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Abstract—A tree with complicated labels can widely represent 

objects in the real world. In this paper, the sum of matched 

pair similarity is used only to measure the similarity of such 

trees, while omitting inserted nodes and deleted nodes in the 

maximum mapping conditions of edit operations. The principle 

of path decompositions of trees is resolved and illustrated to be 

based essentially on the same mapping requirements. The 

leftmost path decomposition is implemented as one example of 

the algorithms for the similarity of trees with complicated 

labels. 

Keywords-similarity of trees; tree edit operation; mapping 

conditions; complicated labels; path decompositions  

I.  INTRODUCTION 

Comparing trees has been applied extensively in many 

fields such as web page retrieval, organization management, 

product similarity, computational biology, natural language 

processing, and various others over the years
[1,2]

.  

The tree edit distance between two ordered labeled trees is 

the most common method to measure the similarity of trees. 

Computation of this distance focuses on finding the 

minimum cost of a sequence of deletions, insertions, and re-

labels in both trees so that they can be transformed into 

isomorphic trees. 

The edit distance method originated from the string-to-

string correction problem proposed by Wagner in 1974
[3]

. It 

was then developed into the tree-to-tree correction problem 

by Tai in 1979, with a time complexity of О(n
6
)

[4]
. In 1989, 

K. Zhang proposed the simple fast algorithms for editing the 

distance between trees to reduce the complexity to О(n
4
)

[5]
. 

In 1998, Klein used the heavy path decomposition algorithm 

to make the calculation cost of edit distance О(n
3
log(n))

[6]
. 

In 2005, S. Dulucq’s method changed the complexity to 

О(n
2
log

2
(n))

[7]
. In 2009, E. D. Demaine analyzed the family 

of decomposition strategies and presented the optimal 

decomposition algorithm whose time complexity is О(n
3
)

[8]
. 

At present, the tree similarity can be computed by edit 

distance, and the trees in the previously mentioned papers 

are rooted, ordered, and labeled with a single character, in 

which the two nodes in both trees are clearly equal. In 

reality, the nodes of trees as abstract representations of 

practical problems cannot just be labeled with simple 

symbols; the nodes need be expressed by more complicated 

symbols. Similar trees should also be measured only 

through the mapping pairs or the relabeled and equal nodes 

in isomorphic trees without considering the deleted and 

inserted nodes. 

In this paper, the similarity of the mapping pairs is given 

to measure the similarity of trees with complicated labels. 

Both methods of edit distance and mapping pair similarity 

are based on the same mapping theorem. The former 

calculates the cost of three kinds of edit operations while the 

latter computes the sum of the similarity of mapping pairs to 

measure the similarity of trees. 
Our roadmap: In Section 2, the formal presentation of a 

tree is given with the nodes labeled using complicated 
symbols such as functions and hierarchical codes, and the 
definition of similarity between both nodes. In Section 3, the 
mapping theorem and the similarity between such trees are 
presented. The similarity of the algorithms of specific trees 
based on path decompositions and the mapping theorem is 
resolved in Section 4. The implementation of the leftmost 
path decomposition as one example of decomposition 
algorithm and its complexity are discussed in Section 5. 
Final conclusions are presented in Section 6. 

II. TREES WITH COMPLICATED LABELS AND THE 

SIMILARITY OF NODES 

The information of a complex object can be clearly 

demonstrated by a tree structure, in which the nodes need to 

be labeled with complicated symbols. These symbols 

contain more messages than a single character; in this case, 

the cost of re-labeling or deleting is inaccurate to describe 

the differences of one node from another. 

In Figure 1, two images are modeled by the same tree 

structure. The values of their flower nodes are (R87 G196 

B60) and (R67 G188 B77), respectively. Their shapes and 

structures look similar, but their node labels are not the 

same.  

In Figure 2, two nodes in function trees have the same 

type but different parameters. Thus, determining the similar 

degree of the nodes using only edit operations such as 

changing, inserting, or deleting is difficult.  

The above nodes are similar but not identical, and their 

edit cost cannot be confirmed simply by 1 or 0. The 

similarity of two nodes in the range of [0, 1] contrary to the 

edit cost is defined. 
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Figure 1 Tree structures of the image 

 
Figure 2 Function trees 

Without loss of generality, let the label of every node be a 

function expression f(), and let T and T` be trees. T[i] 

denotes the node of T whose position is i in the given 

ordering for nodes of T, such as pre-order or post-order. 

|T|=m is the number of nodes of T. T`[j] and |T`|=n are 

similarly defined. 

Suppose that the label of a node T[i] is f(i), and the label 

of a node T`[j] is k(j). Thus, the similarity of T[i] and T`[j] 

is defined as S_NODE(i, j)=1-D((f(i), k(j))/A, in which D is 

a kind of mathematical distance such as Euclidean distance, 

and A is a specified constant.  

If the node is null with notation ø, we set 

S_NODE(i,j)∈[0,1], S_NODE(ø,j)=0 and S_NODE(i,ø)=0, 

S_NODE(ø, ø)=0. 

III. A MAPPING BETWEEN TREES AND THE SIMILARITY OF 

TREES 

A mapping between trees produced by edit operations is a 

graphical specification of what edit operations apply to each 

node in the two trees. Consider the diagram of a mapping in 

Fig. 3. 

 

Figure 3 Mapping between trees 

A dotted line from T[i] to T`[j] indicates that 0≦

S_NODE(i, j)≦1 and (T[i], T`[j]) or (i, j) are mapping pairs. 

Nodes of T and T` not touched by dotted lines remain 

unchanged and do not affect comparing trees, where 

S_NODE(i, ø)=0 and S_NODE(ø, j)=0. Such a diagram is 

called a mapping expressed as a triple (M, T, T`), where M 

is any set of mapping pairs of integers (i, j) from T to T`, 

1≤i≤|T|, 1≤j≤|T`|, satisfying the following theorem: 

For any pair of (i1, j1) and (i2, j2) in M: 

(a) i1 = i2 if and only if j1 = j2 (one-to-one), 

(b) i1 is to the left (or right) of i2 if and only if j1 is to the left 

(or right) of j2 (sibling order), and 

(c) i1 is an ancestor (or descendant) of i2 if and only if j1 is 

an ancestor (or descendant) of j2 (ancestor order). 

In the condition that tree structures keep intact without 

inserting and deleting operations, the accumulative 

similarity of mapping pairs in accordance with the above 

conditions can adequately reflect the similarity of two trees. 

The mapping similarity S_MAP(M) or S_MAP(T,T`) 

between T and T` is defined as the sum of the similarity of 

mapping pairs: 





Mji

jiNODES

TTMAPSMMAPS

),(

),(_

`),(_)(_
                       (1) 

In any sequence of edit operations of changing, inserting, 

and deleting that transforms T into T`, a mapping M exists 

such that the cost (M) is minimum, and the nodes with 

inserting and deleting operations contribute little to the 

similarity of trees. The maximum number of mapping pairs 

mean the maximum S_MAP(M) and the minimum cost (M), 

and the trees are most similar if every S_NODE(i, j) in M is 

equal.  

Thus, the similarity of two trees S_TREE(T, T`) is 

determined by a maximum S_MAP(M) from T to T`, which 

should be equivalent to a minimum cost mapping under 

conditions that all insert, delete, and change operations cost 

the same value as one. The edit distance d(T, T`) from T to 

T` is defined as the minimum cost of one in all sequences of 

edit operations, or d(T, T`) is the min cost(M). Thus, d(T, T`) 

is in fact consistent with the similarity of trees S_TREE(T, 

T`). 

To compute S_TREE(T, T`) and the set of mapping pairs 

M, which is the largest common substructure of both 

compared trees, the maximum mapping similarity needs to 

be found, i.e.,   
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IV. ANALYSIS OF THE COMPUTATION OF SIMILARITY OF 

TREES ON THE MAPPING THEOREM EPARE  

This paper still uses dynamic programming to compute 

S_TREE(T, T`) by decomposing two trees according to the 

mapping theorem. 

The nodes in T and T` are post-order numbered below. 

Let T(i1:i2) denote the portion of T consisting of nodes T[i1], 

f8(x) 

f5(x) f6(x) 

f4(x) 

f3(x) 

f7(x) k4(y) k6(y) 

k3(y) 

k1(y) k2(y) 

f1(x) 

k7(y) 

f2(x) k5(y) 

Contour1 

spline (0,0,1,3,9,-5) Line (5,5,-7,-10) 

Contour2 

spline (9,10,0,1,3,8) Line (1,-1,9,11) 

rose 

flower (R243G58B169)  leaf (R106G210B91) 

flower (R86G154B169) leaf (R173G82B157) 

rose 
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T[i1+1], …T[i2]. When T[i1] is the leftmost leaf node of the 

tree rooted at T[i2], T(i1:i2) is called a sub-tree denoted as 

LT(i2), and T[i1] is represented as L(i2). T`(j1:j2), LT`(j2), 

and L(j2) are similarly defined. 

Let S_TREE(i, j) be the similarity of tree T(1:i) and tree 

T`(1:j). M is the set of mapping pairs from T(1:i) to T`(1:j). 

Thus, )),(_(),(_
),(





Mji

jiNODESMAXjiTREES , S_TREE(T, 

T`)= S_TREE(|T|, |T`|). 

Let S_TREE(LT(i),LT`(j)) or S_TREE((L(i):i, L(j):j) be 

the similarity of sub-tree T(L(i):i) and sub-tree T(L(j):j), 

which is also called SUB_TREE(i,j). ML is the set of 

mapping pairs from LT(i) to LT`(j).  

)),(_(

):)(,:)((_),(_
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In dynamic programming, at least one of the following 

three cases must hold: 

Case 1: T[i+1] is not touched by a dotted line, then 

S_TREE(i+1,j+1)=S_TREE(i,j+1) +S_NODE(i+1, ø) 

=S_TREE(i,j+1). 

Case 2: T`[j+1] is not touched by a dotted line, then 

S_TREE(i+1,j+1)=S_TREE(i+1,j) +S_NODE(ø, j+1) 

=S_TREE(i+1,j). 

Case 3: T[i+1] and T`[j+1] are touched by the same dotted 

line (i+1, j+1). If (i+1,j+1) does not conflict with M 

according to the mapping conditions, then S_TREE(i+1, 

j+1)= S_TREE(i, j)+ S_NODE(i+1, j+1); otherwise, the 

formula must be revised under the following circumstances.  

In the above three determined cases: S_TREE(i+1,j+1) 

=MAX(S_TREE(i,j)+ S_NODE(i+1,j+1), S_TREE(i+1,j), 

S_TREE(i,j+1)). 

In case 3, both the key and the challenge lie in the 

computation whether (i+1, j+1) is satisfied with the 

mapping conditions and in the set of mapping pairs M, 

which is determined by the statuses of the descendants and 

siblings of the current node in the post-order. The paths are 

the most critical in determining mapping pairs. In Figure 4, 

(i2, j2) in M hold under the condition of (i1, j1) in M only by 

comparing path1 and path`1, but not path1 and path`2. (i2, 

j`2) in M hold only by comparing path1 and path`2.  

 

Figure 4 Paths and ancestry 

Hence, whether (i+1, j+1) meets the mapping conditions 

in comparing T and T` under MAX(S_MAP(M)) can be 

completed by the contrast of one path in T with any path in 

T`. Thus, only two cases need be solved: 

1) Node i+1 and node j+1 are in the two compared paths 

simultaneously. 

2) Node i+1 and node j+1 are not in the two compared 

paths simultaneously. 

The following basic situations contribute to analyze the 

problem further, as shown in Figure 5.  

 

Figure 5 Typical situations 

A tree with at least one node is called a single-node tree, a 

tree that is a two-level tree with a parent node and son nodes 

is called a basic tree, and a tree with three levels or more is 

called a complex tree. 

When T and T` are basic trees, if the parent node i of T 

maps with one of son(leaf) nodes 1,2,…,j-1 of T`, (i,1) or 

(i,…) or (i,j-1) in M can hold, and (i,j) in M cannot hold, 

and S_TREE(T,T`)=MAX(S_NODE(i,1), S_NODE(i,2),…, 

S_NODE(i,j-1)), which is same as the second situation; if 

the parent node i of T maps with the parent node j of T`, (i,j) 

in M can hold, and S_TREE (T,T`) = MAX(S_TREE(i-1, j-

1)+S_NODE(i,j), S_TREE(i,j-1), S_TREE(i-1,j)) and vice 

versa. 

When T and T` are complex trees, firstly, the similarity 

S_TREE(i,j) of the basic trees rooted at the penultimate 

nodes of the two compared paths as sub-tree 1 and 1` in T 

and T` is computed like the third situation. Then, the next 

nodes i+1 and j+1 are in basic tree 2 and 2`, respectively, 

whose roots are the siblings of the roots of the first sub-trees. 

Whether (i+1,j+1) in M holds depends only on comparing 

tree 2 and 2` according to their descendant mapping 

conditions, which is the same as the computation of tree 1 

and 1` due to SUB_TREE(i+1,j+1)= S_TREE 

(T(L(i+1) :(i+1)),T`((L(j+1):(j+1))), so S_TREE(i+1, 

j+1)=S_TREE(L(i+1)-1,L(j+1)-1)+SUB_TREE(i+1,j+1).  

Thus, computations are done recursively until the starting 

nodes of the paths. This solves the problems in case 3. 

Every path in trees hangs sub-trees that root at the sons of 

the nodes in paths. Thus, trees are decomposed into sub-

trees by paths, and sub-trees are to be split recursively. Any 

Path1 Path`1 

Path`2 

T T` 

i1 j1 

i2 
j2 

j`2 

(1) 

(2) 

(3) 

(4) 
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path decomposition to a tree such as the heavy path or the 

leftmost path aims at the valid establishment of mapping 

pairs. Well-designed path decompositions can reduce the 

complexity of similarity algorithms by reducing the number 

of sub-trees. Therefore, the decomposition method should 

be designed based on the features of tree structures on 

specific issues. 

V. IMPLEMENTATION OF AN ALGORITHM OF THE 

SIMILARITY OF TREES WITH COMPLICATED LABELS 

Let Ø be a null tree, S_TREE(T, Ø)=0, S_TREE(Ø, 

T`)=0 ， S_TREE(Ø, Ø)=0 as initial conditions of the 

following computations. 

The nodes in T and T` are post-order numbered, which 

are respectively placed in two structure-type arrays T[m] 

and T`[n] sequentially by a child-sibling-link. Every 

element in T[m] and T`[n] contains four fields: {Code; /* 

post-order number*/ Data; /*complicated label*/ Child; 

/*the first child pointer*/ Sibling; /*the left sibling 

pointer*/ }. 

All root nodes of sub-trees hanging in the leftmost paths
[5]

 

in T are put in the array P[m`], Similarly P`[n`] is in T`. 

The algorithm for the similarity of trees with complicated 

labels consists of the following key steps: 

1) B=S_TREE(L(P[i`]):i, L(P`[j`]):(j-1)); 

2) C=S_TREE(L(P[i`]):(i-1), L(P`[j`]):j); 

3) if L(i)=L(P[i`]) and L(j)=L(P`[j`]) 

{E=S_TREE(L(P[i`]):(i-1),L(P`[j`]):(j-1))+ S_NODE(i, j); 

SUB_TREE(i,j)=S_TREE(L(P[i`]):i, 

L(P`[j`]):j)=MAX{E,B,C}; /*SUB_TREE(i,j) put in array 

SS[i][j]*/} 

4) else 

{F=S_TREE(L(P[i`]):(L(i)-1),L(P`[j`]):(L(j)-1))+ 

SUB_TREE(i,j);  

S_TREE(L(P[i`]):i,L(P`[j`]):j)=MAX{F,B,C}} 

5) S_TREE(T,T`)=S_TREE(P[m],P`[n`]); /*S_TREE(i,j) 

put in array TT[i][j]*/ 

The similarity between T and T` in Figure 3 was 

computed by the above algorithm. For simplicity, the 

similarity of the roots of T and T` S_NODE(8, 7)=1, 

S_NODE(ø, j)=0, S_NODE(i, ø)=0, S_NODE(i,j)=1-(m+n-

i-j)*0.01, P[m`]={2,4,6,7,8}, P`[ n`]={2,6,7} is assumed. 
The results in array SS[i][j] and TT[i][j] of applying the 

algorithms to T and T` are shown in Table Ⅰ.  

The complexity of the algorithm is primarily affected by 

the number of sub-trees hanging in paths and the number of 

nodes in every sub-tree, which is О(n
4
) in the worst case.  

VI. CONCLUSION  

Compared with the edit distance, the similarity of the 
sum of matched nodes is a better way of comparing trees 
with complicated labels, which underlines the matched nodes 
and omits the other inserted and deleted nodes. This method 

conforms to the intuitive thinking of people in comparing 
things, and is more concise and realistic. 

Table Ⅰ Matrix of the similarity of sub-trees 

 1 2 3 4 5 6 7 

1 0.87 0.88 0.89 0.9 0.91 0.92 0.93 

2 0.88 1.76 1.76 1.76 1.82 1.83 1.83 

3 0.89 1.78 1.78 1.78 2.69 2.7 2.7 

4 0.9 1.79 1.82 1.84 2.7 3.64 3.64 

5 0.91 1.79 2.72 2.76 2.76 2.76 4.61 

6 0.92 1.84 2.72 2.76 3.72 3.73 4.61 

7 0.93 1.86 2.72 2.76 3.73 3.74 4.61 

8 0.94 1.86 2.82 3.69 3.73 3.74 4.74 

 1 2 3 4 5 6 7 

1 0.87  0.88  0.89  0.90  0.91  0.92  0.93  

2 0.88  0.89  0.90  0.91  0.92  0.93  0.94  

3 0.89  0.90  0.91  0.92  0.93  0.94  0.95  

4 0.90  0.91  1.82  1.84  0.94  1.88  1.90  

5 0.91  0.92  2.72  2.76  0.95  1.90  4.61  

6 0.92  0.93  0.94  0.95  0.96  0.97  0.98  

7 0.93  0.94  0.95  0.96  0.97  0.98  0.99  

8 0.94  0.95  2.82  3.69  0.98  1.96  4.74  

ACKNOWLEDGMENT 

This work was supported by the Shandong Provincial 

Science and Technology Development Plan 

(2010G0020807), and the Shandong Provincial Key 

Laboratory Project. 

REFERENCES 

[1] P. Bille. A survey on tree edit distance and related problems [J]. 
Theoretical computer science, 337: 217–239, 2005. 

[2] J. Jansson, Z. Peng. Algorithms for finding a most similar sub-
forest[C]. Proceeding of the 17th annual symposium on combinatorial 
pattern matching (CPM2006), 4009: 377–388, 2006. 

[3] R. A. Wagner. The string-to-string correction problem[J]. Journal of 
the Association for Computing Machinery, 21(1): 168–173, 1974. 

[4] K. C. Tai. The tree-to-tree correction problem[J]. Journal of the 
Association for Computing Machinery, 26(3): 422–433, 1979. 

[5] Kaizhong Zhang, Dennis Shasha. Simple fast algorithms for the 
editing distance between trees and related problems[J]. Society for 
Industrial and Applied Mathematics, 18(6): 1245–1262, 1989. 

[6]  P. N. Klein. Computing the edit-distance between unrooted ordered 
trees[J]. ESA’98, LNCS 1461: 91–102, 1998. 

[7] S. Dulucq, H. Touzet. Analysis of tree edit distance algorithms[J]. 
Journal of Discrete Algorithms, 3(2–4): 448–471, 2005.  

[8] E. D. Demaine, S. Mozes, B. Rossman, etc. An optimal 
decomposition algorithm for tree edit distance[J]. ACM Transactions 
on Algorithms, 6(1): 2:1–2:19, 2009. 

 

130




