
A Novel Lightweight Authentication Protocol for YML Framework

Xin Lv

College of Water Conservancy and Hydropower

Engineering

Hohai University, HHU

Nanjing, CHINA

e-mail: lvxin.gs@163.com

Hao Chen

Huaneng Lancang River Hydropower CO., LTD

Kunming, CHINA

e-mail: chenhao.hnlcj@foxmail.com

Feng Xu, Yingchi Mao

College of Computer and Information

Hohai University, HHU

Nanjing, CHINA

e-mail: xufeng@hhu.edu.cn

Abstract—YML framework is a well-adapted advanced tool to

support designing and executing portable parallel applications over

large scale peer to peer and grid middleware. It is necessary to

introduce some security mechanisms for the improvement and

extension of the framework. To secure the authentication process,

a novel lightweight authentication protocol was proposed, enabling

the legitimate user to log in YML efficiently, with 2 XOR and 1

HASH operations. The protocol can resist denial of service attack,

replay attack, and even all the knowledge of the user was stolen,

the system still can recovery the permission of the user which has

been attacked effectively by updating the value of the

corresponding parameter.

Keywords-YML framework; front-end; lightweight

authentication; replay attack

I. INTRODUCTION

Many Grid and Peer to Peer computing middleware
solutions have been developed and are becoming stable.
They harness available computing and storage resources in
order to build large scale platforms. Then, they are used to
solve huge applications or store large amount of data.
Although computing platforms have become popular tools,
the current challenging issues are better scalability and
availability. Indeed, a large number of independent platforms
are currently managed by different global computing
middleware products without any runtime interoperability.

YML [1] is one workflow solution which has been
developed at PRiSM laboratories [2] in collaboration with
Inria-Futurs/LIFL [3, 4]. This framework is dedicated to the
development and the execution of parallel applications over
large scale middleware. YML includes a workflow language
named YvetteML used in the description of applications and
their executions. YML furnishes a compiler and a just-in-
time scheduler for YvetteML. It allows the user to manage the
execution of the application over the underlying parallel
architecture which can be a peer to peer or a grid middleware.
The specificity of each middleware is hidden to the user

through YML, making the user can easily develop a complex
parallel application which may transparently execute on
multiple middleware during one application execution. The
framework provides workflow engine capabilities on top of a
global computing platform, and it is designed to act
transparently for complex applications using numerous
communications, code coupling, etc. on dynamic platforms.

On the YML point of view, an application is divided into
different computing sections, each of them containing some
tasks executed sequentially or concurrently. A task, called a
component, is a piece of work that can be mapped to one
node in a parallel environment. It has some input and output
parameters and is generally reusable in different parts of the
application as well as in different applications. YML
provides a special type of components, called graph
component, which consists in the description of subgraph.
This kind of components will be exploited for the
distribution of the application.

YML framework has been developed since 2000. It acts
as a well-adapted advanced tool to support designing and
executing portable parallel applications over large scale peer
to peer and grid middleware [5, 6], and its extension version
is able to manage at the run-time several middleware back-
ends, achieving a dynamic federation of computing
middleware [7]. We also extend the framework to be
middleware for cloud computing platform [8, 9]. With the
development of global computing model over the Internet
infrastructure, the collaboration, agility and scale of
computing are significantly enhanced. However, in this
environment, security and privacy problems have become
more and more severe. As a well-designed front-end, YML
connects different computing resources to complete the tasks,
so it is indispensable to integrate some appropriate security
mechanisms into the framework. Through our work we aim
at ensuring the computing resources are utilized legitimately
and properly. We provide a lightweight authentication
protocol instead of currently-used password-based

International Conference on Computer Science and Service System (CSSS 2014)

© 2014. The authors - Published by Atlantis Press 645

mechanism which is easy to crack. The user needs to register
in YML, and then he can create a new execution or monitor
current and past executions as usual.

The rest of the paper is organized as follows. An
overview of YML is given in Section II, and we also point
out the security problem exist in the framework. A novel
lightweight authentication protocol for YML framework is
specified in Section III with corresponding security and
efficiency analysis. Finally we conclude the paper in Section
IV.

II. OVERVIEW OF YML

YML is a framework dedicated to the creation and the
execution of parallel and distributed applications on various
middleware. It proposes an intuitive representation of a
distributed and parallel application by means of a workflow.
A workflow consists of a graph whose vertices are
independent and communication-less computing tasks, while
the edges represent the precedence relationships between the
tasks. The graph description language is called YvetteML. A
graph represents a control flow, and not a data flow, since a
precedence does not necessary concern a data dependency.
The main structures of YvetteML are: the services execution,
the parallel sections, the sequential loops, the parallelized
loops, the conditional branch and the event
notification/reception.

YML represents the notion of computing task by
components, called services. The reusability is the main
motivation. Besides, this representation helps to clearly
separate computational blocks of his application and
communication expressing dependences. Each computational
task is described by an abstract service and is implemented
in an implementation service. Services information is
contained into two catalogs. A Development Catalog stores
information used at the time of the application development.
An Execution Catalog stores information used during the
execution of the application.

Figure 1 gives a simplified view of an YML framework.

Figure 1. Overview of YML Framework

The front-end provides the user a way to control and
administer the execution of YML application. Once a
workflow application has been registered into the portal,
users can schedule and execute applications from this web-
based environment. But it just uses a password-based
authentication which has an inherited limitation and poses
significant risk. In global computing environment, we must
ensure that the computing resources are properly and
effectively utilized by legitimate users. So it is necessary to
introduce a more secure authentication mechanism to prevent
the computing resources from misusing.

III. A NOVEL LIGHTWEIGHT AUTHENTICATION

PROTOCOL FOR YML FRAMEWORK

In order to ensure the computing resources being utilized
properly and legitimately, we introduce an authentication
mechanism into the YML framework. The user and the
front-end just need to interact on a little registered
information with a few lightweight operations to complete
the validation of identity, which almost have no negative
influence on the efficiency.

In the following description, let pw denote user’s

password,  denote XOR operation,  denote

concatenation operation,  h is a collision resistant hash

function, ID is the unique identifier of the user, maybe
extract from the user’s ID card number or its email address
and so on.

A. User Registration

The user submits its registration information

  ,ID h b pw to the YML front-end through secure

channel, with b is a random number generated by user itself,

which is stored on its own device.
When the front-end receives the information, it computes

    T h ID i x h b pw    with x is a secret

key which is long enough to ensure the security of the
registration, and the front end keeps it for all the registered

users. The initialization value of i is 1.

Then the front end returns  ,ID T to the user, and

store the information  , ,ID N i for each registered user.

The user and front-end both maintain a counter

synchronously after registration, and its initialization value is
1.

B. Authentication

Before executing YML application, the user needs to
interact with front end to complete authentication.

1) User: computes  y h b pw T   and

 c h y counter  , then sends , ,ID c counter to the

front-end;

646

2) Front-End: firstly checks whether the received

counter is same as the local one, if so, computes

  y h ID i x  and  h y counter . If the result

is equal to the received c , then the authentication passes,

otherwise, rejects the user.

3) If the authentication is passed, the user and the front-

end update counter to 1counter  synchronously.

C. Change the password

The user can change its password in an efficient way.

1) User: firstly completes the authentication process in

Section B.

2) User: chooses its new password newpw , and

computes  newh b pw , then sends it to the front end.

3) Front-End: computes

   new old newT T h b pw h b pw     to updates

the value of T , and return newT to the user.

During the process of updating, other parameters are
fixed.

D. Security Analysis

We consider the security of the system in the following
attack.

1) Leak of password
We don’t need to worry about the leak of password. The

password is always combined with b in the calculating

process, which is only stored on the user’s device. So the
attacker cannot launch any attack by utilizing the password.
Furthermore, the user can change its password efficiently
following the steps in Section C.

2) The user’s device suffers attack
If the device has been breached, the attacker can obtain

 , , ,ID T b counter , if it finds the user’s password pw

at the same time, the key proof of user’s identity

  y h ID i x  will be exposed. Now, the attacker is

able to impersonate a legitimate user to access to YML
service. Once the user discovers the situation above-
mentioned, it can report to the front-end, and request for
stopping to response its service application and re-
initializing the system. From the authentication process, we
know the value of y must be re-generated in the re-

initialization process (otherwise, even the user changes the

password and the value of b , the attacker still can pass the

authentication, just need to eavesdrop on the value of

counter). Through replacing i by 1i  , the value of y is

altering while the user’s ID and the front-end’s secret key
x keep fixed, then the user re-registers in the front-end to

complete the re-initialization.

3) Denial of service (DoS)

This is a common and destructive attacking fashion. By
introducing lightweight but effective authentication, all the
calculations with high complexity in YML workflow will be
carried out only the authentication is passed, so the protocol
can resist DoS in a great extent.

4) Replay attack
In the protocol, the user and front-end maintain a

counter synchronously, and the value of counter is

checked before verifying the correctness of

 c h y counter  during the authentication process, so

replay attack is resisted. Meanwhile, the attacker cannot
exploit replay attack to launch flood Dos attack induced by
executing high complexity calculations after passing
authentication. In addition, considering packet loss happens
in network channel, the difference between both sides’
counter is permissible within a certain range. Once the

difference is overranged, then the system probably suffers
from replay attack.

E. Efficiency Analysis

Let X, H, and CON respectively denote XOR operation,
Hash operation, and Concatenation operation. Table I lists
amounts of calculation needed in each process of our
protocol. User registration (UR), Authentication (AU),
Change the Password (CP). User (U), Front End (FE).

TABLE I. AMOUNTS OF CALCULATION NEEDED IN EACH PROCESS

OF OUR PROTOCOL

Calculation
UR AU CP

U FE U FE U FE

X 1 2 2 2 1 2

H 1 1 1 2 1 0

CON 0 1 0 1 0 0

Through the analysis in TABLE I, only a few lightweight

calculations, including XOR, Hash, and Concatenation
operation, need to operate in each process. So our protocol is
feasible in computational efficiency, and can be easily
integrated into the existed workflow.

IV. CONCLUSIONS AND PERSPECTIVES

Based on the analysis of the security concerns of YML
framework, a lightweight authentication protocol was
advanced to allow the legitimate users logging in the
framework efficiently, and the protocol can resist denial of
service attack, replay attack, meanwhile, the system
possesses the capacity of self-healing, thus the utilization of
computing resources can be controlled.

Our aim is to improve the proposed protocol by
deploying and testing it in the YML framework. The testing
phase will bring new perspectives and will show needed
adaptation of the current method.

ACKNOWLEDGMENT

This paper is supported by National Natural Science
Foundation of China: “Research on Trusted Technologies for
The Terminals in The Distributed Network Environment”

647

(Grant No. 60903018), “Research on the Security
Technologies for Cloud Computing Platform” (Grant No.
61272543), and “The National Twelfth Five-Year Key
Technology Research and Development Program of the
Ministry of Science and Technology of China” (Grant No.
2013BAB06B04).

REFERENCES

[1] YML Project Page, http://yml.prism.uvsq.fr

[2] PRiSM Laboratory, http://www.prism.uvsq.fr/

[3] Inria-Futurs, http://www.inria.fr/

[4] LIFL, http://www.lifl.fr/

[5] O. Delannoy, S. Petiton. A Peer to Peer Computing Framework:
Design and Performance Evaluation of YML. In: Proceedings of
Third International Workshop on Parallel and Distributed Computing,
2004. IEEE Computer Society, Los Alamitos, 2004. 362-369.

[6] O. Delannoy, N. Emad, S. Petiton. Workflow Global Computing with
YML. In: Proceedings of the 7th IEEE/ACM International
Conference on Grid Computing, GRID’06. ACM Press, New York,
2006. 25-32.

[7] L. Choy, O. Delannoy, N. Emad, S. Petiton. Federation and
Abstraction of Heterogeneous Global Computing Platforms with the
YML Framework. In: Proceedings of International Conference on
Complex, Intelligent and Software Intensive Systems, CISIS’09.
IEEE Computer Society, Los Alamitos, 2009. 451-456.

[8] L. Shang, S. Petiton, N. Emad, X. L. Yang, ZH. J. Wang. Extending
YML to Be a Middleware for Scientific Cloud Computing. In:
Proceedings of First International Conference on Cloud Computing,
CloudCom 2009. Berlin: Springer-Verlag, 2009. LNCS 5931: 662-
667.

[9] L. Shang, S. Petiton, N. Emad, X. L. Yang. YML-PC: A Reference
Architecture Based on Workflow for Building Scientific Private
Clouds. Cloud Computing Principles, Systems and Applications.
Berlin: Springer-Verlag, 2010. Volume 0, Part 2, 145-162.

648

