
String Filtering of a Large String Collection on Mobile
Devices using a Neural Network

Chia-Cheng Liu12 Heng Ma2
1 Department of Industrial Management

 Vanung University
Chung-Li, Taoyuan 320,Taiwan.

2 Department of Industrial Management
 Chung-Hua University
Hsinchu 300, Taiwan.

Abstract
String matching of a large string collection on mobile
devices has been a difficult problem because of the
memory space and computing speed constraints. We
propose a method to efficiently determine whether a
query string exists in the large string collection. The
proposed method, based on a string encoder using a
neural network, can perform the task in a consistent
manner regardlss of the number of strings in the
collection. The string encoding process is executed on
the server site, and the result is transmitted to the
PDAs via the Internet. The server checks a remote
database containing the most-updated data constantly,
and thus renders the PDAs the accuracy in filtering the
query strings. We conducted an experiment that
simulates the stolen car license plate matching, and the
results were favorable in both speed and memory
space requirement.

Keywords: Text String, Mobile Devices, Neural
Network

1. Introduction
Mobile devices, with their portability, have

becoming an important tool for a number of
applications, such as detection of certain strings and
pictures, and on-line information retrieval in the
outdoors. In this paper, we address a method that can
transform a large collection of strings, such as stolen
car license plates, into a feasible size, and the
computation complexity for determining whether a
given string is within the large collection is
approximately O(1) regardless of the size of the
collection. The method is particularly suitable for
applications requiring constant checking of an
encountering string, and the existential status of the
string must be determined in a timely fashion. In a

sense, the problem is a special type of the exact string
matching problem. A great number of algorithms have
been developed for solving the exact string matching
problem since nearly three decades ago, such as Aho-
Corasick [1], Boyer-Moore [2] and Knuth-Morris-
Pratt [3]. A general purpose of these algorithms is to
find all the locations or to calculate the occurrence of
the string pattern in the target text, in which the
computational complexity must be as little as possible.
More recently, some indexing methods, e.g. the
inverted files [4], the B-tree [5] and suffix arrays
[6][7], have devoted themselves to reducing the
computational complexity by constructing indexing
structures for accelerating the querying speed. The
extra memory required by these indexing structures,
however, presented a drawback because they are
difficult to be implemented on the primary memory
when the size of the target text becomes extremely
large. Although some researchers [8][9], in order to
relieve the overhead on the primary memory, have
developed schemes to store the extra memory required
by the indexing structures on the external memory
space, retrieving the indices from the external memory
space usually result in degradation of the overall
efficiency, which is critical for real-time applications.
To resolve the space-efficiency dilemma, some other
methods have been proposed, in which text or index
pre-processing means were developed. These methods,
including a hybrid sorting algorithm [10], augmented
suffix arrays [11], compression [12][13][14], and
coding techniques, such as Huffman coding [15] and
Tagged Sub-optimal Code [16], have made great
efforts for reducing the space-efficiency barrier.

Recently, as the Internet prevails, Intrusion
Detection Systems (IDSs) have been recognized as
powerful tools for the detection of malicious attacks
over the network [17][18]. Such systems usually
contain a large key-string collection composed of a
number of rules, mostly generated by experts, for

identifying a variety of known attacks, where an exact
string matching mechanism is essential. Therefore,
time and space efficiency is a fundamental
requirement for such a mechanism since the IDS
detects the attacks by searching through packets in run
time and identifying the contents that match the rules
in the collection. The data structure of the string
collection or the payload could be varied for different
systems as long as it meets both the time and space
requirements. The construction time for the data
structure is usually excluded from the run-time
performance, and a technique with a consistent
performance independent of the size of the payload is
very desirable [18]. The proposed method is a
promising tool for such a task. The payload in our
method, however, is a huge list of strings instead of
rules. The strings in the payload are supposed to be
known a priori and should be frequently updated.

For the updating purpose, the proposed method is
designed to be implemented using the client-server
architecture on the Internet as shown in Fig. 1. For the
server site implementation, the string encoder is
developed using a neural network to transform the
large string collection into an encoded file, which is
composed of a one-dimensional array of numerical
values. A certain degree of compression could be
achieved after the transformation process because of
the hashing characteristic between the input and the
intermediate layers in the employed neural network.
The mapping process is performed in the off-line
mode. After the mapping process is completed, the
encoded file is generated and stored in an area where
the file transmission service is provided. For the client
site implementation, the PDA, the on-line component
embedded in a host application will download the
encoded file from the server site whenever the file is
updated. When a query string is input to the PDA, the
component only refers to a few cells of the one-
dimensional array in the encoded file for determining
the existential status of the query string, and thus
renders itself a consistent speed regardless of the size
of the payload.

The Large

String
Collection

The String
E ncoder

File

Transmission

Service

Server Site

The Internet

PDA

The

Remote

Database

The on-line

Application
The

query

string

Y/N

Fig. 1: The schematic diagram of the proposed method

2. The string encoder using a neural
network
The neural network employed in this paper is the

CMAC (Cerebellar Model Articulation Controller)
proposed by Albus in 1975 [19][20], and was
originally designed for controlling a robotic
manipulator with multiple degrees of freedom. As
shown in Fig. 2, Albus employed a one-dimensional
array including a number of cells, each of which is
associated with a weight value for the mapping
between the input and the output vectors.

 a1 W1

a2 W2

a3 W3

a4 W4

a5 W5

a6 W6

a7 W7

a8 W8

a9 W9

a10 W10

a11 W11

a12 W12

a13 W13

a14 W14

a15 W15

a16 W16

a17 W17

. .

. .

. .

. .

a M W M

Response

cell

S1

S2

Set of ALL

Possible Input

Vectors

Fig. 2: The architecture of Albus’s CMAC

The one-dimensional array, referred to as the
association layer, acts as an intermediate mapping area
between the input space and the output node. Each
input vector activates a small number of the cells in
the association layer, whose weight values are then
summed into the output signal. The weight values in
the association layer are initially set to zeros and
consequently converge to specific values according to
a simple weight modification rule. The rule can be
realized by simply calculating the difference between
the output signal and the desired signal, also referred
to as the error, and then propagates a fraction of the
error to each of the activated cells. In a sense, all the
input vectors are hash-coded into the association layer
in an iterative fashion until the output signal is
converged within specified thresholds. The weight
modification process of CMAC renders itself a good
capability of memorization and a quick convergence
speed, which are very suitable for our implementation
as a text string encoder.

For the implementation of our string encoder
using CMAC, generalization is not an important factor

since our goal, in a sense, is to memorize all the
strings in the string collection. For the purpose of
memorization, a mapping function that can uniformly
activate the cells in the association layer by the input
vectors is more desirable. Ellison [21] pointed out that
the logarithm of a number discarding the first few
digits is more suitable for such a task. We adopt
Ellison’s work as our mapping function between the
input space and the association layer. Furthermore, in
our implementation, the number of activated cells is
identical to the string length, i.e., each character of the
input string activates a cell in the association layer.
The mapping function for our string encoder has the
form as in (1), and the output signal produced by the
input string s is represented by O(s), which is obtained
by summing the weight values of the activated cells as
in (2).

)(~1mod))))((((log))((
1

sliMÊjsAsciiIntisf
i

j
base =!= "

=

 (1)

!
=

=
)(

1

)))((()(
sl

i

isfwsO
 (2)

where f(s(i)) represents the position of the cell
activated by the ith character of the input string s,
Ascii(s(j)) is the decimal ASCII code of the character
s(j), K is a large number, M is the size of the
association layer and l(s) is the length of s.

In (1), f(s(i)) has the integer value between zero
and M-1. The summation operation inside the
logarithmic function is utilized to intensify the
character order of the input string. Therefore, strings
with more characters in an identical order from the
starting character will activate more cells in common,
which could alleviate the mapping overhead of the
association layer. K is a constant factor for avoiding
the situation where only a portion of the association
layer is activated by all the input vectors. In a sense,
the range of the activated cells is amplified by K, and
ideally the range must cover the entire association
layer. Therefore, we select K as the smallest prime
number exceeding M to avoid such a situation.
Intuitively, the size of the association layer,
representing the memory space required to store the
weight values, could affect the convergence speed, i.e.
the larger the association layer, the shorter the
convergence time. This is because the number of
activation of a cell by all the strings in the payload
decreases as the size of the association layer increases.
However, a large association layer will occupy more
memory space to store the weight values. Therefore, a
reasonable size of the association layer must be
determined in order to keep both the mapping time and
the storage memory space at an acceptable level.

The CMAC mapping belongs to the supervised
type, in which a target value representing the desired

output signal for each input vector must be assigned. It
is conceivable that the target values for all input
vectors should be uniformly located within a small
range centered at zero so that the mapping process can
converge smoothly [21]. Secondly, the target value
must be a function of the input string for our
implementation since there is no designated target
value for each string in the payload. Thirdly, the target
value should not be the same for all the strings in the
payload because the mapping process will degenerate
when all the strings are in an identical length. This is
because all the weight values in the association layer
will converge to the same one, which is the target
value divided by the identical string length. Therefore,
we take advantage of the uniformity of f(s(i)) in (1),
and the target value function T(s) for our
implementation has the form as in (3).

otherwise

Mslisfif
sT

sl

i

!
=

>

"
#
$

%

+
=

)(

1

)2/())(/))(((

1

1
)(

(3)

Once T(s) is decided, the weight modification
process is to propagate the error multiplied by a
learning rate to the activated cells for each input string
as in (4).

si

sOsTiwiw
oldnew

byactivatedallfor

))()(()()(!"+= # (4)

where w(i)new and w(i)old are the new and old
weights at the ith cell respectively,ηis the learning
rate.

As the mapping process proceeds, the output
signal produced by the input string will gradually
move toward to the corresponding target value. After
the mapping process is completed, the error range that
includes all the strings with the same target value is
calculated as in (5) and (6). This is accomplished by
determining the upper and lower bounds of error
associated with each target value. We refer to the error
range as the acceptance window because a query string
is considered as that it exists in the payload if the
corresponding output signal is inside the window.

ijiji tsTjtsOMaxtU =!"=)(,))(()((5)

ijiji tsTjtsOMintL =!"=)(,))(()((6)
where U(ti) and L(ti) are the upper and lower

bounds of error range for the ith target value and O(sj)
is the output signal for the jth string in the payload.

The purpose of the mapping process is to
minimize the enclosing range of the errors for each
target value because a smaller range results in a higher
accuracy in determining the existential status of a
query string. When all the error ranges do not
significantly reduce in a number of iterations, e.g. the
reduction is smaller than 0.001 in 200 iterations for all
target values, the mapping process terminates and the

target values with their corresponding upper and lower
bounds are recorded in the encoded file.

3. The PDA implementation
The on-line component on the PDA plays the role

as a core engine for determining the existential status
of a query string, and is usually embedded in an
application that must constantly perform the existence-
checking task for a query string. Therefore, the
component must be robust in efficiency so that the
performance of the host application is not affected.
Furthermore, the memory requirement of the
component must be as small as possible since it
occupies the primary memory in run time. The kernel
of the component is mostly the same as the string
encoder except that the error of a query string s is not
propagated to the association layer. The error,
however, is utilized to determine the existential status
of s. When the error is within the error range of the
corresponding target value, a true response is
submitted to the host application; otherwise, a false
response is given as in (7).

!
"
$%$

=
otherwisefalse

sTUsTsOsTLiftrue
sE

))(()()())((
)(

 (7)

where E(s) represents the existential status of
string s, O(s)and T(s) are the output signal and the
target value of s respectively, and L(T(s)) and U(T(s))
are the lower and upper bounds of the error range
associated with the target value of s.

4. Results
The proposed method was implemented using the

C language, and the simulated scenario was to identify
stolen license plates on a PDA. The server utilized was
a PC equipped with an Intel P4 CPU at 3.0GHz and
1GB of DDR SDRAM, and the PDA was a Unitech
PA960 based on an Intel ARM-SA1110 at 206MHz
with 64MB RAM. The license plates were strings in a
fixed length of seven, in which the separation mark, a
dot, was at the middle position. Fig. 3 shows some of
the sample license plates.

0K6!TLH

CWT!Q6U

PIA!03D

55Z!G40

0DJ!KLL

5NG!C2L

SSI!AVQ

Fig. 3: Sample license plates for the experiment

We randomly generated 500,000 sample license
plates, 400,000 of which were utilized as the training
set, and the remaining 100,000 plates were used as the
testing set. Since the size of the association layer is a
crucial factor in the mapping process, we conducted
several mappings using different sizes of the
association layer. In each of these mappings, the size
of the association layer was determined by calculating
a specific fraction of the memory space required by
the plain-text string collection. Let n be the memory
requirement in bytes of the training set, and m be the
bit size of the association layer. We characterized a
sizing factor r representing the relationship between m
and n as shown in (8).

nrm != (8)
It should be noted that the memory requirement of

the association layer is equal to that of the plain-text
training set when r=8. We enumerated r from one to
four with an increment of one for the mapping purpose.
Fig. 4 shows the relationships between the number of
iterations (epochs) in the mapping process and the
maximal error ranges using various sizing factors.

(a) 200,000 strings

(b) 400,000 strings

Fig. 4: The mapping results for the simulated scenario
using various sizing factors

As shown in Fig. 4, it can be realized that as the
sizing factor increased, the maximal error range
converged in a relatively shorter time. Table 1
provides the details of the mapping process for the
simulated scenario.
Table 1: The mapping details for the simulated

scenario
 Sizing

factor
(r)

Number of
cells in the
association

layer

Number of
epochs
elapsed

Mapping
time on the
designated

PC (seconds)

Maximal error
range after
mapping

1 109,875 2,600 189 6.170492
2 219,625 46,000 3,658 0.124482
3 329,625 19,000 2,057 0.020978

200,000
strings

4 439,500 8,800 1,187 0.006928
1 219,750 2,000 295 6.255294
2 439,500 36,600 6,323 0.212063
3 659,250 12,400 3,076 0.017560

400,000
strings

4 879,000 9,000 2,661 0.009934

The purpose of testing was to evaluate the

accuracy and the efficiency of the on-line component
while determining the existential status of a query
string in real time. There are two types of error in
determining the existential status of a query string,
namely Type I and Type II errors. The Type I error
refers to as the situation where a query string is
determined as false when it actually exists in the
training set, and the Type II error is the opposite. In
the proposed method, however, only the Type II error
is possible, i.e. the false-alarm rate (FAR), since each
string in the training set is enclosed by the
corresponding error range after the mapping process.
Therefore, we only evaluated the FAR in each
mapping. In addition, since the computational
efficiency is critical for the on-line component, the
averaged times for processing a query string were also
presented. Table 2 shows the testing results.

Table 2: The testing results for the simulated scenario
 Sizing

factor
(r)

FAR (%) of
100,000
testing
strings

Averaged time
for processing a

query string

1 96.906 1.2 ms
2 1.823 1.1 ms
3 0.24 1.2 ms

200,000
strings

4 0.17 1.2 ms
1 98.868 1.1 ms
2 4.339 1.3 ms
3 0.503 1.2 ms

400,000
strings

4 0.33 1.1 ms

Table 2 conveys two pieces of information: (a) the

FAR tends to decrease as the size of the association
layer increases, and (b) the averaged time for

processing a query string by the on-line component is
very consistent regardless of the number of strings in
the training set.

5. Conclusion
In this paper, we present a string-filtering method

based on a string encoder using the CMAC. The
proposed method performs in an efficient manner for
determining whether a string exists in a given large
string dataset, which is suitable for real-time
applications. The advantages of the proposed method
include: (a) the computational time for processing a
query string is nearly a constant regardless of the
amount of strings in the dataset, (b) the memory
requirement of the on-line querying component is
relatively light, and is therefore suitable for the
implementations on mobile devices, and (c) the
mapping process is quite efficient, and the encoded
file can be transmitted on the Internet in a matter of
seconds, which render a timely and up-to-date status
for the encoded files on the PDA. Although the
proposed method inevitably accompanies with a small
amount of Type II errors, the odd of occurrence is
relatively small in the addressed application

References
[1] A. V. Aho and M. J. Corasick, “Efficient string

matching: An aid to bibliographic search,”
Communications of the ACM, vol. 18, no. 6, pp.
333-340, 1975.

[2] R. S. Boyer and J. S. Moore, “A fast string
searching algorithm,” Communications of the
ACM, vol. 20, no. 10, pp. 761-772, 1977.

[3] D. Knuth, J. Morris, and V. Pratt, “Fast pattern
matching in strings,” SIAM Journal on
Computing, vol. 6, pp. 323-350, 1977.

[4] A. Moffat and J, Zobel, “Self-Indexing Inverted
Files for Fast Txt Retrieval,” ACM Transactions
on Information Systems, vol. 14, no. 4, pp. 349-
379, 1996.

[5] P. Ferragina and R. Grossi, “The String B-tree: a
New Structure for String Search in External
Memory and its Applications,” Journal of ACM,
vol. 46, no. 2, pp. 236-280, 1999.

[6] U. Manber and E. W. Myers, “Suffix Arrays: A
New Method for On-Line String Searches,”
SIAM Journal on Computing, vol. 22, no. 5, pp.
935-948, 1993.

[7] M. I. Abouelhoda, E. Ohlebusch and S. Hurtz,
“Optimal Exact String Matching Based on Suffix
arrays,” Proceedings of the Ninth International
Symposium on String Processing and
Information Retrieval, 2002.

[8] J. S. Vitter, “External Memory Algorithms and

Data Structures: Dealing with Massive Data,”
ACM Computing Surveys, vol. 33, no. 2, pp. 209–
271, 2001

[9] A. Crauser and P. Ferragina, “A Theoretical and
Experimental Study on the Construction of Suffix
Arrays in External Memory,” Algorithmica, vol.
32, pp. 1-35, 2002.

[10] J. Bentley and R. Sedgewick, “Fast Algorithms
for Sorting and Searching Strings,” Proceedings
of the ACM-SIAM Symposium on Discrete
Algorithms, pp. 360-369, 1997.

[11] L. Colussi and A. De Col, “A Time and Space
Efficient Data Structure for String Searching on
Large Texts,” Information Processing Letters, vol.
58, no. 5, pp. 217-222, 1996.

[12] E. S. De Moura, G. Navarro, N. Ziviani and R.
Baeza-Yates, “Fast and Flexible Word Searching
on Compressed Text,” ACM Transactions on
Information Systems, vol. 18, no. 2, pp. 113-139,
2000.

[13] R. Grossi and J. S. Vitter, “Compressed Suffix
Arrays and Suffix Trees with Applications to
Text Indexing and String Matching,” SIAM
Journal on Computing, vol. 35, no. 2, 2005.

[14] N. Ziviani, E. de Moura, G. Navarro and R.
Baeza-Yates, “Compression: A Key for Next-
Generation Text Retrieval Systems,” IEEE
Computer, vol. 33, no. 11, pp. 37-44, November,
2000.

[15] S. Pigeon and Y. Bengio, “A Memory-Efficient
Adaptive Huffman Coding Algoritm for Very
Large Sets of Symbols,” Data Compression
Conference, 1998.

[16] A. Bellaachia and I. AL Rassan, “Speeding up
String Matching over Compressed Text on
Handheld Devices using Tagged Sub-optimal
Code,” Proceedings of the 10th IEEE Real-Time
and Embedded Technology and Applications
Symposium, 2004.

[17] S. Antonatos, K. G. Anagnostakis, and E. P.
Markatos, “Generating Realistic Workloads for
Network Intrusion Detection Systems,” ACM
Workshop on Software and Performance, 2004.

[18] N. Tuck, T. Sherwood, B. Calder and G.
Varghese, “Deterministic Memory-Efficient
String Matching Algorithms for Intrusion
Detection,” Proceedings of the IEEE Infocom
Conference, Hong Kong, China, March 2004.

[19] J. S. Albus, “A New Approach to Manipulator
Control: The Cerebellar Model Articulation
Controller (CMAC),” Journal of Dynamic
Systems, Measurement and Control, vol. 97, no.
3, pp. 220-227, 1975.

[20] J. S. Albus, “Data Storage in the Cerebellar
Model Articulation Controller (CMAC),”
Journal of Dynamic Systems, Measurement and
Control, vol. 97, no. 3, pp. 228-233, 1975.

[21] D. Ellison, “On the Convergence of the
Multidimensional Albus Perceptron,” The
International Journal of Robotics Research, vol.
10, no. 4, pp. 338-357, 1991.

