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Abstract 
 
Censoring models are frequently employed in 
reliability analysis to reduce experimental time.  
There are three censoring model: type-I, type-II and 
random censoring.  In this study, we focus on the 
right-random censoring model. In the previous 
literature, an imputation of the censored observation 
is considered as the censoring time (Miller (1981), 
Lawless (1982), Lee (1992) and among others).  
Clearly, the censored observation is imputed by the 
censoring time to underestimate the original failure 
time.  In this paper, we consider the failure time to 
follow an exponential distribution, and alternatively 
we attempt to propose three measures to impute the 
censored observations.  By Monte Carlo simulation, 
the goodness of fit test is employed to compare the 
four methods of imputing censored observations.  It 
is found that the method of imputing censored data 
by censoring time little outperforms the other three 
imputing methods. 
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1. Introduction 
 
Three censoring cases, type-I, type-II and random 
censoring, are frequently employed in reliability 
analysis to save experimental time.  Both type-I and 
type-II censoring cases are commonly used in 
engineering applications and the random censoring 
case is often implemented in medical studies 
involving animals or clinical trials [5].   

In this study, the right-random censoring setting 
is considered.  The right-random censoring process 
is one in which an individual is assumed to have a 
failure time T and censoring time C, where T and C 
are independent continuous random variables.  
Assume that n individuals are considered and the ith 
individual has a failure time Ti and a censoring time 
Ci, for i = 1, 2, ..., n.  Allow Y1, Y2, ..., Yn to be the 
data from a right-random censoring setting.  
Researchers considered Yi = min(Ti , Ci ) for i = 1, 
2, ..., n.  Data in such a setting can be conveniently 

represented as (Miller [5], Lawless [2], Lee [3, 4]).  
Random variables (Yi , δi ), i= 1,2…n, δi = 1 
(uncensored) if Ti ≤ Ci ,δi = 0 (censored) if Ti > Ci  
for i = 1, 2, ..., n.  Therefore, Yi = δi Ti + (1 - δi) Ci 
indicate whether the failure time Ti is censored or not. 
If Yi is a censored observation, denoted by Ti

+, 
Researches considered the censoring time Ci to be an 
imputation of the censored observation Ti

+ 
((Miller[5], Lawless[2], Lee[3, 4]).  Clearly, the Ti

+ 
imputed by the censoring time Ci would likely 
underestimate the original failure time Ti.  Buckley 
[1] proposed the pseudo random variables, in which 
Yi = Ti ⋅δi + E(Ti Ti > Ci) ⋅(1 - δi) where δi = 1 if Ti ≤ 
Ci and δi = 0 if Ti > Ci for i = 1, 2, ..., n.  Tong and 
Chiou [6] proposed two imputations methods of Ti

+ 
to estimate the quantiles for an exponential 
distribution.  By simulation, their results confirm 
the estimates quantiles under the two imputing 
methods are superior to that under the censoring time 
imputation for mediate and high quantiles. 

The exponential distribution is widely used to 
model lifetimes in both the theoretical study of 
reliability and practical reliability engineering.  In 
this study, we consider that the failure time T follows 
an exponential distribution distribution.  
Furthermore, compare the right-random censored 
data (y1, y2, …, yn), which distributes to original data 
(the exponential distribution) by goodness of fit test. 

In this paper, we compare four methods to 
impute Ti

+, given the relevant parameters: sample 
size n, censoring rate p (p = r / n, r is the number of 
the uncensored data), scalar parameter θ and number 
of replications N.  By Monte Carlo simulation, we 
employ the goodness of fit test (i.e. chi-square test) 
[3], to assess which method collect the right-random 
censored data to be approximated to the original data 
(the exponential distribution). 

 The organization of this paper is as follows: In 
section 2, the conditional expectations of an 
empirical distribution and an exponential distribution 
are derived, respectively.  Section 3 introduces the 
four imputing methods for censored observations.  
We construct four steps for Monte Carlo simulation 
study and provide the best imputing method for 
censored observations in section 4. Section 5 presents 
conclusions. 



 

2.  Deriving the conditional 
expectations 

 
2.1 Deriving the approximation of conditional 
expectation for the empirical distribution  
Given T > k, the conditional cumulative distribution 
function (c.d.f.) of a continuous random variable (r.v.) 
T is 
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Given T > k the conditional probability density 

function (p.d.f.) of a continuous random variable (r.v.) 

T can be obtained by differentiating (1) with respect 

to t as follows: 

F(k)

f(t)
k)Tf(t

!
=>"
1

 , t > k. (2) 

The conditional expected value of a continuous r.v. T 
given T > k is 
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For most reliability distributions, no simple closed 
form generally exists as Eq. (3).  However, Eq. (3) 
can be approximated by a nonparametric empirical 
distribution as follows [3]. 
Let t1:n , t2:n , ... , tn:n be the ordered observations of 
T1:n , T2:n , ... , Tn:n , respectively, then 
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Combining Eq.(4) and Eq.(5), we obtain  
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2.2 Deriving the conditional expectation for an 
exponential distribution 
If a random variable T follows an exponential 
distribution with mean θ, then the p.d.f. of T is 

!

1
(t)f = e- t / θ, t > 0, (7) 

where the scale parameter θ is positive. 
The conditional p.d.f. and the expected value of T, 
given T > k, are 

f(tT > k) =
!

1 ⋅e -(t-k) / θ , t > k, (8) 

E(TT > k) = k + θ.     (9) 
The estimator of θ is as follows: 

T=!̂  (10) 

where !̂ a maximum likelihood estimator of 
θ and T is the sample mean. 
 
3.  Imputation of censored 

observations based on 
right-random censoring 

 
In a right-random censoring, researchers [2, 3, 4, 5] 
contend that for a situation in which observation yi is 
a censored datum, then the censoring time ci is an 
imputation of the censored observation Ti

+.  To 
conquer underestimation, Tong and Chiou applied 
the pseudo random variables [1], which are utilized 
to construct the two imputations of each of censored 
observations.  The two imputations proposed herein 
can be obtained by substituting the values of E(Ti Ti 
> Ci) calculated by the following two methods [6]: 
(1) Non-parametric method: By Eq.(6), 
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{TjTj ≥ Ci and Tj is an 

uncensored datum} ⁄ nui, where nui denotes the 

number of {TjTj ≥ Ci and Tj represents an 

uncensored datum, j = 1, ... , n, j ≠ i}. 
(2) Parametric method: If the continuous r.v. T 

follows an exponential distribution, then the 
conditional expected value E(Ti Ti > Ci) is equal 
to Ci + θ, where the estimator θ is !̂  is 
formulated as [2]: 
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where r is the uncensored data and Yi = min(Ti, 
Ci), i = 1, 2, …, n. 
In this paper, we propose another imputation 

measure that the censored observation Ti
+ is imputed 

by Median{Tj Tj > Ci and Tj is an uncensored datum, 
j = 1, 2, …, n }. 

In right-random censoring, the experimental 

data, y1, y2, …, yn, are collected from an exponential 

distribution, the imputing methods are denoted by 

symbols as follow.  (i) Yi = min(Ti , Ci ) for i = 1, 

2, ..., n.  The method is denoted by “M1” that the 

censoring time Ci is an imputation of the censored 

observation Ti
+.  (ii) Yi = Ti ⋅δi + E(Ti Ti > Ci)⋅(1 - 

δi) where δi = 1 if Ti ≤ Ci and δi = 0 if Ti > Ci for i = 1, 

2, ..., n. By non-parametric method, the two methods 

of imputations ( E T T Ci i i
j
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and Tj is an uncensored datum} ⁄ nui, and Median{Tj 

Tj > Ci and Tj is an uncensored datum, j = 1, 2, …, 



 

n }) are denoted by “M2” and “M4”, respectively.  

By parametric method, the method is denoted by 

“M3” that the estimate (Ci +!̂ ) (by Eq. (11)), E(Ti 

Ti > Ci), is a imputation of the censored observation 

Ti
+. 

In right-random censoring, the experimental 
data, y1, y2, …, yn (containing uncensored and 
censored data) are drawn from an exponential 
distribution for four imputing methods, respectively.  
And then we use the goodness of fit test to assess 
which data distribute to be closed to original data 
(the exponential distribution). 

 
4. Simulation study and results 
 
4.1 Simulation 
In right-random censoring, given the failure time T 
following an exponential distribution, a Monte Carlo 
simulation was conducted to compare the 
performances of the four imputing methods (“M1”, 
“M2”, “M3” and “M4”).  The results that deciding 
the optimum imputing measure is independent of the 
scale parameter θ  are obtained.  Therefore, the 
relevant parameters are given as follows: sample size 
n = 30, 50, 100, censoring rate p = 0.1 (0.1) 0.5, and 
θ = 1.   

The combinations of (n, p and θ), N = 1000 
replications are generated by using IMSL 
STAT/LIBRARY (C Functions for Statistical 
Analysis).  The simulation procedure is described 
as:  
Step 1: Generate the data failure time Ti which 

follows an exponential distribution with 
mean θ =1, for i = 1, 2, ..., n. 

Step 2: Determine the censoring time C for given 
censoring rate p. 
In this paper, we choose two random 
variables, the failure time T and the 
censoring time C, to follow an exponential 
distribution, because the exponential 
distribution is applied broadly for reliability 
analysis.  Let the failure time T follow an 
exponential distribution with mean θ (given), 
and the censoring time C follow an 
exponential distribution with mean θc 
(unknown).  Therefore, θc can be obtained 
by the following equation. 
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By the Eq. (12), θc = θ(1-p)/p, θ = 1.  So, 
θc is (1-p)/p. Next, we generate the 
censoring time C from an exponential 
distribution with mean (1-p)/p, for i = 1, 
2, ..., n. 

Step 3: Accumulate the data Yi for i = 1, 2, ..., n in a 
right-random censoring. 

(i) Yi = min(Ti , Ci) for i = 1, 2, ..., n. 
(ii) Yi =Ti⋅δi + E(Ti Ti > Ci)⋅(1 - δi) for i = 1, 

2, ..., n.  If δi = 0 then Yi = E(Ti Ti > 
Ci).  The value of E(Ti Ti > Ci) is then 
replaced by method (1) (non-parametric 
method), method (2) (parametric 
method) in Section 3.1. 

(iii) Yi =Ti⋅δi + Median{Tj Tj > Ci and Tj is 
an uncensored datum, j = 1, 2, …, 
n }⋅(1 - δi) for i = 1, 2, ..., n. 

In this Step, the maximum datum of (Y1, 
Y2, ...,Yn ) must be constrained to be an 
uncensored datum.  Otherwise, Eq. (6) can 
not be used and the data are discarded. 

Step 4: The experimental data, y1, y2, …, yn, are 
obtained by four imputing methods (“M1”, 
“M2”, “M3” and “M4”), respectively.  By 
goodness of fit test, the null hypothesis is H0: 
the experimental data, y1, y2, …, yn follow 
an exponential distribution with mean θ =1.  
By 1000 replications, we can obtain the 
number that the test conclusion does not 
reject H0 for given the significant level 
α = 0.05.  If we fail to reject H0, we 
suggest the best of imputing method that the 
collected number is the largest. 

 
4.2. Results 
As mentioned earlier in Section 3, the two 
imputations (E(Ti Ti > Ci) and Median{Tj Tj > Ci 
and Tj is an uncensored datum, j = 1, 2, …, n }) to 
impute censored observation are obviously larger 
than the imputation censoring time Ci. 

In Table 1, the results indicate the best 
imputing measure as follows: 
(1) For censoring rate p ≤ 0.3, the imputing method 

would be “M3”. 
(2) For censoring rate p ≥ 0.4, employing imputing 

“M2” is preferred.  
(3) In n = 100 and p = 0.5, the collected number is 

too smaller that the conclusions fail to reject H0, 
denoted as “*”, because the censoring rate p is 
too large to distribute, y1, y2, …, yn, more 
different from the original data (the exponential 
distribution).  

 
5. Conclusions 
 
It is apparent that the censored observation is 
underestimated by censoring time.  Tong and Chiou 
[6] proposed that the censored observation Ti

+ was 
imputed by E(Ti Ti > Ci).  Given by the imputation 
E(Ti Ti > Ci), the estimates of moderate and high 
quantiles are superior to the imputation censoring 
time Ci.  In this study, we intend whether the three 
imputing methods (“M2”, “M3” and “M4”) are 
superior to imputing method “M1” or not for 
distributing of data (y1, y2, …, yn,).  By goodness of 
fit test, the results indicate the three imputing 



 

methods (“M2”, “M3” and “M4”) could outperform 
the imputing method “M1” (in Table 1).  As shown 
in Table 1, the imputing method “M3” (p ≤ 0.3) and 
“M2” (p ≥ 0.4) are preferred to implement under the 
different setting, respectively. 
Table1. Collected numbers of not reject H0 (N=1000)  
n p M1 M2 M3 M4 best method 

0.1 934 936 946 914 M3 
0.2 896 880 917 781 M3 
0.3 777 777 840 618 M3 
0.4 555 616 687 426 M3 

30 

0.5 308 435 330 232 M2 
0.1 947 939 951 875 M3 
0.2 875 882 912 728 M3 
0.3 731 735 768 480 M3 
0.4 453 523 487 265 M2 

50 

0.5 129 267 94 87 M2 
0.1 937 928 937 826 M3 
0.2 838 827 856 517 M3 
0.3 589 568 620 214 M3 
0.4 216 273 147 38 M2 

100 

0.5 12 36 0 3 * 
 “*”: do not propose the best imputing method 

For engineers, they get the experimental data in 
right-random censoring.  By goodness of fit test or 

hazard plot [3], if the experimental data follow an 
exponential distribution and then, our results suggest   
some suitable imputing measures to obtain the 
reliable data (see Table 1) to analyze parametric 
estimating, quantile estimating, and so on. 
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