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Abstract 

Rolling bearing is a common mechanical part which is subject to be damaged. It is important to 
monitor the condition of bearing. An effective mean is to extract faulty features of bearing from 
the vibration signal. In this paper, a method is introduced to realize intelligent classification of 
bearing state. The vibration signal is reconstructed into phase space by estimating the time delay 
and embedded dimension of time series. After reconstruction, fault classification is 
accomplished through normalized principal component analysis. It is testified that this method 
is effective for classifying fault of bearing by experiment and data analysis. 
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1. Introduction 

The rolling bearings are support elements in 
many kinds of rotating machinery. Many 
machines are working at variable rotating speed. 
The bearing faults always cause the structural 
damage of machine. The measure to identify the 
rolling bearing fault and judge its fault type 
intelligently is crucial in state monitoring of 
machine. The common way to diagnose the 
rolling bearing faults is the method of vibration 
signal analysis. Many techniques have been 
proposed to obtain features of vibration signals 
for fault diagnosis. A lot of researches focus on 
extracting the fault information from the 
vibration signal by time and frequency domain 
signal processing techniques. These methods 
include FFT, Envelope analysis, EMD, wavelet 
and wavelet packet method, 1-4 etc. Especially, 

the order tracking technique was proposed to 
solving the rolling bearing fault diagnosis at 
variable shaft rotational speed.5, 6 
But because of instantaneous variations in 
rolling ball movement, friction, damping and 
machine load, the rolling bearing is often 
characterized by non-linear behaviors. The 
non-linear analysis can provide a good 
alternative method to draw fault features from 
the vibration signals. A lot of non-linear 
methods, such as correlation dimension, 
Lyapunov exponent and approximate entropy, 
have been investigated.7,8 The results have 
shown that non-linear fault diagnosis is an 
effective method. But in real application, it is 
quite a difficult problem on how to decide the 
threshold of the non-linear features. Moreover 
the non-linear features are not only sensitive to 
fault, especially when the state of the bearing is 
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non-stationary, such as the variable rotating 
speed, the changing load, and the noise in the 
sampled signal, etc.  
This paper mainly discusses the intelligent fault 
diagnosis of rolling bearing at variable speed. 
The paper is organized as follows: Section 2 
addresses the main principles of methods 
including method of reconstructed phase space 
(RPS) and the normalized principal component 
analysis (PCA). The section involves the whole 
scheme of fault diagnosis. In Section 3, the 
vibration signal of different bearing status at 
various speeds is collected and analyzed using 
these methods. Moreover, selection of time 
delay, embedding dimension are discussed in 
this section. In Section4, the conclusions are 
presented finally. 

2. Main Principles and Methods 

2.1. Reconstructing phase space 

In order to extract the non-linear feature of 
vibration signal, the dynamic system embedded 
in time series need to be reconstructed. The 
dynamics can be built on the time series by 
reconstructing phase space which is same as 
original system according to Takens’s theorem. 
RPS method is very useful and has been widely 
applied to a variety of nonlinear signals 
processing applications. The basic idea of the 
RPS is that a scalar time series x(t) may be used 
to construct a time sequence of vectors that is 
equivalent to the original dynamics from a 
topological point of view. If the proper 
embedded dimension m and time delay τ can be 
chosen, based on N sample time series x={x(1), 
x(2), …, x(N-1), x(N)}, the phase space can be 
obtained: 

ܺሺݐሻ ൌ ሾݔሺݐሻ, ݐሺݔ ൅ ߬ሻ, … , ݐሺݔ ൅ ሺ݉ െ 1ሻ߬ሻሿ 
(1) 

 
Where the vector of ܺሺݐሻ is a point in the RPS, 
t=1, 2, …, N-(m-1)τ. The sufficient condition for 
topological equivalence of RPS with original 
system is that m is greater than twice the 
dimension of the original dynamic system. When 
the embedded dimension is not known, as is the 
case for most real systems, there are many 
methods to calculate m and τ. C-C method is 
adopted in this paper. The advantages of this 
method are that its robustness to noise for 
vibration signal, the value of embedded 

dimension m and time delay τ can be obtained 
simultaneously, there is no need to set the 
threshold value manually, and small sample data 
is needed. The principle of C-C method is 
described as follows.9 
The N sample time series x is divided into t time 
series which are disjoint: 

{x(1), x(t+1), x(2t+1), ……} 
{x(2), x(t+2), x(2t+2), ……} 
………… 
{x(t), x(2t), x(3t), ……} 

S(m, N, r, t) of each time series is defined as: 

ܵሺ݉,ܰ, ,ݎ ሻݐ ൌ ଵ

௧
෍ ቂܥ௦ ቀ݉,

ே

௧
, ,ݎ ቁݐ െ

௧

௦ୀଵ

௦ܥ ቀ1,
ே

௧
, ,ݎ  ቁቃ       (2)ݐ

Where C(m, N, r, t) is the correlation integral of 
time series: 

,ܰ,ሺ݉ܥ ,ݎ ሻݐ ൌ ଶ

ெሺெିଵሻ
෌ ݎ൫ߠ െ ݀௜௝൯ଵஸ௜ஸ௝ஸெ

 (3) 

Where ሻݔሺߠ	 ൌ ቄ
0, ݔ ൏ 0
1, ݔ ൒ 0,	  ݀௜௝ ൌ ฮ ௜ܺ െ ௝ܺฮ,	 

ݎ ൐ 0, ܯ  ൌ ܰ െ ሺ݉ െ 1ሻ߬,  and ‖ ‖  is 

infinite norm. When	ܰ → ∞, there is: 

ܵሺ݉, ,ݎ ሻݐ ൌ ଵ

௧
෌ ሾܥ௦ሺ݉, ,ݎ ሻݐ െ ,௦ሺ1ܥ ,ݎ ሻሿݐ

௧

௦ୀଵ
 (4) 

The maximum difference of S is defined as: 
∆ܵሺ݉, ሻݐ ൌ ,ሼܵሺ݉ݔܽ݉ ,ݎ ሻሽݐ െ ݉݅ ݊ሼܵሺ݉, ,ݎ  ሻሽ  (5)ݐ
 
The local maximum time corresponds to the zero 
of ܵሺ݉, ,ݎ ሻݐ  and the minimum of 	∆ܵሺ݉, ሻݐ . 
The time delay τ is the first local maximum time. 
The statistics is defined as: 

ܵ௖௢௥ሺݐሻ ൌ ∆ܵሺݐሻ ൅ หܵሺݐሻห        (6) 

Where ∆ܵሺݐሻ	and	ܵሺݐሻ  are the averages 

of	∆ܵሺݐሻ	and	ܵሺݐሻ. The time window	߬௪ ൌ ݉߬ 

corresponds to the minimum of 	ܵ௖௢௥ሺݐሻ . In 

practical application, 	
ఙ

ଶ
൑ ݎ ൑ ߪ2 , σ is the 

standard deviation of time series, ܰ ൒ 500 and 

N=3000 is applied for vibration signal time 

series.  

2.2. Normalized principal component 

analysis 

The fault of rolling bearing causes the change of 
dynamics of mechanical system. Phase trajectory 
of dynamical systems could be obtained by 
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phase spacer construction of vibration signal 
time series. The different features of signals 
generated by topologically different systems 
could be drawn out through RPS. In comparison 
with the eigen-value, such as correlation 
dimension, Kolmogorov entropy and Lyapunov 
exponents, the phase trajectory could describe 
completely the reconstructed dynamical system, 
especially for the pseudo-random time series of 
rolling bearing vibration signal. In this paper, the 
principal components of RPS are used to 
describe the characteristics of multi dimension 
phase trajectory in phase space.10 The advantage 
of this method is that it is applicable to time 
series contaminated by noise which really exist 
in mechanical signal.  
From the N sample time series and the RPS X(t), 
the phase trajectory of the dynamics system can 
be drawn by the matrix Y:  

௡ܻൈ௠ ൌ ଵ

௡భ/మ
൦

ܺሺ1ሻ
ܺሺ2ሻ
⋮

ܺሺ݊ሻ

൪          (7) 

Where ݊ ൌ ܰ െ ሺ݉ െ 1ሻ߬. And the con-variance 
matrix A is: 

௠ൈ௠ܣ ൌ ௡ܻൈ௠
் 	 ௡ܻൈ௠         (8) 

 
Then the eigen-values ߣ௜ሺ݅ ൌ 1,2,⋯݉ሻ and the 
eigen-vectors ௜ܷሺ݅ ൌ 1,2,⋯݉ሻ  of matrix 
௠ൈ௠ܣ  can be calculated. ߣ௜  and ௜ܷ  are the 
principal components. The eigen-values are 
listed in descending order: 

ଵߣ ൒ ଶߣ ൒ ⋯ ൒  ௠ߣ

 
The principal component spectrum can be drawn 
from	ߣ௜. The principal component spectrum of 
noise is horizontal. The characteristics of the 
dynamics system can be extracted from the 
maximal principal components excluding the 
horizontal minimal components. The scale of 
vibration signal is different at various rotating 
speed. In order to classify the fault intelligently, 
the principal components must be normalized. 
The sum of ߣ௜ is: 

ߛ ൌ ∑ ௜ߣ
௠
௜ୀଵ              (9) 

 
The normalized principal components are: 

௜ߣ
௡ ൌ ఒ೔

ఊ
                (10) 

ଵߣ
௡, ଶߣ		

௡,⋯	 can be used as classification 
components. So the normalized principal 
components analysis can be utilized for the 

classification of fault in rolling bearing with 
various speeds, loads and noise. 

3. Experiments and Discussions 

In order to testify the validity of method 
proposed above, experimental data were 
collected from rolling bearing of an 
experimental mechanical system. The SKF 
rolling bearings was applied to support the 
rotating shaft. An accelerometer was mounted on 
the housing near the rolling bearing to acquire 
the vibration signals of the bearing. Single point 
faults were introduced to the test bearings using 
electro-discharge machining. The vibration 
signal was sampled from bearing at various 
speeds. The class of data corresponds to the 
bearing conditions respectively: normal bearing, 
and outer race fault, etc. 
The vibration signal time series of bearing with 
different faults and various rotating speeds are 
shown in Fig. 1. The sample rate is 24k Hz. (a) 
is the normal bearing at 1000rpm, (b) is the 
normal bearing at 2500rpm, (c) is the normal 
bearing at 4500rpm, (d) is the outer race faulty 
bearing at 2000rpm, (e) is the outer race faulty 
bearing at 3000rpm, (f) is the outer race faulty 
bearing at 4500rpm.  
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Fig.1. The vibration signal time series of bearing with 

different faults and various rotating speeds 

 
At first, the phase space is reconstructed. The 
embedded dimension m and time delay τ are 
obtained simultaneously through C-C method. 
The result of C-C method is shown in Fig. 2. 
Here the structure of RPS is that embedded 
dimension m is set to 26 and time delay τ is set 
to 6.  

 

Fig.2. The result of C-C method 

 

Then the principal components can be 
calculated. The principal component spectrum of 
vibration signal is shown in Fig. 3. (a) is the PCS 
of normal bearing at 1000rpm, (b) is the PCS of 
normal bearing at 2500rpm, (c) is the PCS of 
normal bearing at 4500rpm, (d) is the PCS of 

outer race faulty bearing at 2000rpm, (e) is the 
PCS of outer race faulty bearing at 3000rpm, (f) 
is the PCS of outer race faulty bearing at 
4500rpm. The similarity of same bearing at 
various speeds is shown in the PCS, shown in 
(a)-(c) normal bearing and (d)-(f) faulty bearing. 
And the components following the second 
component increase along with increasing speed. 
The difference between the normal bearing and 
faulty bearing is clear. The first component is far 
larger than the other components in the PCS of 
normal bearing. And the second component is 
almost equal to the first component in the PCS 
of outer race faulty bearing. The features of the 
dynamics system can be drawn from the 
maximal principal components.  
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Fig.3. The principal component spectrum 

 
12 samples of normal and fault bearing at 
different speed are tested respectively. After 
normalization, principal component analysis 
method is implemented in 3 dimension space. 
The plot of the first three principal components 
(PCs) of the clustering results is shown in Fig. 4. 
Almost all samples are correctly classified to the 
corresponding clusters by the method.  

 

Fig. 4. Scatter plot of principal components for 
clustering result 

 

4. Conclusions 

A method that integrates RPS and NPCA is 
presented in this paper to implement detection 
and classification of bearing faults. 
Reconstruction of vibration signal in phase space 
is made through C-C method. Then normalized 
principal components analysis is applied to 

extract the features from the phase trajectory of 
faulty bearing. It is proved that this method is 
effective for classifying fault of bearing by 
experiment and data analysis. But in the 
experiment, the classification of the faulty 
bearing through principal components is difficult 
at the speed lower than about 1000rpm. And 
vibration signals adopted here are only single 
point fault. So the work in the next step could be 
focused on classification for the more variable 
rotating speed and the multiple points bearing 
fault.  
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