

Vehicle service middleware based on OSGi

Juan Luo
School of Information Science and

Engineering

Hunan University

ChangSha, China

juanluo@hnu.edu.cn

Feng Wu
School of Information Science and

Engineering

Hunan University

ChangSha, China

wufeng@hnu.edu.cn

FAHMI AMEEN ABDO
ALKUBATI

School of Information Science and

Engineering
Hunan University

ChangSha, China

Abstract— Embedded system for the automotive electronics

becomes increasingly powerful, whereas the system structure

becomes more complex. There is a high coupling between

hardware and software which makes it hard to develop

applications. To solve this problem, we proposed a middleware

based on OSGi, namely OSGiIV. By embedding the

middleware into the ECU (electronic control unit) in the

vehicle, we can provide a unified interface for different ECUs,

and provides a service-oriented application programming

environment for the car platform applications.

Keywords- OSGi; SOA; middleware; ECU

I. INTRODUCTION

With the development of automotive electronics, it
develops from traditional electric into the smart system. To
meet the growing demands of people, embedded system
functions based on the automotive electronics is becoming
increasingly powerful. But its systems structure becomes
more complex, resulting in the increasing costs of
development and maintenance. And different electronic
control units in vehicles have different hardware
environments, which makes the coupling between hardware
and software very high, reduces reusability of automotive
electronics software, and restricts the development of
automotive electronics.

Embedded middleware is proposed to be a good solution
to the above problems. Embedded Middleware is a software
layer between operating system and application software.
Putting the embedded middleware into embedded devices is
capable of providing a unified operating environment for the
upper application layer software, and coordinating functions
between lower and upper layer. In fact, embedded
middleware plays a role of a common interface. With the
interface, the upper software development can be
independent of the underlying hardware environment.
Compared with general middleware, the embedded
middleware has minimal kernel, which makes its operating
speed and efficiency not affected after being placed under
the embedded device.

OSGi (open service gateway initiative)[1] is not only a
typical service-oriented components system, but also a
dynamic, light-weighted middleware platform. Applications
or components in the form of bundles for deployment can be
remotely installed, started, stopped, updated, and uninstalled
without requiring a reboot. Application life cycle
management is done via APIs that allow for remote

Figure 1. OSGi framework.

downloading of management policies. The service registry

allows bundles to detect the addition of new services, or the

removal of services, and adapt accordingly, as shown Fig.1.

With the help of OSGi, we can reuse the resources that were

used in the framework, which will reduce a great deal of

cost.

Based on the OSGi middleware, this paper designs an
embedded middleware platform of service-oriented
architecture (SOA) [2] which named OSGiIV. Embedding it
into the electronic control unit of the vehicle provides a
unified interface for various automotive electronic means,
and facilitates the rapid processing between various tasks and
data. The dynamic and modular characteristics of the
middleware reduces the coupling degree between electronic
control unit and the upper application, provides a service-
oriented programming environment , and makes it easier and
faster to develop upper applications.

II. RELATED WORK

Many literatures have extended the study and realization

of traditional OSGi platform. Rellermeyer[3] achieved the

interoperability of OSGi applications by extending the

traditional centralized, industry-standard OSGi platform to a

distributed middleware platform, which greatly simplifies

the development of distributed applications with low

overhead of performance. But it is invasive to the OSGi

programming model, and cannot interact with non-OSGi

system. Shi [4] proposed CORBA-based distributed OSGi

model, which supports interoperability among multiple

OSGi applications and between non-OSGi and OSGi, and it

reaches the goal of low–invasive and high scalability. Lai[5]

analyzed the P2P multimedia sharing mechanism home

network and he found that the transmission could only be

achieved with the use of P2P networks, but when the

content server and the client have adopted this system, the

International Conference on Computer Science and Service System (CSSS 2014)

© 2014. The authors - Published by Atlantis Press 714

http://en.wikipedia.org/wiki/Application_software
http://en.wikipedia.org/wiki/Bundle_(software_distribution)
http://en.wikipedia.org/wiki/Software_deployment
http://en.wikipedia.org/wiki/Reboot_(computer)
http://en.wikipedia.org/wiki/Downloading

transmission speed of the internal network could not

increase. To solve this problem, the OSGi middleware was

added to the DLNA -based multimedia sharing system

expanding the network to be an OSGi-based P2P one, which

effectively improves the quality of service for users. For the

smart home service network with limited or unreachable

resources, Cheng[6] designed a service management

mechanism based on priority scheduling algorithm by

embedding the middleware into the service gateway to

ensure the quality of service and better dealing with

emergency situations. But this priority-based service

management platform cannot be called among multiple

platforms, and thus its scope of application is limited.

III. SYSTEM DESIGN

OSGi-based vehicle service middleware namely OSGiIV
(OSGi in Vehicle), and its essence is a communication
interface, it can not only masked the underlying different
hardware environment, but also facilitate the further
development of the upper application. The overall
framework of middleware in OSGiIV is shown in figure 2.

A. Overall Framework

In order to simulate a real-time vehicle network
conditions, we use the Linux operating system in this paper,
and use SocketCAN as a CAN bus network interface which
is encapsulated by Linux, it can effectively simulate the real-
time communication mechanism between upper network and
underlying hardware devices. The vehicle service
middleware must rely on java virtual machine (JVM)
runtime environment, and the upper part is the core of OSGi
framework, its various functions and application modules are
presented in the form of bundle components.

Schedule center is a primary interface provided by
OSGiIV middleware. When the network has multiple
information needs to be passed, we should determine the
order of information transfer by appropriate rules designed
by the Schedule center.

Service scheduling is a service management, which is
also an important component specification in OSGi SPR4.
We could introduce a priority scheduling method to OSGi
framework to improve the performance of framework. In the
OSGi framework, the coordination between service schedule
component and multiple components could reduce collision
rate when multiple tasks are simultaneously transmitted in
bus. When the access collision rate is decreased, then the
number of repeated request will be reduced, and so does the
number of service request. In addition, service scheduling
management can efficiency help the whole system quickly
complete the task.

CAN socket and CAN data Listener work well to allow
underlying SocketCAN framework to be a service in OSGi
framework. This not only provides a pure java
implementation for CANSocket, but also exchanges data in
CAN.

Vi Admin is an information translator. It is mainly used
for processing data from the underlying CANSocket, and
translating data into java language that can be recognized by

CAN Socket

D
a

ta
 M

a
p

p
e

r

Vi Admin

Candata

Listener

Service registry

DMT admin

S
c
h
e
d
u
l
e
C
e
n
t
e
r

JAVA VM

Listen to CAN

network information

 Network

Connections

Service Lookup

Service call

Data Exchange

Application Gauge

Linux

CAN Socket

D
a

ta
 M

a
p

p
e

r

Vi Admin

Candata

Listener

Service registry

DMT admin

S
c
h
e
d
u
l
e
C
e
n
t
e
r

JAVA VM

Listen to CAN

network information

Application Gauge

 Linux

Figure 2. Overall Framework of OSGiIV.

various components of the OSGi framework. It also
implements the upper application to send and to receive
vehicle information without considering the underlying
structure of the vehicle.

DMT admin is a data management center. This bundle
manages data by OSGi DMT (OSGi Date management tree),
and it provides a pattern of access to vehicle data. DMT
(Device Manager Tree) is used to store and manage vehicle
information. And DMT provides appropriate metadata for
the upper application. The application running in a local
environment can also get the vehicle sensor data through
data center module.

Data Mapper Bundle is a data mapping component. This
component transforms byte array information into data
which can be identified by specific application, namely it
provides a function of transmitting arrays into java objects.

Service registry is the native components of the inner
framework.

B. Working mechanism

In figure 2, once local OSGi monitors the corresponding
sensor information, the functional unit SocketCan of Linux
operating system will be used to transmit original data
information coming from the bottom. The virtual machine
JAVA provides a good execution environment for keeping
the middleware running this OSGiIV. In OSGi, however,
Candata Listener listens for the underlying data information.

When it gets access to the corresponding data flow, the
interface of CAN socket component will be used to contact
with the underlying CAN network session. At this time, the
transmission data is a kind of original data which cannot be
identified by multiple components within the OSGi
framework. So CAN socket components will transfer some
corresponding information to translation center vi Admin,
making the upper application send and receive information
without considering the architecture of the bottom. In order
to manage efficiently a large amount of Data, vi Admin will
do two operations simultaneously. The first step is to transfer
corresponding Data to the Data mapping center Data Mapper
for a particular format, and send it to the Data management
center DMT admin, storing and managing the corresponding

715

data in a tree structure. Then, the corresponding service
information will be registered in the service registry. Lastly,
core information will be dispatched in the form of services
by the schedule center.

C. Service requesting and monitoring mechanism

Assuming that when a certain application needs some
latest information service, first of all, it will ask the schedule
center for help. Schedule center at this time will transfer the
asking information to DMT data management center DMT.
At this time, DMT will register the service information to the
service registry as the latest service information, realizing a
binding between the requester and the service consumer. At
the same time, the service requesting is synchronized to the
VI admin, which is used to get the data translated by the VI
admin. Then the original data obtained from the underlying
will be translated and mapped by VI admin to the DMT data
management center. Management center DMT will transmit
the request data to the schedule center. Finally, the schedule
center will send the request information in order according to
certain priorities.

 At the same time, in order to capture the service registry
events of the remote framework and put forward the service
request for remote service center, every situation in the
remote framework needs to be monitored, and then the future
action needs to be determined according to the results.

D. Date Management mechanism

After the internal components DmtAdmin obtain the

session request information， it will get access to data and

information by getNodes, getSessionId and getType methods
from internal data centers , and find its relevant information
in a order of starting from root node to itself. By matching
the node name and Access Control List (ACL) it can find
itself. When adding or deleting a data, it not only increases
or deletes corresponding data in the tree nodes, but also
register this event in the registration. It will pass it to other
components through the session after obtaining the
information.

In general, the framework provides a remote node
management model to manage bundle’s cycle and monitor
framework’s state. In order to change its state, such as install
a new bundle, it must at least have one session with the
framework node. The established model is used to reflect the
status of the requesting information. When the session is
transmitted out, the component on the bottom should change
the status into real-time status.

E. Factory pattern mechanism

Factory pattern is commonly used as a design pattern. It
usually instantiates a class which contains a lot common
interfaces, without having to know which class is to be
instantiated in advance. The OSGi framework uses this
method while expanding the service.
 While creating a Service Management bundle, we definite
service factory API in order to allow the application build an
object parser tree from an XML document. This is the
application of a simple factory pattern, usually when we start
and initialize a bundle, we will use it. And some services

consume a lot of system resources, so we hope this
phenomenon will not last for a long time, and then you need
to destroy them when you do not apply it. Implementation of
Service Factory interface is a good way to solve this problem.

F. Tracker mechanism

The middleware use tracker mechanism to avoid some
unnecessary problems and track the event of registry and
uninstalling.

OSGi framework is a dynamic, multi-threaded
environment, so the callback mechanism can occur between
different threads at the same time. However, the dynamics
also brings many difficulties. For example, it is difficult in
this environment effectively monitor service and bundle real-
time status. Because BundleListener and ServiceListener
interfaces can only access the status change, not the state of
existence. This leaves developers a big problem, in which the
state of existence cannot be combined with the change of
state for a bundle. This phenomenon is obvious under
multithreading environment. The bundle tracker and service
tracker can be a good solution to this problem.

IV. EVALUATION

 In this section, we will describe our experiment and
show the display to prove the system’s use and functions.

We should install a virtue machine in our pc. And then
installing a Linux operation is necessary for our experiment
to simulate a real-time CAN BUS in vehicle network. What
is more, we should install the eclipse software to provide a
running environment for the OSGiIV.

When we start the SocketCAN in Linux to send message
and start the OSGiIV which should be configured in advance
in eclipse to receive the relevant information, the demo
bundle will display the information in the screen.

Figure 4 shows the velocity gauge demo. When the
system finds the change that occurs in the DMT velocity’s
node through the relevant functional component, it will
display the change on the screen. This proves our platform
work well with real time system, and we can develop
applications without knowing the underlying structure.

At the same time, we put two algorithms into our
platform to make sure our middleware is able to work well in
the real time system, as shown in figure 5. In figure 5, there
are 4 demos which can select dates from our platform and
compare them in the demo. After we go through 3steps, we
will see the demo4, which tells us NOPA algorithm is better
than OPA algorithm. Meanwhile, this comparison
experiment tells us our middleware platform can work well
with different algorithm in real time system.

 Figure 4. Velocity Gauge Demo

716

Step1

Step2

Step3

 demo1

demo2

demo3

demo4

Figure5. Comparison experiment in our platform.

V. CONCLUSIONS AND FUTURE WORK

In this paper we implemented a middleware based on
OSGi. By designing its contructure and adding some
functional components into the OSGi, we provide a unified
interface for upper application. The experiment shows that
this middleware is of the function we need, and we can
develop upper applications easier and faster. The future work
is to embed it into ECU in vehicle.

ACKNOWLEDGMENTS

This work is partially supported by Program for New
Century Excellent Talents in University (NCET-12-0164);
National Natural Science Foundation of China (61370094);
Natural Science Foundation of Hunan(13JJ1014).

REFERENCES

[1] http://en.wikipedia.org/wiki/OSGi

[2] Guinard D, Trifa V, Karnouskos S, et al. “Interacting with the soa-

based internet of things: Discovery, query, selection, and on-demand

provisioning of web services,”Services Computing, IEEE
Transactions on. 223-235,2010.

[3] Rellermeyer J S, Alonso G, Roscoe T. “R-OSGi: distributed

applications through software modularization,” Proceedings of the

ACM/IFIP/USENIX 2007 International Conference on Middleware.
Springer-Verlag New York, Inc.1-20,2007.

[4] Shi Dianxi, Wu Yuanli, Ding Bo,et al. StarOSGi: A distributed
extension middleware for OSGi[J].Computer Science,162-189,2011.

[5] Lai C F,Chen M, Vasilakos A V,et al. “Extending the DLNA-Based

Multimedia Sharing System to P2P Network on OSGi Frameworks,”

Global Telecommunications Conference (GLOBECOM 2010), 2010
IEEE.1-5,2010.

[6] Cheng S T, Chou C L, Horng G J. “Priority-Oriented Architecture

Service Management on OSGi Home-service Platform,” Wireless
personal communications, 611-628, 2013.

[7] Tian Jing, Huang Yalou, Wang Liwen, et al. “Application of Fixed

Priority Schedule Algorithm in CAN Bus,” Computer
Engineering.94-96, 2006.

717

http://en.wikipedia.org/wiki/OSGi

