
A similarity algorithm of trees with complicated labels

Wang Jihua

College of Information Science and Engineering,

Shandong Normal University,

Shandong Provincial Key Laboratory for Distributed

Computer Software Novel Technology,

Jinan, China

e-mail: jihuaaw@126.com

Liu Yiliang

College of Information Science and Engineering,

Shandong Normal University,

Shandong Provincial Key Laboratory for Distributed

Computer Software Novel Technology,

Jinan, China

e-mail: ytyl_liu@aliyun.com

Abstract—A tree with complicated labels can widely represent

objects in the real world. In this paper, the sum of matched

pair similarity is used only to measure the similarity of such

trees, while omitting inserted nodes and deleted nodes in the

maximum mapping conditions of edit operations. The principle

of path decompositions of trees is resolved and illustrated to be

based essentially on the same mapping requirements. The

leftmost path decomposition is implemented as one example of

the algorithms for the similarity of trees with complicated

labels.

Keywords-similarity of trees; tree edit operation; mapping

conditions; complicated labels; path decompositions

I. INTRODUCTION

Comparing trees has been applied extensively in many

fields such as web page retrieval, organization management,

product similarity, computational biology, natural language

processing, and various others over the years
[1,2]

.

The tree edit distance between two ordered labeled trees is

the most common method to measure the similarity of trees.

Computation of this distance focuses on finding the

minimum cost of a sequence of deletions, insertions, and re-

labels in both trees so that they can be transformed into

isomorphic trees.

The edit distance method originated from the string-to-

string correction problem proposed by Wagner in 1974
[3]

. It

was then developed into the tree-to-tree correction problem

by Tai in 1979, with a time complexity of О(n
6
)

[4]
. In 1989,

K. Zhang proposed the simple fast algorithms for editing the

distance between trees to reduce the complexity to О(n
4
)

[5]
.

In 1998, Klein used the heavy path decomposition algorithm

to make the calculation cost of edit distance О(n
3
log(n))

[6]
.

In 2005, S. Dulucq’s method changed the complexity to

О(n
2
log

2
(n))

[7]
. In 2009, E. D. Demaine analyzed the family

of decomposition strategies and presented the optimal

decomposition algorithm whose time complexity is О(n
3
)

[8]
.

At present, the tree similarity can be computed by edit

distance, and the trees in the previously mentioned papers

are rooted, ordered, and labeled with a single character, in

which the two nodes in both trees are clearly equal. In

reality, the nodes of trees as abstract representations of

practical problems cannot just be labeled with simple

symbols; the nodes need be expressed by more complicated

symbols. Similar trees should also be measured only

through the mapping pairs or the relabeled and equal nodes

in isomorphic trees without considering the deleted and

inserted nodes.

In this paper, the similarity of the mapping pairs is given

to measure the similarity of trees with complicated labels.

Both methods of edit distance and mapping pair similarity

are based on the same mapping theorem. The former

calculates the cost of three kinds of edit operations while the

latter computes the sum of the similarity of mapping pairs to

measure the similarity of trees.
Our roadmap: In Section 2, the formal presentation of a

tree is given with the nodes labeled using complicated
symbols such as functions and hierarchical codes, and the
definition of similarity between both nodes. In Section 3, the
mapping theorem and the similarity between such trees are
presented. The similarity of the algorithms of specific trees
based on path decompositions and the mapping theorem is
resolved in Section 4. The implementation of the leftmost
path decomposition as one example of decomposition
algorithm and its complexity are discussed in Section 5.
Final conclusions are presented in Section 6.

II. TREES WITH COMPLICATED LABELS AND THE

SIMILARITY OF NODES

The information of a complex object can be clearly

demonstrated by a tree structure, in which the nodes need to

be labeled with complicated symbols. These symbols

contain more messages than a single character; in this case,

the cost of re-labeling or deleting is inaccurate to describe

the differences of one node from another.

In Figure 1, two images are modeled by the same tree

structure. The values of their flower nodes are (R87 G196

B60) and (R67 G188 B77), respectively. Their shapes and

structures look similar, but their node labels are not the

same.

In Figure 2, two nodes in function trees have the same

type but different parameters. Thus, determining the similar

degree of the nodes using only edit operations such as

changing, inserting, or deleting is difficult.

The above nodes are similar but not identical, and their

edit cost cannot be confirmed simply by 1 or 0. The

similarity of two nodes in the range of [0, 1] contrary to the

edit cost is defined.

International Conference on Computer Science and Service System (CSSS 2014)

© 2014. The authors - Published by Atlantis Press 127

mailto:jihuaaw@126.com
mailto:ytyl_liu@aliyun.com

Figure 1 Tree structures of the image

Figure 2 Function trees

Without loss of generality, let the label of every node be a

function expression f(), and let T and T` be trees. T[i]

denotes the node of T whose position is i in the given

ordering for nodes of T, such as pre-order or post-order.

|T|=m is the number of nodes of T. T`[j] and |T`|=n are

similarly defined.

Suppose that the label of a node T[i] is f(i), and the label

of a node T`[j] is k(j). Thus, the similarity of T[i] and T`[j]

is defined as S_NODE(i, j)=1-D((f(i), k(j))/A, in which D is

a kind of mathematical distance such as Euclidean distance,

and A is a specified constant.

If the node is null with notation ø, we set

S_NODE(i,j)∈[0,1], S_NODE(ø,j)=0 and S_NODE(i,ø)=0,

S_NODE(ø, ø)=0.

III. A MAPPING BETWEEN TREES AND THE SIMILARITY OF

TREES

A mapping between trees produced by edit operations is a

graphical specification of what edit operations apply to each

node in the two trees. Consider the diagram of a mapping in

Fig. 3.

Figure 3 Mapping between trees

A dotted line from T[i] to T`[j] indicates that 0≦

S_NODE(i, j)≦1 and (T[i], T`[j]) or (i, j) are mapping pairs.

Nodes of T and T` not touched by dotted lines remain

unchanged and do not affect comparing trees, where

S_NODE(i, ø)=0 and S_NODE(ø, j)=0. Such a diagram is

called a mapping expressed as a triple (M, T, T`), where M

is any set of mapping pairs of integers (i, j) from T to T`,

1≤i≤|T|, 1≤j≤|T`|, satisfying the following theorem:

For any pair of (i1, j1) and (i2, j2) in M:

(a) i1 = i2 if and only if j1 = j2 (one-to-one),

(b) i1 is to the left (or right) of i2 if and only if j1 is to the left

(or right) of j2 (sibling order), and

(c) i1 is an ancestor (or descendant) of i2 if and only if j1 is

an ancestor (or descendant) of j2 (ancestor order).

In the condition that tree structures keep intact without

inserting and deleting operations, the accumulative

similarity of mapping pairs in accordance with the above

conditions can adequately reflect the similarity of two trees.

The mapping similarity S_MAP(M) or S_MAP(T,T`)

between T and T` is defined as the sum of the similarity of

mapping pairs:





Mji

jiNODES

TTMAPSMMAPS

),(

),(_

`),(_)(_
 (1)

In any sequence of edit operations of changing, inserting,

and deleting that transforms T into T`, a mapping M exists

such that the cost (M) is minimum, and the nodes with

inserting and deleting operations contribute little to the

similarity of trees. The maximum number of mapping pairs

mean the maximum S_MAP(M) and the minimum cost (M),

and the trees are most similar if every S_NODE(i, j) in M is

equal.

Thus, the similarity of two trees S_TREE(T, T`) is

determined by a maximum S_MAP(M) from T to T`, which

should be equivalent to a minimum cost mapping under

conditions that all insert, delete, and change operations cost

the same value as one. The edit distance d(T, T`) from T to

T` is defined as the minimum cost of one in all sequences of

edit operations, or d(T, T`) is the min cost(M). Thus, d(T, T`)

is in fact consistent with the similarity of trees S_TREE(T,

T`).

To compute S_TREE(T, T`) and the set of mapping pairs

M, which is the largest common substructure of both

compared trees, the maximum mapping similarity needs to

be found, i.e.,

)),(_(

))(_(`),(_

),(








Mji

jiNODESMAX

MMAPSMAXTTTREES
 (2)

IV. ANALYSIS OF THE COMPUTATION OF SIMILARITY OF

TREES ON THE MAPPING THEOREM EPARE

This paper still uses dynamic programming to compute

S_TREE(T, T`) by decomposing two trees according to the

mapping theorem.

The nodes in T and T` are post-order numbered below.

Let T(i1:i2) denote the portion of T consisting of nodes T[i1],

f8(x)

f5(x) f6(x)

f4(x)

f3(x)

f7(x) k4(y) k6(y)

k3(y)

k1(y) k2(y)

f1(x)

k7(y)

f2(x) k5(y)

Contour1

spline (0,0,1,3,9,-5) Line (5,5,-7,-10)

Contour2

spline (9,10,0,1,3,8) Line (1,-1,9,11)

rose

flower (R243G58B169) leaf (R106G210B91)

flower (R86G154B169) leaf (R173G82B157)

rose

128

T[i1+1], …T[i2]. When T[i1] is the leftmost leaf node of the

tree rooted at T[i2], T(i1:i2) is called a sub-tree denoted as

LT(i2), and T[i1] is represented as L(i2). T`(j1:j2), LT`(j2),

and L(j2) are similarly defined.

Let S_TREE(i, j) be the similarity of tree T(1:i) and tree

T`(1:j). M is the set of mapping pairs from T(1:i) to T`(1:j).

Thus,)),(_(),(_
),(





Mji

jiNODESMAXjiTREES , S_TREE(T,

T`)= S_TREE(|T|, |T`|).

Let S_TREE(LT(i),LT`(j)) or S_TREE((L(i):i, L(j):j) be

the similarity of sub-tree T(L(i):i) and sub-tree T(L(j):j),

which is also called SUB_TREE(i,j). ML is the set of

mapping pairs from LT(i) to LT`(j).

)),(_(

):)(,:)((_),(_

),(








LMji

jiNODESMAX

jjLiiLTREESjiTREESUB
 (3)

In dynamic programming, at least one of the following

three cases must hold:

Case 1: T[i+1] is not touched by a dotted line, then

S_TREE(i+1,j+1)=S_TREE(i,j+1) +S_NODE(i+1, ø)

=S_TREE(i,j+1).

Case 2: T`[j+1] is not touched by a dotted line, then

S_TREE(i+1,j+1)=S_TREE(i+1,j) +S_NODE(ø, j+1)

=S_TREE(i+1,j).

Case 3: T[i+1] and T`[j+1] are touched by the same dotted

line (i+1, j+1). If (i+1,j+1) does not conflict with M

according to the mapping conditions, then S_TREE(i+1,

j+1)= S_TREE(i, j)+ S_NODE(i+1, j+1); otherwise, the

formula must be revised under the following circumstances.

In the above three determined cases: S_TREE(i+1,j+1)

=MAX(S_TREE(i,j)+ S_NODE(i+1,j+1), S_TREE(i+1,j),

S_TREE(i,j+1)).

In case 3, both the key and the challenge lie in the

computation whether (i+1, j+1) is satisfied with the

mapping conditions and in the set of mapping pairs M,

which is determined by the statuses of the descendants and

siblings of the current node in the post-order. The paths are

the most critical in determining mapping pairs. In Figure 4,

(i2, j2) in M hold under the condition of (i1, j1) in M only by

comparing path1 and path`1, but not path1 and path`2. (i2,

j`2) in M hold only by comparing path1 and path`2.

Figure 4 Paths and ancestry

Hence, whether (i+1, j+1) meets the mapping conditions

in comparing T and T` under MAX(S_MAP(M)) can be

completed by the contrast of one path in T with any path in

T`. Thus, only two cases need be solved:

1) Node i+1 and node j+1 are in the two compared paths

simultaneously.

2) Node i+1 and node j+1 are not in the two compared

paths simultaneously.

The following basic situations contribute to analyze the

problem further, as shown in Figure 5.

Figure 5 Typical situations

A tree with at least one node is called a single-node tree, a

tree that is a two-level tree with a parent node and son nodes

is called a basic tree, and a tree with three levels or more is

called a complex tree.

When T and T` are basic trees, if the parent node i of T

maps with one of son(leaf) nodes 1,2,…,j-1 of T`, (i,1) or

(i,…) or (i,j-1) in M can hold, and (i,j) in M cannot hold,

and S_TREE(T,T`)=MAX(S_NODE(i,1), S_NODE(i,2),…,

S_NODE(i,j-1)), which is same as the second situation; if

the parent node i of T maps with the parent node j of T`, (i,j)

in M can hold, and S_TREE (T,T`) = MAX(S_TREE(i-1, j-

1)+S_NODE(i,j), S_TREE(i,j-1), S_TREE(i-1,j)) and vice

versa.

When T and T` are complex trees, firstly, the similarity

S_TREE(i,j) of the basic trees rooted at the penultimate

nodes of the two compared paths as sub-tree 1 and 1` in T

and T` is computed like the third situation. Then, the next

nodes i+1 and j+1 are in basic tree 2 and 2`, respectively,

whose roots are the siblings of the roots of the first sub-trees.

Whether (i+1,j+1) in M holds depends only on comparing

tree 2 and 2` according to their descendant mapping

conditions, which is the same as the computation of tree 1

and 1` due to SUB_TREE(i+1,j+1)= S_TREE

(T(L(i+1) :(i+1)),T`((L(j+1):(j+1))), so S_TREE(i+1,

j+1)=S_TREE(L(i+1)-1,L(j+1)-1)+SUB_TREE(i+1,j+1).

Thus, computations are done recursively until the starting

nodes of the paths. This solves the problems in case 3.

Every path in trees hangs sub-trees that root at the sons of

the nodes in paths. Thus, trees are decomposed into sub-

trees by paths, and sub-trees are to be split recursively. Any

Path1 Path`1

Path`2

T T`

i1 j1

i2
j2

j`2

(1)

(2)

(3)

(4)

129

path decomposition to a tree such as the heavy path or the

leftmost path aims at the valid establishment of mapping

pairs. Well-designed path decompositions can reduce the

complexity of similarity algorithms by reducing the number

of sub-trees. Therefore, the decomposition method should

be designed based on the features of tree structures on

specific issues.

V. IMPLEMENTATION OF AN ALGORITHM OF THE

SIMILARITY OF TREES WITH COMPLICATED LABELS

Let Ø be a null tree, S_TREE(T, Ø)=0, S_TREE(Ø,

T`)=0 ， S_TREE(Ø, Ø)=0 as initial conditions of the

following computations.

The nodes in T and T` are post-order numbered, which

are respectively placed in two structure-type arrays T[m]

and T`[n] sequentially by a child-sibling-link. Every

element in T[m] and T`[n] contains four fields: {Code; /*

post-order number*/ Data; /*complicated label*/ Child;

/*the first child pointer*/ Sibling; /*the left sibling

pointer*/ }.

All root nodes of sub-trees hanging in the leftmost paths
[5]

in T are put in the array P[m`], Similarly P`[n`] is in T`.

The algorithm for the similarity of trees with complicated

labels consists of the following key steps:

1) B=S_TREE(L(P[i`]):i, L(P`[j`]):(j-1));

2) C=S_TREE(L(P[i`]):(i-1), L(P`[j`]):j);

3) if L(i)=L(P[i`]) and L(j)=L(P`[j`])

{E=S_TREE(L(P[i`]):(i-1),L(P`[j`]):(j-1))+ S_NODE(i, j);

SUB_TREE(i,j)=S_TREE(L(P[i`]):i,

L(P`[j`]):j)=MAX{E,B,C}; /*SUB_TREE(i,j) put in array

SS[i][j]*/}

4) else

{F=S_TREE(L(P[i`]):(L(i)-1),L(P`[j`]):(L(j)-1))+

SUB_TREE(i,j);

S_TREE(L(P[i`]):i,L(P`[j`]):j)=MAX{F,B,C}}

5) S_TREE(T,T`)=S_TREE(P[m],P`[n`]); /*S_TREE(i,j)

put in array TT[i][j]*/

The similarity between T and T` in Figure 3 was

computed by the above algorithm. For simplicity, the

similarity of the roots of T and T` S_NODE(8, 7)=1,

S_NODE(ø, j)=0, S_NODE(i, ø)=0, S_NODE(i,j)=1-(m+n-

i-j)*0.01, P[m`]={2,4,6,7,8}, P`[n`]={2,6,7} is assumed.
The results in array SS[i][j] and TT[i][j] of applying the

algorithms to T and T` are shown in Table Ⅰ.

The complexity of the algorithm is primarily affected by

the number of sub-trees hanging in paths and the number of

nodes in every sub-tree, which is О(n
4
) in the worst case.

VI. CONCLUSION

Compared with the edit distance, the similarity of the
sum of matched nodes is a better way of comparing trees
with complicated labels, which underlines the matched nodes
and omits the other inserted and deleted nodes. This method

conforms to the intuitive thinking of people in comparing
things, and is more concise and realistic.

Table Ⅰ Matrix of the similarity of sub-trees

 1 2 3 4 5 6 7

1 0.87 0.88 0.89 0.9 0.91 0.92 0.93

2 0.88 1.76 1.76 1.76 1.82 1.83 1.83

3 0.89 1.78 1.78 1.78 2.69 2.7 2.7

4 0.9 1.79 1.82 1.84 2.7 3.64 3.64

5 0.91 1.79 2.72 2.76 2.76 2.76 4.61

6 0.92 1.84 2.72 2.76 3.72 3.73 4.61

7 0.93 1.86 2.72 2.76 3.73 3.74 4.61

8 0.94 1.86 2.82 3.69 3.73 3.74 4.74

 1 2 3 4 5 6 7

1 0.87 0.88 0.89 0.90 0.91 0.92 0.93

2 0.88 0.89 0.90 0.91 0.92 0.93 0.94

3 0.89 0.90 0.91 0.92 0.93 0.94 0.95

4 0.90 0.91 1.82 1.84 0.94 1.88 1.90

5 0.91 0.92 2.72 2.76 0.95 1.90 4.61

6 0.92 0.93 0.94 0.95 0.96 0.97 0.98

7 0.93 0.94 0.95 0.96 0.97 0.98 0.99

8 0.94 0.95 2.82 3.69 0.98 1.96 4.74

ACKNOWLEDGMENT

This work was supported by the Shandong Provincial

Science and Technology Development Plan

(2010G0020807), and the Shandong Provincial Key

Laboratory Project.

REFERENCES

[1] P. Bille. A survey on tree edit distance and related problems [J].
Theoretical computer science, 337: 217–239, 2005.

[2] J. Jansson, Z. Peng. Algorithms for finding a most similar sub-
forest[C]. Proceeding of the 17th annual symposium on combinatorial
pattern matching (CPM2006), 4009: 377–388, 2006.

[3] R. A. Wagner. The string-to-string correction problem[J]. Journal of
the Association for Computing Machinery, 21(1): 168–173, 1974.

[4] K. C. Tai. The tree-to-tree correction problem[J]. Journal of the
Association for Computing Machinery, 26(3): 422–433, 1979.

[5] Kaizhong Zhang, Dennis Shasha. Simple fast algorithms for the
editing distance between trees and related problems[J]. Society for
Industrial and Applied Mathematics, 18(6): 1245–1262, 1989.

[6] P. N. Klein. Computing the edit-distance between unrooted ordered
trees[J]. ESA’98, LNCS 1461: 91–102, 1998.

[7] S. Dulucq, H. Touzet. Analysis of tree edit distance algorithms[J].
Journal of Discrete Algorithms, 3(2–4): 448–471, 2005.

[8] E. D. Demaine, S. Mozes, B. Rossman, etc. An optimal
decomposition algorithm for tree edit distance[J]. ACM Transactions
on Algorithms, 6(1): 2:1–2:19, 2009.

130

