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It is shown that the normal distribution with mean zero is characterized by the property that the product of its
characteristic function and moment generating function is equal to 1.
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1. The normal distribution

We will obtain a characterization of the normal distribution. Of course, there already exist many
characterizations of the normal distribution; see [3, Chapter 4].

The characteristic function of the normal distribution with mean 0 and standard deviation σ is

f (t) = exp(−1
2 σ

2t2)

while its moment generating function is

g(t) = exp(1
2 σ

2t2).

Therefore, we obtain

f (t)g(t) = 1 for all t ∈ R. (1.1)

Weixing Song asked whether there are any other probability distributions for which (1.1) is valid.
Using the following result due to Fryntov [1, Theorem 3], we will show that the answer is “no”.

Theorem 1.1. Let

h(z) =
∞

∑
k=1

akznk

be a power series with infinite radius of convergence, where n1 < n2 < n3 < .. . are positive integers
such that

lim
k→∞

k
nk

<
1
2
.

If exp(h(z)) is a characteristic function, then h is a polynomial of degree at most 2.
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Theorem 1.2. Let F(x) be a probability distribution with characteristic function f (t) and moment
generating function g(t) (which is assumed to exist for all t ∈ R.) If (1.1) holds, then F(x) is a
normal distribution with mean zero.

Proof. Since we assume that g(t) exists for all real t, f and g must be entire functions and f (z) =
g(iz) for z∈C. This can be proved by a standard argument similar to that which shows analyticity of
the Laplace transform; see [4, Chapter 2, Section 5]. By the identity theorem for analytic functions,
we obtain that

g(z)g(iz) = 1 for all z ∈ C. (1.2)

It follows from (1.2) that g is an entire function without zeros, so according to [2, Theorem 2.1,
page 360] we can write

g(z) = exp(h(z)) for all z ∈ C, (1.3)

where h is an entire function (called the cumulant generating function) with h(0) = 0. It follows
from (1.2), (1.3) that

h(z)+h(iz) = 0 for all z ∈ C.

This implies that

h(z) =
∞

∑
k=1

akz4k−2 = a1z2 +a2z6 +a3z10 + . . . .

Therefore, f is an entire characteristic function of the form

f (z) = exp

(
−

∞

∑
k=1

akz4k−2

)
.

It follows from Theorem 1 that f (z) = exp(−a1z2) which completes the proof.

2. Extension to other distributions

G.G. Hamedani suggested to ask similar questions about other probability distributions. For exam-
ple, consider the uniform distribution F(x) on the interval [−1,1]. Its characteristic function is

f (t) =
sin t

t
while its moment generating function is

g(t) =
sinh t

t
.

Therefore, we obtain

f (t)g(t) =
sin t sinh t

t2 . (2.1)

If we consider the convolution F̃ of F with a normal distribution with mean zero, its characteristic
function is

f̃ (t) =
sin t

t
exp(−1

2 σ
2t2)
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and its generating function is

g̃(t) =
sinh t

t
exp(1

2 σ
2t2).

Therefore, we again have

f̃ (t)g̃(t) =
sin t sinh t

t2 .

The question arises whether there are any other probability distribution for which (2.1) is valid. It
appears that Theorem 1 is not sufficient to answer this question.

Acknowledgment: The author thanks colleagues G.G. Hamedani and Weixing Song for communi-
cating these interesting questions.
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