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Abstract 

This paper investigates the tracking control of a two-wheeled mobile robot in both kinematic and dynamic models. 
Differential flatness and PD-spectral theory are used for controller design. Based on differential flatness, the 
original system is transformed via a state prolongation and a state transformation into a normal form to apply 
feedback linearization. Then using PD-spectral theory, variable poles of tracking error dynamics are assigned to 
realize the stability of trajectory tracking. Simulation results are presented to demonstrate the effectiveness of the 
proposed method. 
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1. Introduction 

Wheeled mobile robots have been proven to be one of 
the most active areas of research since they are much 
useful in varieties of applications ranging from 
industrial settings, to military systems, to home robotics, 
etc. One of the main lines of research is the trajectory 
tracking problem, which is concerned with driving a 
mobile robot as close as possible to a desired explicit 
trajectory. And the tracking control approaches include 
backstepping,1 sliding mode control,2 linearization,3 
neural network-based control,4 fuzzy control5 and 
differential flatness-based control6-8 which is also used 
in this paper.  

Differential flatness has been introduced by Fliess et 
al.9 It is a very useful tool for nonlinear controller 
design. Roughly speaking, a system is differentially flat, 
if there exists variables of the same dimension as inputs, 
called flat output, such that states and inputs can be 
algebraically expressed in terms of flat output and its 
derivatives. Moreover, this mapping is invertible, and 

the system is equivalent to a linear one. If the desired 
trajectory of flat output is given, then by performing a 
feedback linearization and designing a time invariant 
controller for the linearized system around the desired 
trajectory, stable tracking error dynamics are achieved. 
Kinematic model and dynamic model of a two-wheeled 
mobile robot have been proven to be differentially flat 
by choosing the center position of the wheel axle of the 
robot as the flat output. In Refs. 7, 8, controllers are 
designed in this scheme. However, in these controllers, 
the parameters of the tracking error dynamics are 
constant, which means that the convergence speed of 
tracking error is fixed, and this brings limitation for this 
method. 

In this paper, the use of PD-spectral theory of linear 
time-varying (LTV) systems is proposed for tracking 
controller design. The PD-spectral theory has been 
developed by Zhu,10 which can be seen as a natural 
extension of the conventional eigenvalue-eigenvector 
theory for linear time-invariant (LTI) systems. After the 
state transformation based on differential flatness, the 
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application of PD-spectral theory becomes much easier. 
By assigning time-varying “poles”, more generalized 
tracking error dynamics can be obtained. And the poles 
can be changed at any time as we want. 

The rest of this paper is organized as follows: In 
section 2, the kinematic model and dynamic model of a 
two-wheeled mobile robot are derived and analyzed 
with differential flatness. Section 3 presents the design 
of control law in both models. Simulation results are 
shown in section 4. Finally, concluding remarks are 
given in section 5. 

2. Models of Two-wheeled Mobile Robot with 
Differential Flatness 

2.1. Kinematic model 

 
Fig.1. The configuration of a two-wheeled mobile robot with 
no slip. 

Fig. 1 shows that the robot's configuration in Cartesian 

coordinates is given by [ , , ]Tx y q where ( , )x y  is the 

coordinates of the center of the wheel axle and   is the 
heading angle of the robot. With the assumption of no-
slip condition at the wheel contact points, the velocity of 
the wheel centers are parallel to the heading orientation. 
Then the kinematic model can be written as 

cos 0

( ) sin 0

0 1

S
v






 
          

q q v                        (1) 

where, v  is the heading speed  and   turning speed. 
To outline how the kinematic model of the two-

wheeled mobile robot is differentially flat, we need to 
select suitable flat outputs and express all state variables 
and inputs in terms of the flat outputs and their 
derivatives. The dimensions of flat outputs should be 
equal to that of the inputs. Here, we can choose the 

center position of the wheel axle ( , )x y  as the flat 

outputs 1 2( , )z z . 

With the chosen flat outputs, the states can be 

expressed as 1x z , 2y z , 2

1

arctan
z

z
 




, and the two 

inputs can be written as 2 2
1 2v z z   , 1 2 1 2

2 2
1 2

z z z z

z z






   

 
. 

It can be noticed that the expression of state   contains 

the first order derivatives of both the flat outputs, 1z  and 

2z . According to differential flatness theory, the system 

(1) need to be extended to 4 dimensions. Apply one 
prolongation of v  by considering it as an additional 
state, then the extended system is given by 

1

2

cos ,

sin ,

x v v u

y v u



 

 

 

 


                          (2) 

where 1u  and 2u   are new inputs of the extended 

system. The new inputs can be calculated as 

1 1 2 2 1 2 1 2
1 2 2 22 2

1 21 2

, .
z z z z z z z z

u u
z zz z

 
 



       

  
          (3) 

The extended system (2) can be transformed via a state 

transformation 1 2 1 2[ , , , ] [ , , , ]T Tx y v z z z z    into a 

normal form 

2 22 2
1 1 2 1 2

1 1

2 22 2
2 1 2 1 2

1 1

cos(arctan ) sin(arctan )

sin(arctan ) cos(arctan ).

z z
z u u z z

z z

z z
z u u z z

z z

  

  

 
  

 

 
  

 

   (4) 

Since the expressions of new inputs 1u  and 2u  in (3) 

are derived from the system equations (2), the state 
transformation ensures that (3) satisfies the equations 
(4). By replacing 1z  and 2z  in (3) with xu  and yu ,  

respectively: 

1 2 1 2
1 2 2 22 2

1 21 2

,x y y xz u z u z u u z
u u

z zz z

 
 



   

  
          (5) 

where xu  and yu  are parameters to be designed, and 

substituting (5) into the system equations (4), one gets 

1 2, .x yz u z u                           (6) 

Actually, if only the states of the original system (2), 

[ , , , ]Tx y v  , can be estimated, using the relationship of 

state transformation, the inputs (5) can be rewritten as 

1 2cos sin , ( cos sin ) / .x y y xu u u u u u v         (7) 
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2.2. Dynamic model 

By ignoring the mass of the wheels, the equations of 
motion can be derived using Euler-Lagrange method as 

( ) ( , ) ( ) ( )TM C E C   q q q q q q q    (8) 

where 
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



 (9) 

Here, m  is the robot mass, I  the moment of inertia of 

the robot about its center of mass, d  the distance 
between the center of mass and the center of the wheel 
axle, r  the wheel radius, b  half distance between the 

two wheels, l  and r  the motor torques on the wheels, 

and   the constraint force. 

By differentiating (1), one gets S S q v v  . Then 

by substituting q  into (8), pre-multiplying by TS , and 

using the property 0T TS C  , one can have 
1 1( ) ( ) ( ) .T T T TS MS S MS CS S MS S E    v v   (10) 

This can finally be calculated as ( )A B v v τ , where 

2

2
2 2

1 1

( ) , .

( ) ( )

d
m r m r

A Bdm v b b
d m I r d m I r d m I




 
   
             

v
 

After introducing an input transformation 1 2[ , ]Tu uu  

( )A B v τ , the dynamic model can be written as 

( ) , .S q q v v u    (11) 

Here, we can also choose the center position of the 
wheel axle ( , )x y  as the flat outputs 1 2( , )z z  and then all 

state variables and inputs can be expressed in terms of 
the flat outputs and their derivatives. The expression of 
state   contains the second order derivatives of both 

the flat outputs, 1z  and 2z , which means that the system 

(11) need to be extended to 6 dimensions so that it can 
be transformed into a normal form via a state 
transformation. On applying one prolongation of 1u , the 

extended system is given by 

1 1 1

2

cos

sin

x v v u u u

y v u



   

  

  

  

  
             (12) 

where 1u  and 2 2u u  are new inputs of the extended 

system. The state transformation can be written as 

1 1 2 1 2 1 2[ , , , , , ] [ , , , , , ]T Tx y v u z z z z z z       . Now, we 

calculate the third order derivatives of the flat outputs 
directly using (12) as 

1 1

2 2

z u
C D

z u

   
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   




                        (13) 

where 
2

1
2

1

cos sin2 sin cos
, .

sin cos2 cos sin

vu v
C D

vu v

    
    

    
       

(14) 

By replacing 1z  and 2z  with xu  and yu , respectively, 

this yields 

1 1

2

( ).x

y

uu
D C

uu
   

   
   




                (15) 

3. Design of Control Law 

3.1. Introduction of PD-spectral theory10 

Consider SISO LTV systems represented by the n th-
order scalar LTV dynamical systems of the form: 

( ) ( 1)
2 1( ) ( ) ( ) 0.n n

ny t y t y t y           (16) 

It can be conveniently represented as { } 0D y   using 

the scalar polynomial differential operator (SPDO) 
1

2 1( ) ( ) ( )n n
nD t t t               (17) 

where /d dt   is the derivative operator. The 
factorization of SPDO can be represented as 

2 1( ( )) ( ( ))( ( ))nD t t t              (18) 

where a collection 1{ ( )}n
k kt   is called a series D-

spectrum(SD-spectrum) for D  and an n-parameter 

family 1, 1{ ( ) ( )}n
k k kt t    is called a parallel D-

spectrum(PD-spectrum) for D , where 1, ( )k t  are n 

particular solutions for 1( )t  satisfying some nonlinear 

independent constrains. Actually, { ( )ky t   

1exp( ( )d )}n
k kt t   constitutes a fundamental set of 

solutions to { } 0D y  . 

The solution to { } 0D y   is uniformly 

asymptotically stable if 
(i) all PD-eigenvalues are of polynomial order or 

slower, that is, an integer 0m   exists such that 

( )
lim 0k

mt

t

t




 ; 
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(ii) the extended means of real parts of PD-eigenvalues, 

that is 
0

0

1
em(Re ( )) lim Re ( )d

t T

k ktT
t t t

T
 




  , are all 

negative. 

3.2. Control law of kinematic model 

If the desired trajectory of flat outputs 1 2( , )z z  are given 

by 1 2( ( ), ( ))d dz t z t , tracking error can be introduced as 

1 11 2 21 1 1 1 1 2[ , , , ] [ , ,T
d de e e e z z z z z   e    2 2 2, ]T

d dz z z   . 

Using (6), parameters xu  and yu  can be designed as 

1 1 1 2 11

2 1 2 2 21

( ) ( )

( ) ( )
x d x x

y d y y

u z t e t e

u z t e t e

 
 

  

  




           (19) 

which yields 

1 2 1 1 1

2 2 2 1 2

( ) ( ) 0

( ) ( ) 0.
x x

y y

e t e t e

e t e t e

 
 

  

  

 

 
               (20) 

PD-spectral theory is used to design these time-varying 
control gains to ensure the error dynamics to be 
uniformly asymptotically stable. 

First appropriate time-varying PD-eigenvalues 
which satisfy (i) and (ii) are designed as 1  and 2 . 

Then corresponding SD-eigenvalues 1  and 2  can be 

calculated as 1 1  , 2 1
2 2

2 1

 
 

 


 


 
. Using (18), 

we obtain 1 2 2 1
1 2 1 1 1 2

2 1

( )x t
   

     
 


   


  , 

2 1
2 2 1 1 2

2 1

( )x t
 

    
 


      


 

. 1 ( )y t  and 

2 ( )y t  can be designed in the same way. 

3.3. Control law of dynamic model 

Similarly, if the desired trajectory of flat outputs are 
given by 1 2( ( ), ( ))d dz t z t  and tracking error 

1 11 12 2 21 22[ , , , , , ]Te e e e e e e 1 1 1 1 1 1 2[ , , ,d d dz z z z z z z     

2 2 2 2 2, , ]T
d d dz z z z z      , then parameters xu  and yu  

can be designed as 

1 1 1 2 11 3 12

2 1 2 2 21 3 22

( ) ( ) ( )

( ) ( ) ( ) .
x d x x x

y d y y y

u z t e t e t e

u z t e t e t e

  
  

   

   




    (21) 

By designing appropriate PD-eigenvalues 1 , 2  and 

3 , SD-eigenvalues can be calculated as 1 1  , 

2
2 2

2

V

V
  

 , 3 2
3 3

3 2

V V

V V
   

 
 where 2 2 1V    , 

3 1 2 3
2 2 2
1 1 2 2 3 3

1 1 1

detV   
     

 
   
      

. and then control 

gains are obtained by 1 3 2 1 3 1 2 1( )x t              

2 1 1    , 2 3 2 3 1 2 1 2 1( ) 2x t              , 3 ( )x t  

3 2 1      . 1 ( )y t , 2 ( )y t  and 3 ( )y t  can be 

designed in the same way. 

4. Simulation Result 

The desired trajectory is given by 1 ( ) 3.75dz t    
4 3 2 210 1.125 10 0.15 (m)t t t    , 4 3

2 ( ) 3 10dz t t     
3 29 10 (m)t , over [0, 20](s)t  .  

In the kinematic model, initial states are set as 
[ (0), (0), (0), (0)] [ 0.1,0.1,0.05, 0.5]x y v     . It should 

be pointed out that the additional state v  is in the 

controller. PD-eigenvalues are selected as 1 (1     

0.25 ) (1 0.25 )t t i  , 2 (1 0.25 ) (1 0.25 )t t i      . Fig. 

2(a) shows that the mobile robot gradually converges to 

Fig.2. Desired trajectory and tracking trajectory: (a)Kinematic 
model. (b)Dynamic model. 

Fig.3. Kinematic model: (a)Tracking error 1e . (b)Tracking 

error 2e . (c)Heading speed v . (d)Turning speed  . 

Published by Atlantis Press 
Copyright: the authors 

15



 Wheeled Robot’s Tracking Control 
 

 

Fig.4. Dynamic model: (a)Tracking error 1e . (b)Tracking 

error 2e . (c)Transformed input 1u . (d)Transformed input 2u . 

the desired trajectory and finally moves along it. Fig. 3 
demonstrates the tracking errors 1e , 2e   which converge 

to zero and the control inputs v  and . 

In the dynamic model, 1[ (0), (0), (0), (0), (0),x y v u  

(0)] [ 0.1,0.1,0.05, 0.5,0,0]    .  Controller is designed 

with PD-eigenvalues 1 (1 0.25 ) (1t      0.25 )t i , 

2 (1 0.25 ) (1 0.25 )t t i      , 3 2 0.25t    . Fig. 2(b) 

shows the tracking trajectory and Fig. 4 depicts the 
tracking errors and the transformed inputs 1u  and 2u . 

5. Conclusion 

In this paper, we have presented a novel method for 
trajectory tracking control of a two-wheeled mobile 
robot in its kinematic model and dynamic model. Based 
on differential flatness, the systems can be transformed 
into normal forms to use feedback linearization. The 
application of PD-spectral theory ensures the stability of 
the tracking error dynamics and establishes adjustable 
poles to change as we want.  
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