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Abstract 

Burst firing in subthalamic nucleus (STN) has been suggested to be highly associated with the motor symptoms in 
Parkinson’s disease, which result from a loss of dopamine. Although it is clinically very important to clarify the 
mechanism underlying the bursting dynamics, complex interactions between STN and other brain areas make it 
difficult to understand. In anesthetized rats, STN neurons exhibit low-frequency ( 1 Hz) bursts, which are 
synchronous with cortical slow oscillations and are significantly strengthened by dopamine depletion. To reproduce 
these low-frequency bursts, we examine a conductance-based model of an STN neuron that includes NMDA-type 
glutamatergic inputs reflecting cortical oscillations. In addition, the neuron model contains GABAergic inhibitory 
inputs, which are assumed to result from the activities of globus pallidus (GP). We show that the STN neuron 
model can reproduce low-frequency bursts synchronized with cortical activity, in the presence of GABAergic 
inhibition. In addition, we demonstrate that increased GABA activity leads to enhanced burstiness whereas 
increased NMDA conductances mainly augment STN firing rate. The induction of burst firing additionally 
decreases the coherence between STN and cortical activities. These results may give insights into how the 
complicated interactions between the STN, cortex, and GP can modulate the dynamics of bursting oscillations in 
the basal ganglia. 
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1. Introduction 

The subthalamic nucleus (STN) is a key component 
of the basal ganglia, a group of subcortical brain nuclei 
involved in motor control.1 Bursting oscillations in the 
STN are suggested to be highly associated with motor 
disabilities in Parkinson’s disease.2,3 Although it is 

clinically important to clarify the mechanisms 
underlying bursting dynamics, complex interactions 
between STN and other brain regions complicate efforts 
to do so.  

Experiments using anesthetized rats have shown that 
STN neurons exhibit low-frequency bursts that are 
synchronized with cortical slow-wave activity ( 1 
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Hz).4,5 Cortical ablation abolished these burst 
oscillations and produced nearly regular firing in STN. 
This observation implies that the cortical inputs to STN, 
which are transmitted through the hyperdirect 
corticosubthalamic pathway, play a critical role in 
maintaining the oscillatory component of STN activity. 
Furthermore, in the case of pharmacological dopamine 
depletion, a condition that mimics a parkinsonian state, 
the firing rate of STN neurons was significantly 
increased to more than twice its original value.5 The loss 
of dopamine also evoked low-frequency oscillations in 
the GABAergic interneurons in globus pallidus (GP), 
which are reciprocally connected with STN.5 These data 
may suggest that the low-frequency bursting in STN is 
considerably modulated by GABA inhibition originating 
from GP interneurons, in addition to oscillatory inputs 
from the cortex. 

In this study, we simulate a model STN neuron to 
study how STN bursts depend on cortical inputs, 
mediated by NMDA currents, and GABAergic 
inhibition. In the model, synaptic NMDA currents are 
activated by slow cortical oscillations consisting of 
active phases of high-frequency activity alternating with 
inactive quiescent phases, as observed in experiments.6-8 
We examine the changes in burst properties that arise 
with changes in the magnitudes of both the NMDA and 
GABA conductances. We show that enhanced 
GABAergic inhibition leads to stronger burstiness while 
enhanced NMDA activation mainly acts to increase 
STN firing rate. In addition, the occurrence of strong 
bursts is correlated with a decrease in coherence 
between the STN and cortical activities. These results 
may provide insights on how the complex interaction 
between STN and other associated brain areas 
modulates dynamical properties of bursting oscillations 
in the basal ganglia. 

2. Methods 

2.1 STN neuron model 
We constructed a conductance-based model STN 

neuron including synaptic NMDA and GABA currents. 
The NMDA conductance is stochastically activated by 
the arrival of cortical inputs, while the GABA 
conductance has a temporally constant magnitude. The 

membrane potential V  of the model neuron is 

described as 

leak Na K T Ca AHP

dV
C I I I I I I

dt
          

               DIC NMDA GABAI I I   , (1) 

where leakI  is a leak current; NaI  and KI  are voltage-

gated Na+ and K+ currents, respectively, which are 

required for action potential generation; TI  is a low 

threshold T-type Ca2+ current; CaI  is a high-threshold 

Ca2+ current; and AHPI  is a Ca2+-activated K+ current. 

DICI  is a depolarization-activated inward current 

(DIC), which is activated by the intracellular Ca2+ 

entering through NMDA receptors (NMDARs).9 NMDAI  

and GABAI  are the NMDA and GABA currents, 

respectively. The active currents other than NMDAI  and 

GABAI  were taken from previous models of an STN 

neuron.9,10  The NMDA current is described as  

( )NMDA N N N NMDAI g m h V V  , (2) 

where Ng  is the peak conductance, NMDAV  is the 

associated reversal potential, and Nm  and Nh  are the 

activation and inactivation variables, respectively. The 

variable Nm  is governed by a pair of first-order 

equations as follows.11 

  (1 )NN N
m N N N

m

dm m
x m

dt



   ,  (3) 

  (1 ) ( )N excN N
x N j N

j x

dx x
x t t

dt
 


    . (4) 

Here, exc
jt  denotes the arrival time of the j th cortical 

input (see below). N
m  and N

x  are the time constants to 

regulate the decay and rise time constants of NMDA 
activation. The GABA current follows 

  ( )GABA G GABAI g V V  ,  (5) 

where Gg  is the conductance and GV  is the reversal 

potential. The parameters used in the model are selected 
to reproduce various firing characteristic of STN 
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