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Abstract

We provide a framework for learning risk-neutral mea-
sures (Martingale measures) for pricing options from
high frequency financial data. In a simple geometric
Brownian motion model, a price volatility, a fixed in-
terest rate and a no-arbitrage condition suffice to de-
termine a unique risk-neutral measure. On the other
hand, in our framework, we relax some of these as-
sumptions to obtain a class of allowable risk-neutral
measures. We then propose a framework for learning
the appropriate risk-neural measure. Since the risk-
neutral measure prices all options simultaneously, we
can use all the option contracts on a particular under-
lying stock for learning. We demonstrate the perfor-
mance of these models on historical data. In particu-
lar, we show that both learning without a no-arbitrage
condition and a no-arbitrage condition without learn-
ing are worse than our framework; however the com-
bination of learning with a no-arbitrage condition has
the best result. These results indicate the potential to
learn Martingale measures with a no-arbitrage condi-
tion providing just the right constraint. We also com-
pare our approach to standard Binomial models with
volatility estimates (historical volatility and GARCH
volatility predictors). Finally, we illustrate the power
of such a framework by developing a real time trading
system based upon these pricing methods.

Keywords: Financial Derivative, Martingale, Risk Neu-
tral, Pricing.

1. Introduction
In 1973, Black and Scholes published their pioneering

paper [3] which introduced the first option pricing for-
mula and also developed a general framework for deriva-
tive pricing. Since then, derivative pricing has become a
popular research topic. A modern, popular approach to
pricing has been though the Martingale measure (see,
for example, [10]). The origin of the fundamental theo-
rems on the Martingale measure can be traced to Cox
and Ross’ paper [5] describing the method of risk neutral
valuation. The Martingale measure was developed into
a more mature pricing technique in [1, 7, 8, 9]. Other
related topics can be found in [10, 11]. Often the Mar-
tingale measure is not unique, and we develop a frame-
work for learning the Martingale measure. The same
Martingale measure is used to price all derivatives of

the same underlying stock. This means that data on all
derivatives of the same underlying stock should imply
some knowledge about Martingale measures and can be
used for learning the appropriate Martingale measure.
Our framework has the ability to learn the Martingale
measure from all the option contracts on the same un-
derlying stock. We only use the American call and put
options in our experiments. We use these pricing algo-
rithms to develop a trading strategy and measure the
performance of the pricing by the profit of the trad-
ing. The outline of this paper is as follows: first, we
introduce the two period economy and some notation;
we continue by introducing the definition of arbitrage
and the fundamental theorems of risk neutral pricing,
which are the backbone of our framework. Next, we
present two models for option pricing. The first model
is the binomial model, introduced by Cox, Ross and
Rubinstein [6], and further information can be found
in [10, 12, 13]. We also consider the trinomial model
which is more complicated, and more flexible than the
binomial, [2]. In both models, we discuss what needs
to be learned and how to use Martingale measures to
compute option prices. For background on option pric-
ing and other financial topics, we suggest [2, 12, 13].
Finally, we present some results on the performance of
our approach as compared with other algorithms.

2. Two Period Economy
Before introducing the Martingale measure, we need set
up the notation to describe the economy. Suppose that
there are N instruments at time t, whose price is given
by Si(t), i = 1, . . . , N . For the moment, let’s only
consider a two period economy, t = 0 and t = T . The
instrument price Si(0), after a period of time T , has K
possible states. Si

j(T ), where j=1, . . . , K indexes each
possible state. The probability of state j occurring is
Pj , where j=1, . . . , K and

P
Pj = 1. We can represent

Si
j(T ) and Pj in vector notation,
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We define the payoff matrix as

Z(T ) = [S1(T ), S2(T ), · · · , SK(T )]

=

264 Z11 Z12 · · · Z1K

...
...

. . .
...

ZN1 ZN2 · · · ZNK

375 ,

where Zij indicates the price of Si(T ) in one possible
state j of the economy. In other words, the instrument
prices S(0) at time 0 have probability Pj to be Sj(T )
at time T .

3. No Arbitrage
We now define arbitrage. Intuitively, arbitrage is the
possibility to make money out of nothing. The formal
definitions are follows (see, for example, [10]). A portfo-
lio Θ is a column vector ofN components which denotes
how many units of each instrument is held, and we use
the notation (·)T for the transpose.

Definition 3.1 (Type I Arbitrage): An arbitrage
opportunity of type I exists if and only if there exist a
portfolio Θ such that1

ΘT S(0) ≤ 0 and ΘTZ(T ) ≥ 0.

Definition 3.2 (Type II Arbitrage): An arbitrage
opportunity of type II exists if and only if there exist a
portfolio Θ such that

ΘT S(0) < 0 and ΘTZ(T ) >
= 0.

In words, a type I arbitrage opportunity has a nega-
tive or zero investment today and a nonnegative return
in the future with at least one possible positive return
state; a type II arbitrage opportunity has a negative in-
vestment today and a nonnegative return in the future.
Therefore, if there is an arbitrage in the economy, there
is no risk for anyone investing in this arbitrage portfolio,
and hence every individual will want to consume an infi-
nite amount of such portfolios, creating disequilibrium.
Accordingly, it is natural to disallow such arbitrage op-
portunities.

4. The Risk-Neutral/Martingale Measure
Based on the following two fundamental theorems (see,
for example, [10]), we can determine a Martingale mea-
sure for pricing.

Theorem 4.1 (Positive Supporting Price): The
following statements are equivalent.

1. There do not exist arbitrage opportunities of type
I or type II.

1For vectors, the notation V ≥ 0 indicates each compo-
nent ≥ 0 and at least one component > 0. The notation
V >

= 0 indicates each component ≥ 0, and there is a pos-
sibility that every component = 0.

2. There exists a column vector ψ > 0 such that

S(0) = Z(T )ψ. (1)

Theorem 4.2 (Equivalent Martingale Measure):
There do not exist arbitrage opportunities of type I or II
if and only if there exists a probability vector P̃, called
an equivalent martingale measure such that

Si(0)

S1(0)
= EP̃

»
Si(T )

S1(T )

–
. (2)

In other words, Si(T )/S1(T ) is a martingale under the

measure P̃.

Sometimes, the measure P̃ is also called the risk-neural
measure or the risk-adjusted probabilities. From equa-
tion (1), after some rearrangement, we can obtain P̃i in
term of ψi,

P̃i =
Z1i

S1(0)
ψi and

X
P̃i = 1.

5. Option Pricing
We will always assume the existence of a risk free asset
or bond, B, which has the property that the price of the
bond is B(0) at time 0, and it has the same value in
all states at time T , B1(T ) = Bj(T ), where j = 1, . . . ,
K; simplify the notation Bj(T ) to B(T ), and define the
risk free discount factor, D(T ) = B(0)/B(T ). If we use
the bond B as the instrument S1, then the equation (2)
becomes

Si(0) = D(T )× EP̃

h
Si(T )

i
, i= 1, 2, . . . , K , (3)

which means that the current prices are the present
value of the expected future prices, where the expecta-
tion is with respect to the risk-neural probability mea-
sure.

5.1 Binomial (2-State) Model
The simplest model of a geometric Brownian motion is
the binomial model, [13, 12]. In this model, during each
time step, the price of instrument can only move up or
down (Figure 1.(a)). Let’s consider an economy that
has three instruments, one stock S, one bond B, and
one derivative C. Based on the prices of stock S and
bond B, and using the equation (3), we can discover
that

S(0) = D(T )×
“
P̃1S1(T ) + (1− P̃1)S2(T )

”
. (4)

Therefore, if we know the values2, S1(T ), S2(T ), and
B(T ), and use the current price for S(0) and B(0),
we can compute the unique risk-neural probability from
equation (4)

P̃1 =

“
S(0)
D(T )

”
− S2(T )

S1(T )− S2(T )
.

2There are many techniques to determine appropriate
values for S1(T ) and S2(T ), such as historical volatility
and GARCH volatility predictors, [4].
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Figure 1: The Dynamics of Economy

In this economy, the Martingale measure is unique and
all derivatives of stock S can be priced with risk-neural
probability P̃ and equation (4). For instance, if C is a
derivative whose values at time T are known (eg. a call
option), then

C(0) = D(T )×
“
P̃1C1(T ) + (1− P̃1)C2(T )

”
.

5.2 Trinomial (3-State) Model
Now consider the trinomial model (Figure 1.(b)) in which
(as we will see) the Martingale measure is not unique.
The price S(0) can change to 3 possible values at time
T . Following the same argument as in the binomial
model and applying equation (3) in an economy with
the same three instruments, S, B, and C, we obtain

S(0) = D(T )×
“
P̃1S1(T ) + P̃2S2(T ) + P̃3S3(T )

”
, (5)

and since P̃1 + P̃2 + P̃3 = 1,

P̃2 =

“
S(0)
D(T )

”
− S3(T )

S2(T )− S3(T )
− P̃1 ×

S1(T )− S3(T )

S2(T )− S3(T )
, (6)

P̃3 =

“
S(0)
D(T )

”
− S2(T )

S3(T )− S2(T )
− P̃1 ×

S1(T )− S2(T )

S3(T )− S2(T )
. (7)

From equations (6), (7) and the facts that P̃1, P̃2, P̃3 ≥
0, we can only obtain a range for P̃1: P̃1 ∈ [min,max].

Thus, P̃1 is not uniquely defined. The problem becomes
more complicated; on the other hand, the model be-
comes more flexible, and we can now try to appropri-
ately learn the Martingale measures from more infor-
mation, to obtain a better pricing for the instruments
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Figure 2: The market price of IBM

at time 0. Our work combines learning with the appro-
priate no-arbitrage constraints (eg. (6),(7)) to arrive at
better option pricing.

6. Results
We developed a simple trading system to evaluate our
framework, which we tested using intraday real market
data (5 minutes time period) for IBM (stock and op-
tion data) and interest rate data, from July 20, 2004 to
April 29, 2005. We used the first 80 days, from July
20, 2004 to November 9, 2004, as the training data set,
and used the remaining 118 days as test data set (Fig-
ure 2). We compared the trading performance between
different algorithms.

1. Enforcing No-arbitrage, with learning: This
is our framework which is based on a no-arbitrage
condition, and also a learning algorithm to predict
the Martingale measure.

2. Not Enforcing No-arbitrage, with learning:
This approach is only based on the learning algo-
rithm without no-arbitrage constraints.

3. Enforcing No-arbitrage, no learning: This
approach is to demonstrate that a no-arbitrage
constraint alone, without learning the Martingale
measures is worse than our framework.

4. Not Enforcing No-arbitrage, no learning (ran-
dom strategy): This approach is to develop a
benchmark performance using a random strategy.

5. Binomial model with GARCH(1,1) volatil-
ity predictor: This approach shows a benchmark
performance using binomial model with a popular
GARCH model.

6. Not Enforcing No-arbitrage, learning the
probabilities of each state of the stock as
the risk-neutral probabilities: This approach
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Figure 3: Comparison of the trading results of
stock IBM using different algorithms

is to demonstrate that pricing should be based on
risk-netutral probabilities, not the probabilities of
each state of the stock.

The results of trading using these approaches are shown
in Figure 3. Our framework clearly has the best perfor-
mance. Note that the system still makes money even
when the market crashes. As we move further from the
training window, the performance degrades, though it
remains positive. The results of the other algorithms
are also reasonable because any random trading strat-
egy will systematically lose the transaction cost on each
trade which means that the total profit will drop lin-
early; the results also show that it is useful to use a
no-arbitrage condition because it narrows the range of
Martingale measures to obtain a set of plausible prices,
rather than pure random. Our framework also do a
better job than binomial model with GARCH volatility
predictor because our framework takes the advantage of
learning the Martingale measure from the stock data,
which GARCH model only uses, and also learn from all
the option contracts on the same underlying stock.

7. Conclusions
Our results show that the right constraint (no-arbitrage)
for option pricing can enable one to potentially learn
the Martingale measure. By using a no-arbitrage con-
dition, we can narrow the range of possible Martingale
measures for the learning - the no-arbitrage constraint
regularizes the learning in the right direction to yield a
better learning outcome. Another benefit of our frame-
work is that one can learn the Martingale measure from
all data on all derivatives of the same underlying instru-
ment simultaneously. The derivatives of the same un-
derlying instrument should have correlations which our
framework can utilize to yield better performance. In
addition, by using this framework, the learned Martin-
gale Measure allows us to price all derivatives simultane-
ously, which would significantly improve the efficiency

of pricing. Our future work includes using a moving
training window to increase the performance of predict-
ing the option prices, as we observe a degradation fur-
ther from the training window. We are also expanding
the framework to include derivatives from various dif-
ferent financial markets such as Futures, Commodities
and many others.
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