
Sequence Join

SONG Xiaomei

School of Software, Tsinghua University,

Beijing, China

YONYOU Software Co., Ltd.,

Beijing, China

songxm@lreis.ac.cn

YE Xiaojun

School of Software, Tsinghua University,

Beijing, China

liulm@tsinghua.edu.cn

ZENG Xiaoqing

Changsha University of Science &Technology

Changsha, China

YONYOU Software Co., Ltd.,

Beijing, China

zengxqa@ufida.com.cn

XIE Dong

YONYOU Software Co., Ltd.,

Beijing, China

xd@yonyou.com

Abstract—This article put forward a new join technology

for tables of relational database, named sequence join.

Sequence join make a tuplematch other one tuple according

to the disk address. The technology of the specific method

can help solve these problems: the number of columns in a

relational table is too large and exceeds the maximum

number of columns that a relational database can support;

after a table is longitudinally divided into several sub-tables

by columns, a lot of time need to be spent in reading this

data using traditional joining techniques. This article

described the implementation of sequence join in detail and

did three sets of experiments to prove the effectiveness and

efficiency of sequence join at last.

Key words-join, relational database

I.INTRODUCTION

In relational query processing, the join operator is one

of the most time-consuming and data-intensive operations,

many domestic and foreign Scholars join operation

conducted a lot of research and discussion. According to

the ANSI standard, SQL JOIN has given five types:

INNER, FULL OUTER, LEFT OUTER, RIGHT OUTER

and CROSS. These types of joins are mainly implemented

by Nested Loops Join [1-4], Sort-Merge Join [5-7], Hash

Join [8-10]. These join methods are based on two points: 1,

thought of Cartesian product join, which is also named

Nested Loops Join [11-12]; 2, unpredictable data storage

address.

Every traditional join is based on Cartesian product

join. Cartesian product join is realized and named CROSS

JOIN. It takes a tuple from driving table to join a tuple

from matching table sequentially and recursively.

Traditional join operations have been implemented on

Cartesian product join. They differ mainly in output

format with different filters. Its time complexity is O(n
2
)

and indexing mechanism has been used to enhance the

performance of query in the traditional relational database.

Indexing mechanism really makes a tuple of data-driven

tables skip some tuples from matching table data to

improve join performance. However, when the amount of

data is relatively large and we need to retrieve all the

tuples, join operations are still performance bottleneck in

queries [13].

Using traditional database, users cannot know the

exact data storage address on disk. Traditional database

always optimized query performance by avoiding more IO

access. It does not always sequentially in turn access each

tuple from the first tuple stored on disk. In 1980, Kim

proposed a "rocking" thought [14]. It takes last block of

last cycle as the first block of the next cycle in a query,

thus avoiding a block I/O operation. In fact, as shown in

Figure 1-a, when queries of other sessions may have taken

some blocks in memory, the current query will take blocks

loaded in memory as the starting point for data scanning.

What’s more, updated tuples would have a different

address in blocks. As shown in Figure 1-b, UPDATE

operations are composed of DELETE and INSERT

operations. The updated tuple would be inserted in a new

space which may be on another block. The old tuple is not

deleted from disk actually and just masked for the

subsequent process. This is very helpful for rollback in a

transaction.

International Conference on Computer Science and Service System (CSSS 2014)

© 2014. The authors - Published by Atlantis Press 678

Figure 1-a Block scanningFigure 1-b Update and Rollback

Applications of relational database used in the

mainstream today have turned from OLTP to OLAP

[15-16] such as decision support systems. Read-only

operations get more and more attentions and read-only

scenarios based relational database application are

constantly increasing; on the other hand, a lot of data in

the warehouse is never updated or modified after it is

loaded by ETL (Extraction, Transformation and Loading)

operations. So the traditional database optimization

technology mentioned above is not suitable for the

read-only scene. Make the technology disable, and we

may find out other new techniques those are more suitable

for data applications, such as the problem of too many

columns in a table.

II.THOUGHT OF THE ALGORITHM

According to the above standpoint, this article presents

a new database join technology – sequence join. This join

technology can no longer be based on the Cartesian

connection technology, and can only be used for read-only

tables. According to the actual disk address, tuples from

driving- and matching table are extracted one by one and

joined together. This can avoid that a tuple from driving

table scans all the tuples from the matching table. Its time

complexity is only O(n), thereby increasing the speed of

data extraction. In addition, for some aggregation

operations against few columns it can reduce memory

consumption and further improve computing speed.

At present, the existing SQL join methods are all based

on the method of NLJ. Each tuple of driving table (outer

table) matche seach tuple of matching table (inner table),

for example, in Figure 1. Its time complexity is O(n2) and

its efficiency is very low without doubt when the amount

of data is large.

Figure 2. Nested Loops JoinFigure 3. Sequence Join

Sequence join method put forward in this article

processes no longer based on the nest loop join method. If

tuplesare inserted one by one and they would never be

deleted or modified, and disable these optimization

measures of concurrent read, sequence join takes the tuple

of the driven table to match the same offset tuple of

matching table, which is shown in Figure 3.

The physical table date is stored on disk randomly. But

his logical structure can be formatted and controlled. This

article uses the logical page to organize disk data. The

logical structure of the disk data is organized as pages

shown in Figure 4. Where:

1) Page Header Data: a block header of the table file,

which contains some general information, such as

starting and ending position of the free space, the

starting and ending position of the item pointer,

and the size of the remaining space, etc.

2) Linp: tuple items, which point to describe tuple

information including the tuple location, size, etc.

3) Free space: it is the unallocated space (free space);

the newly inserted tuple date would be allocated

space sequentially from the tail of the free space

team, while its corresponding Linp item would be

allocated from the header of the free space team.

4) Tuple: it represents the actual data.

Figure 4. logical page

Sequence join process must be run in this premise:

after logical page is loaded with data, it is no longer

deleted or modified; disable the optimization for starting

679

read from a memory page firstly. Driving table extract

tuples sequentially from the file page; update the offset

parameters (initial value is 0); extract tuples with the same

offset matching from matching table; output the joining

tuple. The specific operation process is shown as follows:

Step One: Define and initialize the global variable

Outer Offset and Inner Offset (their values are set to 0);

they are used to mark the tuple ID offset from driving

table and matching table in the logical file blocks. Define

and initialize the global variable Outer Tup Num and Inner

Tup Num (their values are set to 0); they are used to mark

the tuple number of current file page of driving table and

matching table. If driving table successfully read the first

logical file block. Turn to Step Two; otherwise, turn to

Step Three.

Step Two: After reading the first logical file block,

driving table takes the first logical file block as the current

data page by the metadata information. Outer Offset’s

value is initialized to 0, Outer Tup Num get the number of

tuples from Page Header Data structure. Turn to Step

Four.

Step Three: Driving table sequentially scans logical

file blocks and obtains the current page. From the Page

Header Data information of last logical file block, the next

logical file block is obtained and taken as the current data

page of driving table. The value of Outer Offset is

initialized to 0; Outer Tup Num is set as the number of

tuples from the Page Header Data structure. Turn to Step

Four.

Step Four: Determine whether Outer Offset is greater

than Outer Tup Num. If it is, go to Step Three; otherwise

continue. Driving table gets Outer Linp from the Page

Header Data structure of the current data page. Outer Linp

is the Linp structure and has the tuple ID offset whose

value is Outer Offset. If Outer Linp is NULL which means

the end of query, exit; other whiles, Outer Offset is plus 1

and process turn to Step Five.

Step Five: Driving table obtain stuple initial address

and tuple length according to the structure of Outer Linp

and finally extracts tuple data. If matching table reads the

first logical file block; turn to Step Six; otherwise turn to

Step Seven.

Step Six: Matching table gets the first logical file block

through metadata information as the current data page

matching table. The value of Inner Offset is initialized to 0;

Inner Tup Num is set as the number of tuples from the

Page Header Data structure. Turn to Step Eight.

Step Seven: Matching table sequentially scans logical

file blocks and obtains the current page. From the Page

Header Data information of last logical file block, the next

logical file block is obtained and taken as the current data

page of matching table. The value of Inner Offset is

initialized to 0; Inner Tup Num is set as the number of

tuples from the Page Header Data structure. Turn to Step

Eight.

Step Eight: Determine whether Inner Offset is greater

than Inner Tup Num. If it is, go to Step Seven; otherwise

continue. Driving table gets Inner Linp from the Page

Header Data structure of the current data page. Inner Linp

is the Linp structure and has the tuple ID offset whose

value is Inner Offset. If Inner Linp is NULL which means

the end of this read circle, go to Step Three; other whiles,

Inner Offset is plus 1 and process turn to Step Nine.

Step Nine: Driving table obtain stuple initial address

and tuple length according to the structure of Outer Linp

and finally extracts tuple data. A new tuple that consists of

tuples of driving and matching table is formed and output.

Go to Step Three.

III.COMPUTATIONAL EXPERIMENTS AND RESULTS

The thought of sequence join raised in section two

has been implemented in Postgre SQL(Version 9.3.4). To

test the performance of sequence join, we have carried out

three sets of experiments which were comparative

experiments between sequence join and inner join. All

experiments were solved on a 2.53 GHz Pentium

processor with 1.93 GB of RAM running with Windows

XP as the operating system.

These three sets of experiments were designed based

on different size of data whose numbers are 1thousand~

10 thousands, 10 thousands~100 thousands and 1 million

~ 10 millions especially.

From the Figure 5a-c, we can find out : 1)the query

time would be almost linear with respect to the he amount

of data;2)sequence join is significantly faster than Inner

Join; 3) With the increasing amount of data, the trend line

slope of sequence join almost does not change, while the

trend line slope of Inner Join becomes larger and larger.

680

So it is obvious that the sequence join is better than Inner

Join from the point of query efficiency.

Figure 5-a.1 thousand ~ 10 thousands

Figure 5-b.10 thousands ~ 100 thousands

Figure 5-c.1 million ~ 10 millions

IV.CONCLUSIONS

The technology of sequence join based on read-only

data, will make tuples of driving table and those of

matching table sequentially join together according to

offset tuple identifiers. First of all, sequence join

technology no longer makes each tuple of driving table try

to access all tuples from matching table, and only need to

access the specified one tuple, which greatly reduces the

time consumption and improves the efficiency of query.

Secondly, sequence join technology supports vertical

segmentation of a big table which has too many columns;

it can overcome the table column number limit problem of

the traditional database. Finally, the sequence join

technology can ensure that common fields can be created

into separate tables which can take only part of the data

into memory to participate in the calculation such as

aggregation computation. This also can be used to reduce

the memory and CPU resources obviously.

ACKNOWLEDGEMENT

This research is supported by the Beijing

Postdoctoral Foundation under grant No. 2013ZZ-46. Its

supports are gratefully acknowledged.

REFERENCES

[1] Bornea, M.A.; Vassalos, V.; Kotidis, Y.; Deligiannakis, A.
"Double Index NEsted-Loop Reactive Join for Result Rate
Optimization", Data Engineering, 2009. ICDE '09. IEEE 25th
International Conference on, On page(s): 481 – 492

[2] Trifunovic K, Nuzman D, Cohen A, et al. Polyhedral-model
guided loop-nest auto-vectorization[C]//Parallel Architectures and
Compilation Techniques, 2009. PACT'09. 18th International
Conference on. IEEE, 2009: 327-337.

[3] Zhou J. Nested Loop Join[M]//Encyclopedia of Database Systems.
Springer US, 2009: 1895-1895.

[4] Minor M, Bergmann R, Görg S. Case-based adaptation of
workflows[J]. Information Systems, 2014, 40: 142-152.

[5] Yang H, Dasdan A, Hsiao R L, et al. Map-reduce-merge:
simplified relational data processing on large
clusters[C]//Proceedings of the 2007 ACM SIGMOD international
conference on Management of data. ACM, 2007: 1029-1040.

[6] Albutiu M C, Kemper A, Neumann T. Massively parallel
sort-merge joins in main memory multi-core database systems[J].
Proceedings of the VLDB Endowment, 2012, 5(10): 1064-1075.

[7] Liagouris J, Mamoulis N, Bouros P, et al. Efficient Management
of Spatial RDF Data[R]. Technical Report TR-2014-02, CS
Department, HKU, www. cs. hku. hk/research/techreps, 2014.

[8] Chen S, Ailamaki A, Gibbons P B, et al. Improving hash join
performance through prefetching[J]. ACM Transactions on
Database Systems (TODS), 2007, 32(3): 17.

[9] Blanas S, Li Y, Patel J M. Design and evaluation of main memory
hash join algorithms for multi-core CPUs[C]//Proceedings of the
2011 ACM SIGMOD International Conference on Management of
data. ACM, 2011: 37-48.

[10] Balkesen C, Teubner J, Alonso G, et al. Main-memory hash joins
on multi-core CPUs: Tuning to the underlying hardware[C]//Data
Engineering (ICDE), 2013 IEEE 29th International Conference on.
IEEE, 2013: 362-373.

[11] Blasgen M W and Eswaran K P. Storage and
access in relational databases. IBM Syst J, 1977, 16(4):
363~377

[12] ElMasri R and Navathe S. Fundamental of Database
Systems. Benjamin /Cummings, Menlo Park, Calif, 1989.
542~553

[13] Wang L Z . Research on Hash Join Algorithm in DM Database[D].
Huazhong University of Science and Technology, 2012.

[14] Kim W. A new way to compute the product and join of relation. in:
proceeding of SIGMOD. New York: ACM, 1980. 179~187

[15] Russakovsky A. Hopping over Big Data: Accelerating Ad-hoc
OLAP Queries with Grasshopper Algorithms[J]. arXiv preprint
arXiv:1310.0141, 2013.

[16] Do N. Application of OLAP to a PDM database for interactive
performance evaluation of in-progress product development[J].
Computers in Industry, 2014, 65(4): 636-645.

ms

k

ms

k

ms

k

681

