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Abstract  
String matching of a large string collection on mobile 
devices has been a difficult problem because of the 
memory space and computing speed constraints. We 
propose a method to efficiently determine whether a 
query string exists in the large string collection. The 
proposed method, based on a string encoder using a 
neural network, can perform the task in a consistent 
manner regardlss of the number of strings in the 
collection. The string encoding process is executed on 
the server site, and the result is transmitted to the 
PDAs via the Internet. The server checks a remote 
database containing the most-updated data constantly, 
and thus renders the PDAs the accuracy in filtering the 
query strings. We conducted an experiment that 
simulates the stolen car license plate matching, and the 
results were favorable in both speed and memory 
space requirement. 

Keywords: Text String, Mobile Devices, Neural 
Network 

1. Introduction  
Mobile devices, with their portability, have 

becoming an important tool for a number of 
applications, such as detection of certain strings and 
pictures, and on-line information retrieval in the 
outdoors. In this paper, we address a method that can 
transform a large collection of strings, such as stolen 
car license plates, into a feasible size, and the 
computation complexity for determining whether a 
given string is within the large collection is 
approximately O(1) regardless of the size of the 
collection. The method is particularly suitable for 
applications requiring constant checking of an 
encountering string, and the existential status of the 
string must be determined in a timely fashion. In a 

sense, the problem is a special type of the exact string 
matching problem. A great number of algorithms have 
been developed for solving the exact string matching 
problem since nearly three decades ago, such as Aho-
Corasick [1], Boyer-Moore [2] and Knuth-Morris-
Pratt [3]. A general purpose of these algorithms is to 
find all the locations or to calculate the occurrence of 
the string pattern in the target text, in which the 
computational complexity must be as little as possible. 
More recently, some indexing methods, e.g. the 
inverted files [4], the B-tree [5] and suffix arrays 
[6][7], have devoted themselves to reducing the 
computational complexity by constructing indexing 
structures for accelerating the querying speed. The 
extra memory required by these indexing structures, 
however, presented a drawback because they are 
difficult to be implemented on the primary memory 
when the size of the target text becomes extremely 
large. Although some researchers [8][9], in order to 
relieve the overhead on the primary memory, have 
developed schemes to store the extra memory required 
by the indexing structures on the external memory 
space, retrieving the indices from the external memory 
space usually result in degradation of the overall 
efficiency, which is critical for real-time applications. 
To resolve the space-efficiency dilemma, some other 
methods have been proposed, in which text or index 
pre-processing means were developed. These methods, 
including a hybrid sorting algorithm [10], augmented 
suffix arrays [11], compression [12][13][14], and 
coding techniques, such as Huffman coding [15] and 
Tagged Sub-optimal Code [16], have made great 
efforts for reducing the space-efficiency barrier. 

Recently, as the Internet prevails, Intrusion 
Detection Systems (IDSs) have been recognized as 
powerful tools for the detection of malicious attacks 
over the network [17][18]. Such systems usually 
contain a large key-string collection composed of a 
number of rules, mostly generated by experts, for 



identifying a variety of known attacks, where an exact 
string matching mechanism is essential. Therefore, 
time and space efficiency is a fundamental 
requirement for such a mechanism since the IDS 
detects the attacks by searching through packets in run 
time and identifying the contents that match the rules 
in the collection. The data structure of the string 
collection or the payload could be varied for different 
systems as long as it meets both the time and space 
requirements. The construction time for the data 
structure is usually excluded from the run-time 
performance, and a technique with a consistent 
performance independent of the size of the payload is 
very desirable [18]. The proposed method is a 
promising tool for such a task. The payload in our 
method, however, is a huge list of strings instead of 
rules. The strings in the payload are supposed to be 
known a priori and should be frequently updated.  

For the updating purpose, the proposed method is 
designed to be implemented using the client-server 
architecture on the Internet as shown in Fig. 1. For the 
server site implementation, the string encoder is 
developed using a neural network to transform the 
large string collection into an encoded file, which is 
composed of a one-dimensional array of numerical 
values. A certain degree of compression could be 
achieved after the transformation process because of 
the hashing characteristic between the input and the 
intermediate layers in the employed neural network. 
The mapping process is performed in the off-line 
mode. After the mapping process is completed, the 
encoded file is generated and stored in an area where 
the file transmission service is provided. For the client 
site implementation, the PDA, the on-line component 
embedded in a host application will download the 
encoded file from the server site whenever the file is 
updated. When a query string is input to the PDA, the 
component only refers to a few cells of the one-
dimensional array in the encoded file for determining 
the existential status of the query string, and thus 
renders itself a consistent speed regardless of the size 
of the payload. 
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Fig. 1: The schematic diagram of the proposed method 

2. The string encoder using a neural 
network 
The neural network employed in this paper is the 

CMAC (Cerebellar Model Articulation Controller) 
proposed by Albus in 1975 [19][20], and was 
originally designed for controlling a robotic 
manipulator with multiple degrees of freedom. As 
shown in Fig. 2, Albus employed a one-dimensional 
array including a number of cells, each of which is 
associated with a weight value for the mapping 
between the input and the output vectors. 
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Fig. 2: The architecture of Albus’s CMAC 
 

The one-dimensional array, referred to as the 
association layer, acts as an intermediate mapping area 
between the input space and the output node. Each 
input vector activates a small number of the cells in 
the association layer, whose weight values are then 
summed into the output signal. The weight values in 
the association layer are initially set to zeros and 
consequently converge to specific values according to 
a simple weight modification rule. The rule can be 
realized by simply calculating the difference between 
the output signal and the desired signal, also referred 
to as the error, and then propagates a fraction of the 
error to each of the activated cells. In a sense, all the 
input vectors are hash-coded into the association layer 
in an iterative fashion until the output signal is 
converged within specified thresholds. The weight 
modification process of CMAC renders itself a good 
capability of memorization and a quick convergence 
speed, which are very suitable for our implementation 
as a text string encoder. 

For the implementation of our string encoder 
using CMAC, generalization is not an important factor 



since our goal, in a sense, is to memorize all the 
strings in the string collection. For the purpose of 
memorization, a mapping function that can uniformly 
activate the cells in the association layer by the input 
vectors is more desirable. Ellison [21] pointed out that 
the logarithm of a number discarding the first few 
digits is more suitable for such a task. We adopt 
Ellison’s work as our mapping function between the 
input space and the association layer. Furthermore, in 
our implementation, the number of activated cells is 
identical to the string length, i.e., each character of the 
input string activates a cell in the association layer. 
The mapping function for our string encoder has the 
form as in (1), and the output signal produced by the 
input string s is represented by O(s), which is obtained 
by summing the weight values of the activated cells as 
in (2). 
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where f(s(i)) represents the position of the cell 
activated by the ith character of the input string s, 
Ascii(s(j)) is the decimal ASCII code of the character 
s(j), K is a large number, M is the size of the 
association layer and l(s) is the length of s.  

In (1), f(s(i)) has the integer value between zero 
and M-1. The summation operation inside the 
logarithmic function is utilized to intensify the 
character order of the input string. Therefore, strings 
with more characters in an identical order from the 
starting character will activate more cells in common, 
which could alleviate the mapping overhead of the 
association layer. K is a constant factor for avoiding 
the situation where only a portion of the association 
layer is activated by all the input vectors. In a sense, 
the range of the activated cells is amplified by K, and 
ideally the range must cover the entire association 
layer. Therefore, we select K as the smallest prime 
number exceeding M to avoid such a situation. 
Intuitively, the size of the association layer, 
representing the memory space required to store the 
weight values, could affect the convergence speed, i.e. 
the larger the association layer, the shorter the 
convergence time. This is because the number of 
activation of a cell by all the strings in the payload 
decreases as the size of the association layer increases. 
However, a large association layer will occupy more 
memory space to store the weight values. Therefore, a 
reasonable size of the association layer must be 
determined in order to keep both the mapping time and 
the storage memory space at an acceptable level. 

The CMAC mapping belongs to the supervised 
type, in which a target value representing the desired 

output signal for each input vector must be assigned. It 
is conceivable that the target values for all input 
vectors should be uniformly located within a small 
range centered at zero so that the mapping process can 
converge smoothly [21]. Secondly, the target value 
must be a function of the input string for our 
implementation since there is no designated target 
value for each string in the payload. Thirdly, the target 
value should not be the same for all the strings in the 
payload because the mapping process will degenerate 
when all the strings are in an identical length. This is 
because all the weight values in the association layer 
will converge to the same one, which is the target 
value divided by the identical string length. Therefore, 
we take advantage of the uniformity of f(s(i)) in (1), 
and the target value function T(s) for our 
implementation has the form as in (3). 
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Once T(s) is decided, the weight modification 
process is to propagate the error multiplied by a 
learning rate to the activated cells for each input string 
as in (4). 
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where w(i)new and w(i)old are the new and old 
weights at the ith cell respectively,ηis the learning 
rate. 

As the mapping process proceeds, the output 
signal produced by the input string will gradually 
move toward to the corresponding target value. After 
the mapping process is completed, the error range that 
includes all the strings with the same target value is 
calculated as in (5) and (6). This is accomplished by 
determining the upper and lower bounds of error 
associated with each target value. We refer to the error 
range as the acceptance window because a query string 
is considered as that it exists in the payload if the 
corresponding output signal is inside the window. 
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where U(ti) and L(ti) are the upper and lower 

bounds of error range for the ith target value and O(sj) 
is the output signal for the jth string in the payload.  

The purpose of the mapping process is to 
minimize the enclosing range of the errors for each 
target value because a smaller range results in a higher 
accuracy in determining the existential status of a 
query string. When all the error ranges do not 
significantly reduce in a number of iterations, e.g. the 
reduction is smaller than 0.001 in 200 iterations for all 
target values, the mapping process terminates and the 



target values with their corresponding upper and lower 
bounds are recorded in the encoded file. 

 

3. The PDA implementation 
The on-line component on the PDA plays the role 

as a core engine for determining the existential status 
of a query string, and is usually embedded in an 
application that must constantly perform the existence-
checking task for a query string. Therefore, the 
component must be robust in efficiency so that the 
performance of the host application is not affected. 
Furthermore, the memory requirement of the 
component must be as small as possible since it 
occupies the primary memory in run time. The kernel 
of the component is mostly the same as the string 
encoder except that the error of a query string s is not 
propagated to the association layer. The error, 
however, is utilized to determine the existential status 
of s. When the error is within the error range of the 
corresponding target value, a true response is 
submitted to the host application; otherwise, a false 
response is given as in (7). 
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where E(s) represents the existential status of 
string s, O(s)and T(s) are the output signal and the 
target value of s respectively, and L(T(s)) and U(T(s)) 
are the lower and upper bounds of the error range 
associated with the target value of s. 

4. Results 
The proposed method was implemented using the 

C language, and the simulated scenario was to identify 
stolen license plates on a PDA. The server utilized was 
a PC equipped with an Intel P4 CPU at 3.0GHz and 
1GB of DDR SDRAM, and the PDA was a Unitech 
PA960 based on an Intel ARM-SA1110 at 206MHz 
with 64MB RAM. The license plates were strings in a 
fixed length of seven, in which the separation mark, a 
dot, was at the middle position. Fig. 3 shows some of 
the sample license plates.  

 
0K6!TLH

CWT!Q6U

PIA!03D

55Z!G40

0DJ!KLL

5NG!C2L

SSI!AVQ
 

Fig. 3:  Sample license plates for the experiment 

We randomly generated 500,000 sample license 
plates, 400,000 of which were utilized as the training 
set, and the remaining 100,000 plates were used as the 
testing set. Since the size of the association layer is a 
crucial factor in the mapping process, we conducted 
several mappings using different sizes of the 
association layer. In each of these mappings, the size 
of the association layer was determined by calculating 
a specific fraction of the memory space required by 
the plain-text string collection. Let n be the memory 
requirement in bytes of the training set, and m be the 
bit size of the association layer. We characterized a 
sizing factor r representing the relationship between m 
and n as shown in (8). 

nrm !=  (8) 
It should be noted that the memory requirement of 

the association layer is equal to that of the plain-text 
training set when r=8. We enumerated r from one to 
four with an increment of one for the mapping purpose. 
Fig. 4 shows the relationships between the number of 
iterations (epochs) in the mapping process and the 
maximal error ranges using various sizing factors.  

 
(a) 200,000 strings 

 
(b) 400,000 strings 

Fig. 4: The mapping results for the simulated scenario 
using various sizing factors 



As shown in Fig. 4, it can be realized that as the 
sizing factor increased, the maximal error range 
converged in a relatively shorter time. Table 1 
provides the details of the mapping process for the 
simulated scenario. 
Table 1: The mapping details for the simulated 

scenario 
 Sizing 

factor 
( r ) 

Number of 
cells in the 
association 

layer 

Number of 
epochs 
elapsed 

Mapping  
time on the 
designated 

PC (seconds) 

Maximal error 
range after 
mapping 

1 109,875 2,600  189  6.170492 
2 219,625 46,000  3,658  0.124482 
3 329,625 19,000  2,057  0.020978 

200,000 
strings 

4 439,500 8,800  1,187  0.006928 
1 219,750 2,000  295  6.255294 
2 439,500 36,600  6,323  0.212063 
3 659,250 12,400  3,076  0.017560 

400,000 
strings 

4 879,000 9,000  2,661  0.009934 
 
The purpose of testing was to evaluate the 

accuracy and the efficiency of the on-line component 
while determining the existential status of a query 
string in real time. There are two types of error in 
determining the existential status of a query string, 
namely Type I and Type II errors. The Type I error 
refers to as the situation where a query string is 
determined as false when it actually exists in the 
training set, and the Type II error is the opposite. In 
the proposed method, however, only the Type II error 
is possible, i.e. the false-alarm rate (FAR), since each 
string in the training set is enclosed by the 
corresponding error range after the mapping process. 
Therefore, we only evaluated the FAR in each 
mapping. In addition, since the computational 
efficiency is critical for the on-line component, the 
averaged times for processing a query string were also 
presented. Table 2 shows the testing results.  

 
Table 2: The testing results for the simulated scenario 
 Sizing 

factor 
( r ) 

FAR (%) of 
100,000 
testing 
strings 

Averaged time 
for processing a 

query string 

1 96.906 1.2 ms 
2 1.823 1.1 ms 
3 0.24 1.2 ms 

 
200,000 
strings 

4 0.17 1.2 ms 
1 98.868 1.1 ms 
2 4.339 1.3 ms 
3 0.503 1.2 ms 

 
400,000 
strings 

4 0.33 1.1 ms 
 
Table 2 conveys two pieces of information: (a) the 

FAR tends to decrease as the size of the association 
layer increases, and (b) the averaged time for 

processing a query string by the on-line component is 
very consistent regardless of the number of strings in 
the training set.  

5. Conclusion 
In this paper, we present a string-filtering method 

based on a string encoder using the CMAC. The 
proposed method performs in an efficient manner for 
determining whether a string exists in a given large 
string dataset, which is suitable for real-time 
applications. The advantages of the proposed method 
include: (a) the computational time for processing a 
query string is nearly a constant regardless of the 
amount of strings in the dataset, (b) the memory 
requirement of the on-line querying component is 
relatively light, and is therefore suitable for the 
implementations on mobile devices, and (c) the 
mapping process is quite efficient, and the encoded 
file can be transmitted on the Internet in a matter of 
seconds, which render a timely and up-to-date status 
for the encoded files on the PDA. Although the 
proposed method inevitably accompanies with a small 
amount of Type II errors, the odd of occurrence is 
relatively small in the addressed application  
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