed through this model.  
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Fig. 1.  Energy usage of the heat pump for the given empirical data set: (a) over the average outdoor day temperature, and (b) over the days 
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IV. PREDICTION BASED ON SIMULATION OF PAST YEARS 

The heating agent model described by equation (4) in 
Section 2 with the parameter values found in Section 3 enables 
to predict the energy usage for heating of any year for which 
the relevant average daily outdoor temperatures are given. As a 
first step, the model was used to analyse what the usages would 
have been for the last ten years. Moreover, it can be analysed 
whether in this time period a certain trend can be found in the 
temperature variation that may relate to climate change. If such 
a trend can be observed from the empirical outdoor temperature 
data, this will be useful for future prediction as well. 

The average outdoor temperature of each day of the years 
2004 to 2013 were obtained from the Royal Netherlands 
Meteorological Institute (KNMI) archives, in particular for the 
area near Amsterdam (Schiphol). Based on the daily 
temperature data the yearly energy usage for heating was 
determined by using the model described by (4). The results are 
shown in Fig. 2. The average year usage over these 10 years is 

2674 kWh. Moreover, it was found that there is an upward 
trend in these annual usages, so that roughly spoken there is an 
increase from 2500 kWh in 2004 to 3000 kWh in 2013 (see the 
straight line in Fig. 2), which gives a nonneglectable difference 
of 20%. 

To analyse the background of the observed trend over the 
years in usage numbers, also the daily temperatures have been 
inspected further. A trend in usages most probably reveals a 
trend in daily temperatures over the years. Indeed this turns out 
to be the case as is shown in Fig. 3. It was found that there is 
indeed a decreasing trend of the yearly average day outdoor 
temperature from about 11.0°C in 2004 to about 10.3°C in 
2013. Such a trend may indicate a (local) effect of climate 
change. 

The additional trend information found highlights the 
necessity of studying the trend of temperature variation more 
statistically; in the next section this will be worked out for 
future predictions. 
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Fig. 2.  Average outdoor temperature trend over the years 2004 to 2013 
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Fig. 3.  Average year energy usage for heating and trend over the years 2004 to 2013 
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Fig. 4. Variance of daily temperatures over the years 2004 to 2013
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Fig. 5. Graph of the daily temperature distribution for the past 10 years 

V. PREDICTION BASED ON SIMULATION OF FUTURE YEARS 

In this section, it will be discussed how the domestic energy 
usage in the future years (2014 to 2025) can be and actually 
was predicted by stochastic simulation of the heating agent 
model and its environment. To do this, first the distribution of 
daily temperature in previous years is analyzed, and the trend 
of changes was identified. In the next step, this information is 
used to predict daily temperatures over the future years and 
based on that the domestic energy usage in these years is 
predicted. 

A. Analysing Variation in Daily Temperatures in the Last 10 
years 

As mentioned in Section 4, the average of the daily 
temperature in past 10 years has an overall decreasing trend. 
Upon further inspection it was found out that in the same 
period the variance is following an upward trend. Both effects 
might be local effects of  climate change. Fig. 4 shows the 
variance of daily temperatures in the past 10 years and its 
upward trend. 

 
By further analysis of the frequencies of the occurrencies of 

the daily temperatures during last 10 years (2004 to 2013) it 
was found out that they can be approximated by a mixture 
model (cf. [20]) obtained as a weighted average of two Normal 
distributions N(μ1, σ1

2) and N(μ2, σ2
2): 

	 										0.29	 16.15, 8.84
	0.71	N 7.72,30.55 																																	 5  

The parameters of the above formula (weight, μ and σ2 for 
each normal distribution) were calculated by the Expectation 
Maximization (EM) algorithm described in [20]. Fig. 5 
represents as squares the frequencies of all occurrencies of 
daily temperatures in the past 10 years, obtained from empirical 
data. The proposed mixture model (5) is also depicted in this 
figure as a solid line. It should be noticed that this figure shows 

the diagram of 365 times the value obtained from (5), as the 
values of (5) are normalised at total sum 1, and here the sum is 
365 days in a year. 

B. Simulating Domestic Energy Usage for Future Years 

After analyzing the trends for average and variance of daily 
temperatures, and proposing a combined model for the 
frequency distribution of the daily temperatures in the previous 
10 years, these were used to predict daily temperatures and the 
domestic energy usages in the future years. To this end, for 
each year 365 random values were generated from the model 
providing the distribution of daily temperatures in that year. 
The used temperature distribution model for each year is like 
formula (5) (with the same weighs), but the mean and variance 
of each normal distribution are changed over the years 
according to the mentioned trends. It is clear that by having the 
daily temperature for a particular day, the energy usage of that 
day can be calculated from the formula (4). As a result, the 
energy usage of a year is estimated by summing up the 
estimation of energy usages in al of its days. This stochastic 
simulation was done 1000 times for the future years, from 2014 
to 2025. Fig. 6 shows the average and standard deviation of  
year energy usage according to these 1000 simulations for each 
year. 

VI. DISCUSSION 

This paper described an agent-based approach to estimate 
annual energy usage for heating when using an air to water heat 
pump. The important feature was that the prediction will be 
highly sensitive to the characteristics of three basic elements: 
the environment, the house, and the heating agent. These all 
have to be taken into account rather than only the given generic 
Coefficient of Performance (COP) of the heat pump as 
provided by the manufacturer, and average outdoor 
temperatures. Given the motivation and trends for net zero 
houses, such an approach will uplift the predictions of energy 
demands with more confidence. Therefore, house owners will 
be able to decide the specifications for other renewable energy 
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Fig. 6. Overview of simulation results for estimation of energy usage in future years 

systems (e.g., solar or wind energy production systems) to 
obtain a net zero house. To this end, the outcomes of this 
approach can be combined with other energy consumption 
processes in the house.  

More specifically, for the considered house, besides the 
heating per year around 1600 kWh is needed for other energy 
usages such as for the fridge, (dish) washing machines, light, 
computers, and cooking. From the outcomes in Fig. 6, it can be 
found that to become net zero with high probability for 2014 
the total amount of compensating produced energy in 2014 
should be at least 3400 kWh + 1600 kWh = 5000 kWh. For the 
location of the house in the Netherlands, this can be translated 
(based on a wellknown rule of thumb) into a photovoltaic solar 
energy production system of 5000/0.85 = 5900 Wp (Watt 
peak). When, for example, solar panels are used of 250 Wp, 
this implies that 24 of such panels are needed. However, when 
not only for 2014, but also for the years up to 2024 a net zero 
situation is aimed for, a bit more is needed (assuming that the 
1600 kWh will not be reduced over time). In that case, the 
expected maximal overall energy usage per year is 4000 kWh + 
1600 kWh = 5600 kWh. This can be translated into 5600/0.85 
= 6600 Wp needed, which can be obtained by 27 solar panels 
(of 100 cm x 165 cm) of 250 Wp. A more refined calculation 
might also take into acount on the one hand that solar panels 
may become slightly less efficient over the years (e.g., by 5 or 
10%), but on the other hand, also more advanced types of 
panels may be considered, for example of 270 Wp. 

In a further practical setup based on this approach, three 
agents and their dynamical environment can be considered: a 
heat pump based heating agent, a thermostat agent, an energy 
production agent, and their dynamical environment with its 
variation in outdoor temperatures and other elements. The 
heating agent should generate energy for heating each day, 
whereas the thermostat agent monitors indoor and outdoor 
temperature of these days in parallel thereby using necessary 
sensory equipments and access to data sources related to the 
location of the house. By enabling a communication among 
these agents and interaction with the environment, the approach 

described in this paper will enable them to determine parameter 
values representing characteristics that are particular to that 
domestic heating energy usage behavior. Furthermore, the 
thermostat agent will be able to analyse the trends of the 
outdoor temperatures by access to the relevant data sources 
specific to that location of the house. As shown in this paper, 
these agents together will be able to predict the annual energy 
usage for heating specific to that context, and based on this 
provide advice to the house owner. 

The approach discussed in the previous sections is agent 
based approach based on an agent specification by 
mathematical equations. Alternatively, the agent specification 
could be expressed in a rule-based format as is more common. 
However, semantically it would be the same agent.  One of the 
reasons for the agent paradigm is the future extention of this 
work that will include energy usage optimization by allowing a 
communication between these agents and also with other 
agents which are necessary with entities essential in energy 
management (including the behavior aspects of the human 
agents involved). Energy related systems are naturally complex 
systems where the logical stability of the system is always far 
away from equlibirium and it is necessary to engage from 
situation to situation with enough details of data through a 
continuouss monitoring, communication and tuning process for 
a rational optimisation. For example, when considering the 
temperature settings of a house from evening to morning (for 
the winter season) for a comfortable stay and sleep, it is a 
question at what time the heat pump should start and how to 
control the temperature values over time so that the most 
economical energy usage with a satisfactory level of comfort is 
obtained (see [21]). This types of questions can be answered 
through agent based approaches more easily and proactively. 
Having a smart household agent based energy management 
system will not only provide more realistic predictions for 
annual energy usage but also: 

 enable to construct detailed profiles of enery usage of 
a given household (which includes sufficient 
information to identify patterns of energy usage that 

110



may improved with various adaptation techniques 
such that energy usage will be minimized) 

 promptly identifies problems of devices (e.g. heat 
pump, soler panel, etc.) and to do the necessary 
repairs or replacements to fullfil the needs for a net 
zero house 

 extending this system with systems describing 
neigbouring houses in order to build a coherent 
system that includes mutual benefits (for example due 
to sudden energy demand needs it may possible to get 
the energy from others with low or zero cost, and 
further to move forward for a small scale wind plant 
that can be shared). 
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