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By assuming that an underlyingGaussian-LogGaussian (GLG) random field clipped to yield binary spatial
data, we propose a new model which provides flexibility in capturing the effects of heavy tail in latent variables.
For our analysis, we adopt a Bayesian framework and develop a Markov chain Monte Carlo (MCMC) algorithm
to carry out the posterior computations. Specifically, we introduce auxiliary variables and employ the slice
sampling method to simulate from the full conditional distribution of components which does not define a
standard probability distribution. Then, the predictive distribution at unsampled sites is approximated based on
acquired samples. Finally, we illustrate our methodology considering simulation and real data sets.
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1. Introduction

A popular tool for analyzing binary spatial data involves the introduction of latent variables. Based
on clipping a Gaussian random field at a fixed threshold, [3] proposed Bayesian prediction of binary
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data. Consideringasimilar framework, [6] also provided composite likelihood approach. [2] demon-
strated how the non-identifiable spatial variance parameter can be used to create data augmentation
MCMC algorithms in Bayesian probit regression model.

An advantage of the latent variable representation is that the dependency structure can be
described in terms of correlation of the latent continuous variables. This simple structure also facil-
itates generalizations to more complicated data structures. [7] and [10] extended this approach for
analyzing ordered categorical spatial data and multivariate mixed discrete and continuous responses,
respectively. Despite its mathematical convenience and nice statistical properties, a standard but pos-
sible restrictive assumption in modeling of spatial binary data is that the latent random variables are
taken to be normal. Based on a process with heavy tailed finite dimensional distributions, [9] and [4]
introduced the Gaussian-Log Gaussian (GLG) process to reduce unrealistic normality assumption
in spatial models.

The objective of this paper is to propose a modelling strategy for the analysis of spatially cor-
related binary responses by incorporating a GLG random field as probability model for the latent
variables. A Bayesian inference approach for prediction of response variable at new locations is
developed using MCMC methods. More specifically, adopting the Gibbs sampling algorithm, we
must draw samples from the joint posterior distribution of model parameters and latent variables.
With regard to problems remain with convergence and mixing properties of Metropolis-Hastings
algorithm, we will introduce auxiliary variables and employ the slice sampling method ( [8]) to
simulate from full conditional distribution of latent random variables. Actually, this is a technique
of generating from arbitrary variables by introducing an auxiliary variable and sampling from two
or more uniform distributions. Finally, we apply this method in order to analyze a data set related
to soil pollution samples in an area located in North of Iran.

The rest of the article is organized as follows. In Section 2 we state the model and discuss its
main features. We describe our model fitting and posterior predictive inference in Section 3. The
methodology is illustrated with two examples in Section 4. Finally, we conclude in Section 5.

2. The Model

Let Z = (Z(s1), · · · ,Z(sn)) be a single realization from a binary random fieldZ(·) = {Z(s);s ∈
D ⊆ ℜd}, d ≥ 1, atn different locationss1, · · · ,sn. We assume that the binary random field,Z(s), is
created by clipping a GLG random field,W (s), at the thresholdε, defined over the region of interest,
D, meaning

Z(s) = I{W (s)>ε}, s ∈ D (2.1)

whereI denotes the indicator function and

W (s) = f′(s)β +
ε(s)

√

λ (s)
, (2.2)

with ε(s) and η(s) = logλ (s) are independent Gaussian random fields,β ∈ ℜk is unknown
coefficient vector andf′(s) = ( f1(s), · · · , fk(s)) denotes a vector ofk known functions of the
spatial coordinates. In this setting, ifW = (W (s1), · · · ,W (sn)) and η = (η(s1), · · · ,η(sn)) =
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(lnλ (s1), · · · , lnλ (sn)), then

W |η ∼ Nn(Xβ ,σ2Λ− 1
2Cθ1

Λ− 1
2 ),

η ∼ Nn(−
ν
2

1,νCθ2
), (2.3)

where X = (f(s1), · · · , f(sn))
′
n×k, Λ = diag(λ1, · · · ,λn) with λi = λ (si), the scale parameterσ2

defined inℜ+, andCθ1
is then× n correlation matrix withCθ1

(||si − s j||) as its(i, j)th element;
Cθ1

(d) is also a valid correlation function of distanced, parameterized by a vectorθ1. Similarly,Cθ2

is defined. Finally,1 is a vector of 1’s andν ∈ ℜ+ is a scaler parameter. We can easily see that the
log-Gaussian assumption for the random fieldλ (·) implies a lognormal distribution forλi = λ (si)

with E(λi) = 1 andVar(λi) = eν −1.

Based on (2.3), the likelihood function of the observed data is given by

f (z|β ,θ1,θ2,σ
2
,ν) =

∫

A(z1)
· · ·

∫

A(zn)

∫

ℜn
+

f n
N(w|Xβ ,σ2Λ− 1

2Cθ1
Λ− 1

2 )dPηdw,

A(zi) =

{

(−∞,ε], if zi=0,
(ε,∞), if zi=1,

(2.4)

where f n
N(w|.) denotes the probability density function of an-variate normal distribution. With

regard to the likelihood function, the parameters are not identifiable. To avoid this problem, we
fixed σ2 = 1 andε = 0 as proposed by [3] and [7].

The third simplification restricts the spatial correlation function to involve only one parameter,
thus restrictingθ1 andθ2 to a scalar. In fact, [3] points out that after clipping the continuous random
field, the binary data contains no information about the smoothness parameter, even if we could
observe the complete binary realization rather than a finite number of locations. Thus, we use an
isotropic exponential correlation function given as

Cγ(d) = exp(−
d
φ

) = γd
, φ > 0,γ = exp(−φ) ∈ (0,1),

whereγ is the range parameter and controls how fast the correlation decays with distance. Under this
assumption our unknown model parameters areβ ,γ1,γ2 andν , being now (likelihood) identifiable.

3. Bayesian Analysis

In order to complete the Bayesian model specification, we assume that the parameters are, priori,
mutually independent and use proper priors for all of them. Hence, the prior have a density function
of the form

π(β ,γ1,γ2,ν) = π(β )π(γ1)π(γ2)π(ν),

where

π(β ) = f k
N(β |0,c1Ik),

π(ν) = fIG(ν |c2,c3),

π(γ1) = π(γ2) = U(0,1). (3.1)
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fIG(·|s,r) denotes the probability density functions of inverse gamma distributions with shapes
and rater. By adopting very large values for scale hyperparameterc1 and very small values for
hyperparametersc2 andc3, vague prior distributions are obtained forβ andν . To implement MCMC
simulation, we explore the complete posterior conditional distributions as:

π(β |z,w,η ,γ1) = Nk(Σβ X ′Λ
1
2C−1

γ1
Λ

1
2 w,Σβ ),

π(W |z,η ,β ,γ1) = Nn(Xβ ,Λ− 1
2Cγ1

Λ− 1
2 )

n

∏
i=1

I{wi∈A(zi)}
,

π(η |z,w,β ,γ1,γ2,ν) ∝
n

∏
i=1

λ
1
2

i
exp(−

1
2
(w−Xβ )′Λ

1
2C−1

γ1
Λ

1
2 (w−Xβ )),

× exp(−
1

2ν
(η +

ν
2

1)′C−1
γ2

(η +
ν
2

1)),

π(ν |z,η ,γ2) ∝ f (η |ν ,γ2)π(ν),

π(γ2|z,η ,ν) ∝ f (η |ν ,γ2)π(γ2),

π(γ1|z,w,η ,β ) ∝ f (w|η ,β ,γ1)π(γ1), (3.2)

whereΣβ = ( 1
c1

Ik +X ′Λ 1
2C−1

γ1
Λ 1

2 X)−1.Thefull conditional posterior ofβ is known and easy to sam-
ple from. Although the full conditional ofW defines a standard probability distribution, sampling of
this distribution is simply impracticable. In fact, two methods can be used for sampling of this full
conditional. Ifn is small, we propose the rejection sampling. In this method, we generate proposals
of multivariate normal distribution which are accepted, once they are inside the support region oth-
erwise get rejected. However, the rejection sampling may be inefficient whenn is big. In this case,
the Gibbs sampler is preferable in which each coordinate,Wi say, is generated conditional on all
other coordinates ofW .

In sum, the full conditional ofη , ν , γ1 andγ2 do not define a standard probability distribution.
To draw samples from the full conditional posteriorη , [9] partitioned the elements ofη in blocks,
each of which corresponds to a cluster of observations that are relatively close together. Indeed, they
wanted to confine most of the dependence between theηi’s to the same cluster. For each cluster, they
also used a Metropolis-Hastings step. But, their method has some drawbacks. First, the Metropolis-
Hastings algorithm is hard to become automate since it involves tuning tailored to each application.
Second, increasing the number of clusters, increases the convergence time of the Markov chain for
which sampling of the joint posterior distribution has been designed. Third, the inferences can be
affected by the considered clusters.

Recently, auxiliary variable methods based on slice sampler is found to provide an attrac-
tive strategy are receiving utmost attention by those who used MCMC algorithms to simulate
from complex nonnormalized multivariate densities ( [8]). In this paper, for sampling from the
full conditional of η , we implement slice sampling algorithm based on three auxiliary variables
( [1]). For this purpose, ifU1|w,η ,β ,γ1, U2|η ,ν ,γ2 andU3|η have the uniform distribution on the

intervals[0,g1(w|η ,β ,γ1)], [0,g2(η |ν ,γ2)] and [0,∏n
i=1 λ

1
2

i
], respectively, whereg1(w|η ,β ,γ1) =

exp(−1
2(w−Xβ )′Λ 1

2C−1
γ1

Λ 1
2 (w−Xβ )) andg2(η |ν ,γ2) = exp(− 1

2ν (η + ν
21)′C−1

γ2
(η + ν

21)), then

π(U1,U2,U3,η |z,w,β ,γ1,γ2,ν) ∝ I{U1<g1(w|η ,β ,γ1)}
I{U2<g2(η |ν,γ2)}

I
{U3<∏n

i=1 λ
1
2

i
}
.

Published by Atlantis Press 
Copyright: the authors 

154



Bayesian Prediction in Clipped GLG Random Field Using Slice Sampling

Thus,

π(η |z,w,β ,γ1,γ2,ν ,U1,U2,U3) ∝ I{U1<g1(w|η ,β ,γ1)}
I{U2<g2(η |ν,γ2)}

I
{U3<∏n

i=1 λ
1
2

i
}
. (3.3)

Also for samplingfrom the full conditionals ofν , γ1 andγ2, we implement slice sampling algorithm.
For this purpose, ifU4|η ,ν ,γ2, U5|η ,ν ,γ2 andU6|w,η ,β ,γ1 have the uniform distribution on the
intervals[0, f (η |ν ,γ2)], [0, f (η |ν ,γ2)] and[0, f (w|η ,β ,γ1)] respectively, then

π(ν |z,η ,γ2,U4) ∝ I{U4< f (η |ν,γ2)}
π(ν),

π(γ2|z,η ,ν ,U5) ∝ I{U5< f (η |ν,γ2)}
π(γ2),

π(γ1|z,w,η ,β ,U6) ∝ I{U6< f (w|η ,β ,γ1)}
π(γ1).

Based on these assumptions, we can summarize the main steps in iteration(t + 1) of the slice
sampling algorithm as:

(1) Drawβ (t+1) from π(β |z,w(t),η(t),γ(t)
1

).

(2) Draww(t+1) from π(w|z,β (t+1),η(t),γ(t)
1

).

(3) Drawe(t+1)
i

, i = 1,2,3, of exp(1), and letat = logg1(w
(t+1)|η(t),β (t+1),γ(t)

1
)− e(t+1)

1
, bt =

logg2(η
(t)|ν(t),γ(t)

2
)− e(t+1)

2
, ct = 1

2 ∑n
i=1 logλ (t)

i
− e(t+1)

3
(4) Drawη (t+1) from a uniform distribution on

{at < log g1(w
(t+1)|η ,β (t+1),γ(t)

1
)}

⋂

{bt < log g2(η |ν(t),γ(t)
2

)}
⋂

{ct <
1
2 ∑n

i=1 logλi}.

(5) Drawe(t+1)
4

of exp(1), and letdt = log f (η (t+1)|ν(t),γ(t)
2

)− e(t+1)
4

.

(6) Drawν(t+1) from truncated gamma distribution on{ν , dt < log f (η (t+1)|ν ,γ(t)
2

)}.

(7) Drawe(t+1)
5

of exp(1), and letet = log f (η (t+1)|ν(t+1),γ(t)
2

)− e(t+1)
5

.

(8) Drawγ(t+1)
2

from a uniform distribution on{γ2, et < log f (η (t+1)|ν(t+1),γ2)}
⋂

(0,1).

(9) Drawe(t+1)
6

of exp(1), and letft = log f (w(t+1)|η(t+1),β (t+1),γ(t)
1

)− e(t+1)
6

.

(10) Draw γ(t+1)
1

from a uniform distribution on

{γ1, ft < log f (w(t+1)|η(t+1),β (t+1),γ1)}
⋂

(0,1).

Iterate above steps till we get the appropriate number of MCMC samples. We now offer a method
to generate sample of the uniform distribution on

{at < logg1(w
(t+1)|η ,β (t+1)

,γ(t)
1

)}
⋂

{bt < logg2(η |ν(t)
,γ(t)

2
)}

⋂

{ct <
1
2

n

∑
i=1

logλi}.

At first, we have

at < logg1(w
(t+1)|η ,β (t+1)

,γ(t)
1

) ⇔ ε(t+1)′Λ
1
2C−1

γ(t)
1

Λ
1
2 ε(t+1)

< a∗t

bt < logg2(η |ν(t)
,γ(t)

2
) ⇔ (η +

ν(t)

2
1)′C−1

γ(t)
2

(η +
ν(t)

2
1) < b∗t (3.4)
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whereε = w−Xβ , a∗t = ε(t+1)′Λ(t)
1
2C−1

γ(t)
1

Λ(t)
1
2 ε(t+1) + 2e(t+1)

1
andb∗t = (η(t) + ν(t)

2 1)′C−1
γ(t)
2

(η(t) +

ν(t)

2 1)+2ν(t)e(t+1)
2

. Now, we define

Ii(η
(t)
−i

) = {η∗ ∈ ℜ; (η +
ν(t)

2
1)′C−1

γ(t)
2

(η +
ν(t)

2
1) < b∗t i f η = (η (t)

1
, · · · ,η (t)

i−1
,η∗

,η(t)
i+1

, · · · ,η (t)
n )}.

Ji(η
(t)
−i

) = {η∗ ∈ ℜ+; ε(t+1)′Λ
1
2C−1

γ(t)
1

Λ
1
2 ε(t+1)

< a∗t i f

Λ = diag(exp(η (t)
1

), · · · ,exp(η (t)
i−1

),exp(η∗),exp(η(t)
i+1

), · · · ,exp(η (t)
n ))}.

ThenIi(η(t)
−i

) andJi(η(t)
−i

) contain all possible values of theith coordinates in order forη to remain

in then dimensional oval while the othern−1 coordinates are fixed. Clearly,Ii(η(t)
−i

) andJi(η(t)
−i

) are

a non-empty interval becauseη(t)
i

∈ Ii(η(t)
−i

)
⋂

Ji(η(t)
−i

). Let (e1, · · · ,en) and(l1, · · · , ln) are eigenvec-
tors and eigenvalues ofCγ2

, respectively, wheree j = (e1 j, · · · ,en j)
′. It follows, after some algebra,

that if

a1 =
n

∑
j=1

1
l j

e2
i j, a2 = 2

n

∑
j=1

n

∑
k=1
k 6=i

ei j

l j
ek jv

(t)
k

, a3 = v(t)
i

a2 +(v(t)
i

)2a1 +2ν(t)e(t+1)
2

,

f1 =
−a2−

√

a2
2 +4a1a3

2a1
, f2 =

−a2 +
√

a2
2 +4a1a3

2a1
,

wherev = η + ν
2 then

Ii(η
(t)
−i

) = {η∗ ∈ ℜ; f1 < η∗ +
ν(t)

2
< f2}. (3.5)

Similarly, if (e1, · · · ,en) and(l1, · · · , ln) are eigenvectors and eigenvalues ofCγ1
, respectively, and

b1 =
n

∑
j=1

1
l j

e2
i j, b2 = 2

n

∑
j=1

n

∑
k=1
k 6=i

ei j

l j
ek jε

(t+1)
k

√

λ (t)
k

, b3 = ε(t+1)
i

√

λ (t)
i

b2 + ε(t+1)2

i
λ (t)

i
b1 +2e(t+1)

1
,

then we have

Ji(η
(t)
−i

) =







{η∗ ∈ ℜ; 2 log(
max{g1,0}

ε(t+1)
i

) < η∗ < 2log(
g2

ε(t+1)
i

)}, if ε(t+1)
i

> 0,

{η∗ ∈ ℜ; 2 log(
min{g2,0}

ε(t+1)
i

) < η∗ < 2log(
g1

ε(t+1)
i

)}, if ε(t+1)
i

< 0,
(3.6)

whereg1 andg2 are defined similarly withf1 and f2 but based onb1, b2 andb3. Thus, under (3.5)
and (3.6),ith elementη (t+1) can be generated uniformly on the intervalIi(η(t)

−i
)
⋂

Ji(η(t)
−i

)
⋂

(η(t)
i

−

2e(t+1)
3

,∞).

Finally, it must be noted that

ν ∈ {ν ; dt < log f (η (t+1)|ν ,γ(t)
2

)} ⇔ 0 < ν < 2

−n+
√

n2 +1′C−1
γ(t)
2

1η(t+1)′C−1
γ(t)
2

η(t+1)

1′C−1
γ(t)
2

1
.

Thus, the full conditional ofν is a truncated gamma distribution on mentioned region in the above.
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3.1. Prediction

In many applications, prediction of response values at new locations is an important goal. In this sub-
section, to predict the vectorZ0 = (Z01

, · · · ,Z0p
)′ at unsampled locationss01

, · · · ,s0p
, the Bayesian

posterior predictive distribution,f (z0|z), are made. In a similar way with [3], we restrict attention
to additive loss functions

L(Z0, Z̃0) =
1
p

p

∑
j=1

I
{Z0 j

6=Z̃0 j
}
,

whereZ̃0 = (Z̃01
, · · · , Z̃0p

), is an arbitrary predictor ofZ0. The optimal Bayes predictor ofZ0i
, is

I{π(Z0i
=1|z)>0.5} = I{π(w0i

>0|z)>0.5}. These conditional probabilities can be computed using a sample

from

π(w0|z) =
∫ 1

0

∫ 1

0

∫

ℜ+

∫

ℜk

∫

ℜp
+

∫

ℜn
+

∫

ℜn
f (w0|w,η ,η0,β ,γ1)π(η0|η ,ν ,γ2)

π(w,η ,β ,ν ,γ1,γ2|z)dwdηdη0dβdνdγ1dγ2,

where

π(η0|η ,ν ,γ2) = Np(−
ν
2

1p +Cpo
γ2

C−1
γ2

(η +
ν
2

1n),ν(Cpp
γ2

−Cpo
γ2

C−1
γ2

Cpo′
γ2

)),

f (w0|w,η ,η0,β ,γ1) = Np(X0β +A(w−Xβ ),Λ− 1
2

p Cpp
γ1

Λ− 1
2

p −AΛ− 1
2Cpo′

γ1
Λ− 1

2
p ),

A = Λ− 1
2

p Cpo
γ1

C−1
γ1

Λ 1
2 , Xp = (f(s01

), · · · , f(s0p
))′, Λp = diag(λ01

, · · · ,λ0p
), Cpp

γ1
= [Cγ1

(||s0i
−s0j

||)]p×p

andCpo
γ1

= [Cγ1
(||s0i

− s j||)]p×n. Thus, for each posterior draw(w,η ,β ,ν ,γ1,γ2), we generate a
drawing fromπ(η0|η ,ν ,γ2) and finally using sampling fromf (w0|w,η ,η0,β ,γ1), we can obtain
a realization fromπ(w0|z). Repeating aforementioned steps as many times as required, thereby we
generate a sample fromπ(w0|z) as{w( j)

0
; j = 1,· · · ,J}. Then, the Bayesian estimates of the condi-

tional probabilities are given by

p̂(z0i
= 1|z) =

1
J

J

∑
j=1

I
{w( j)

0i
>0}

i = 1,· · · , p. (3.7)

4. Numerical Examples

In this section, we apply our model to simulated and applied data sets. We also compare the results
with those obtained from the Gaussian latent variable model.

Example 1: Here, we carry out simulation to compare the prediction error that produced from
using the proposed model (CGLG) to that of the clipped Gaussian model (CG). We generated 50
data sets on a regular 15× 15 lattice with five units between nearest neighbors, resulted in 225
observations per data set. The exponential correlation function was used to produce the spatial
dependence structure of data. The data sets were simulated with the following presumed parame-
ters:β = 10, γ1 = γ2 = 0.5, andν ∈ {1,5,10} corresponding to that among the observations there
exists a region with larger observational variance relative to the rest with small, medium and large
probabilities. To validate the predictive ability of two models, half of the simulated data set, 112
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Fig. 1. Locations for simulation study,◦ represent locationsusedin prediction and• represent locations used for com-
parison of predictions.

Table 1. Summary of MPS for the 50 simulated data sets under two considered models.

Parameterν CGLG CG
Min Mean Max Min Mean Max

1 0.929 0.948 0.982 0.938 0.956 0.973
5 0.938 0.951 0.964 0.875 0.893 0.911
10 0.929 0.942 0.973 0.804 0.819 0.848

observations, is withheld and their values are predicted based on the remaining 113 sampled loca-
tions. Figure1 displays the observation locations and the locations set aside for comparisons of
predictions.
The Bayesian analysis was specified with proper diffuse priors which centered at the truth. Here,

the MCMC chain was run for 200,000 iterations (with a burn-in period of 50,000).
Now we compare the predictive performance of two considered models. For this, we predict the
response variable in hold-out data sets and obtain the mean of prediction score (MPS),

MPS =
1

112

112

∑
j=1

I
{Z(s j)=Ẑ(s j)}

.

Table 1 compares the acquired results under two models. We can see that the CGLG model evidently
outperforms the CG one for medium and large values ofν .

Example 2: This example consists of an illustrative application of the proposed methodology.
The data set includes binary indicators for a heavy metal (lead or Pb) found in the soil which
indicates whether the level of this heavy metal is over the legal pollution threshold or not in 60
locations of a region in north of Iran (see Figure 2). Since this example does not have any explana-
tory variables, we assume constant mean. To compare the predictive ability of model, we consid-
ered cross-validation predictive distributions known as conditional predictive ordinates (CPO). The
CPOs which are often used as predictive model checking tools, measure the influence of individ-
ual observations ( [5]). In cross-validation, a validation of observationYi is held to the side and
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Fig. 2. Sampled locations and values of heavy metal in the soil data.
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Fig. 3. Result of fitting two models to the heavy metal soil example.

the remainingdatadenotedY−i is used as training data to fit the model. By computing the cross-
validated conditional predictive distribution for each data, these values can then be summarized and
used to compare models. A summary statistic of the CPOs isB = ∑117

i=1 log(CPOi). The larger is the
value ofB, the better is the fit of the model. Results are obtained based on every fifth draws from
an MCMC chain of length 200,000 with a burn-in of 50,000. This proved more than enough for
convergence, and much shorter runs led to virtually identical results. Our experiments not reported
here show the robustness of the posterior results to the prior changes. We computed theB values for
two models CGLG and CG as -32.236 and -65.329, respectively, which indicates our model has a
better predictive performance. Furthermore, in Figure 3, the plot shows the logCPO values for the
CGLG versus CG models. In sum, the CPOs are larger for the proposed model. Inference results for
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Table2. Posterior means and 95% credible intervals for model parameters.

Parameter Posterior mean 95% credible interval

β 0.38 (0.21,0.57)
ν 4.23 (3.72,5.98)
γ1 0.23 (0.11,0.30)
γ2 0.12 (0.06,0.17)
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Fig. 4. Prediction map of the latent spatial process based on the posterior median. Regions with dark color have high
pollution values.

parameterof distribution of underlying latent random field are summarized in Table 2. Finally, the
prediction map corresponding to the predictive median under the CGLG case, is shown in Figure 4.
From this figure, the regions with high pollution could be observed.

5. Conclusion

We provide a fully Bayesian approach to analyze the clipped GLG model. We have developed
a computationally feasible algorithm based on the slice sampling to simulate from the posterior
distribution. Results from numerical examples demonstrate that our proposed model improve the
predictive performance in compare to spatial probit model.
The special case considered in this paper includes univariate binary data. Although multivariate
binary measurements are very common in many research areas. The extension of our approach to
these cases is an interesting area to investigate in further research.
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