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McDonald log-logistic distribution with an application to breast cancer data

M. H. Tahir

Department of Statistics
The Islamia University of Bahawalpur, Bahawalpur-63100, Pakistan
mtahir.stat@gmail.com

Muhammad Mansoor

Department of Statistics
Punjab College, Bahawalpur-63100, Pakistan
mansoor.abbasil43@gmail.com

Muhammad Zubair

Department of Statisticss
Government Degree College Kahrorpacca, Lodhran-59320, Pakistan
zubair.stat@yahoo.com

G. G. Hamedani

Department of Mathematics, Statistics and Computer Science
Marquette University, Milwaukee, USA
g.hamedani@mu.edu

Received 19 October 2013

Accepted 21 February 2014

We introduce a five-parameter continuous model, called the McDonald log-logistic distribution, to extend the
two-parameter log-logistic distribution. Some structural properties of this new distribution such as reliability
measures and entropies are obtained. The model parameters are estimated by the method of maximum like-
lihood using L-BFGS-B algorithm. A useful characterization of the distribution is proposed which does not
require explicit closed form of the cumulative distribution function and also connects the probability density
function with a solution of a first order differential equation. An application of the new model to real data set
shows that it can give consistently better fit than other important lifetime models.
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1. Introduction

The Log-Logistic ("LL" for short) distribution is a very popular logistic distribution which was
initially developed to model population growth by Verhulst (1838). In income inequality literature,

LL distribution is well-known as Fisk distribution due to Fisk (1961), and has also been widely
used in many areas such as reliability, survival analysis, actuarial science, economics, engineering
and hydrology. In some cases, LL distribution is proved to be a good alterative to the log-normal
distribution since it characterize increasing hazard rate function. Further, its use is well appreciated
in case of censored data usually common in reliability and life-testing experiments.
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The paper involves the use of the following well-known functions and series expansion expres-
sions, including the beta function of type | is defined by

1
B(p.a) = [ P Ha-y i (L)
0
the incomplete beta function is defined by
X
B(p.a) = [ (-0 Tt (12
0
the incomplete beta function ratio of type | is defined by
X oo - Bx(p.q)
Ix(p,q) = /tpll—tqldt: X , 1.3
AP =g b Y B(p,q) (-3

thecomplementary incompleteetafunction of type | is defined by

B(p,q;X) = /Xl -1 (1 )9 Lqt, (1.4)
the beta function of type Il is defined by
B(p.q) = /om tPL(14t)-(PHa g, (1.5)
the gamma function is defined by
r(p) = Tiplet dt, (1.6)
the incomplete gamma function is defined by

X
y(p,Xx) = / tPtetdt, 1.7)
0
the binomialseries expansion is defined by

1-2"= 5 (1) (2= Ji(—l)i T (1.8

J:

The probability densityfunction (pdf) and the cumulative distribution function (cdf) of LL dis-
tribution with shape parameterand scale paramet@rare given by

g(x) = (g) (;)al [1+ (;)a]z, x>0, a,B>0 (1.9)
and
G =1-[1+ (;)a]_l — (;)a 1+ (;)a} < x>0, aB>0 (1.10)

There is an increasingend in the extension (or generalization) of the baseline distribution by
adding shape parameter(s) to the baseline distribution. In literature, three popular extended models
of LL exist Viz. Beta Log-Logistic (BLL), Kumaraswamy Log-Logistic (KwLL) and Zografos-
Balakrishnan (2009) Log-Logistic (ZBLL).
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We first consider the BLL distribution, which is generated from beta-generated (Beta-G) class
of distributions introduced by Eugem¢ al. (2002), and further discussed by Jones (2004).

For any arbitrary baseline pdfix) and cdfG(x), the pdff (x) and cdfF (x) of Beta-G class of
distributions are defined by

f(x) = 99 {G}*  {1-Gp1"! (1.11)
and
F(x) = IG(X)(a,b), (1.12)

wherea > 0,b > 0 and are both shape parameters.
Lemonte (2012) introduced the pdf and cdf of BLL distribution, which are given by

w=gam (5) (5) [ G0 e

F(x) =

and

I (12 0)]4] (a,b) x>0, (1.14)

wherea,b,a, 3 > 0, anda, b anda are shape parameters whilds scale parameter.

Now, we consider the second extended model, the KwLL distribution, which is based on the
Kumaraswamy generalized (Kw-G) class of distributions.

For a baseline random variable having jpdk) and cdfG(x), Cordeiro and de Castro (2011)
defined the 2-parameter Kw-G pdf and cdf are defined by
f(x) =abgx) [G(X)]* ™ [1- G, (1.15)
and
F(x)=1—[1—G((X)3P, (1.16)

whereg(x) = dG(x)/dxanda > 0 andb > 0 are two additional shape parameters whose role are to
govern skewness and tail weights.

de Santanat al. (2012) introduced the pdf and cdf of KwLL distribution, which are given by

a7 b-1

f(x):ab(Z) <;>aal [1+ <;>a]_(a+l) 1- 1_1+(1E)a . x>0 (1.17)

and

a7 b

F(X)=1—|1— -1 , x>0, (1.18)

e (5)°

wherea,b,a,3 > 0 anda, b anda are shape parameters whidds scale parameter.
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Now, we consider the third extended model, the ZBLL distribution, which is based on the
Zografos and Balakrishnan (2009)’ gamma-generated ("ZB-GG” for short) class of distributions.

For a baseline random variable having g¢f) and cdfG(x), Zografos and Balakrishnan (2009)
defined the ZB-GG pdf (x) and cdff (x) as

f(x) = rz'a){—log[l—G(x)}}a_lg(x) (1.19)
and
Fo - [ e (1.20

wherea > 0 andg(x) = dG(x) /dx.

Recently, Ramost al. (2013) introduced the pdf and cdf of ZBLL distribution, which are given
by

a

)= garay

Xafl

1+ (;)a] - [Iog{lJr (;)a}rl, x>0 (1.21)

and

F(x) = 1/0_|09[1+(E) ] taletdt, x>0, (1.22)

wherea, a, 3 > 0.

The article is outlineds follows. In Section 2, we define the McLL distribution. Section 3 pro-
vides some new structural properties such as quantile function and mode. In Section 4, the expres-
sions for mean residual life and mean time are obtained. In Section 5,&tng Bndq entropies
are derived. The maximum likelihood estimation of parameters is discussed in Section 6. A useful
characterization of the distribution is introduced in Section 7. An empirical application is presented
and discussed in Section 8. Finally, Section 9 offers some concluding remarks.

2. McDonald Log-Logistic (McLL) distribution

The generalized beta of first kind (GB1) or McDonald distribution was introduced by McDonald in
1984. The pdf and cdf of McDonald ("Mc” for short) distribution are given by

c _ b
f(x):mxal(l—x)b 1 o<x<1 (2.1)
and

F(x) = lc(act,b), (2.2)

wherea > 0, b > 0 andc > 0 are shape parameters.
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For any arbitrary baseline pdf(x) and cdfG(x), Alexanderet al. (2012) defined the pdf and
cdf of McDonald-generalized (Mc-G) class of distribtions as

o c

(9 = grao1p) 9% (G001 {16! 2.3)

and
F(x) = IG(X)C(ac‘l,b). (2.4)

Now, inserting (1.9) and (1.10) in (2.3) and (2.4) to obtain the pdf and cdf of McLL distribution,
respectively, as

Cc a, X X X

ao— a—(a a1-1] €10~
100 = graeapy(5) (3)" I () 1= {1+ (5T} " x>0 (25)
and
F(x) =ly(act,b), x>0, (2.6)

with w = {1— [1+ (%)a] *l}c anda,b,c,a, 3 >0, wherea, b, canda are shape parameters while
B is scale parameter.

We would like to point out the McLL is a special case of Mc-G whéh(x) =
{1— [1+ (%)a] _1}. In the presentvork we discuss some further properties of McLL which have

not appeared in Alexandet al. (2012) or anywhere else to our knowledge. Furthermore, we pro-
vide, among other new properties, a practical application of McLL in life-model case.

Plots of McLL density function for some parametric values are displayed in Figure 1.

For a lifetime random variable the survival functionS(t), hazard rate functiorh(t), reversed
hazard rate functiorr(t), and the cumulative hazard rate functiét(t), of McLL distribution are
given by

St)=1-F(t)=1—Iy(acib), (2.7)
aa— a;—1)¢1b-1

) — 1O _ () () ! [1—{1—[1+(é) ] lH 28)
SO Bacb)[1+(4) ] [1-lu(actb)]

r(t) — F<t) — (29)

and
H(t) = /oth(t)dt — —InSt) = —In[1—lu(ac 1, b)]. (2.10)

Plots of hazard and reversed hazard rate functions for McLL density function for some paramet-
ric values are given in Figure 2.
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Fig. 1.Plotsof McLL density for some parameter values
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2.1. Special sub-models

The McLL distribution is very flexible and has the following distributions as special sub-models.

2.1.1. Beta Log-Logistic distribution
If c=1, the McLL distribution reduces to the BLL distribution with parameteis, a andf.

W= () () [+ ()] e

2.1.2. Kumaraswamy Lg-Logistic distribution

If c=a, the McLL distribution reduces to the KwLL distribution with paramet&ers, a andp.

w=eo(5) () e GV [ B )T

2.1.3. Exponentiated Log-Logistidehmann type I) or Dagum distribution

If b=c=1, the McLL distribution reduces to the Exponentiated LL (Lehmann type 1) distribution
with parameters, a andf.

a X ao—1 x\ @ —(a+1)
fx)=al = = 1+<>] , x>0.
w=a(3)(5) (G
2.1.4. Exponentiated Log-Lgistic Lehmann type Il) or Singh-Maddala distribution

If a=c=1, the McLL distribution reduces to the exponentiated LL (or Lehmann type II) distribu-
tion with parameterb, o andp.

D6 G
fx)=b | = — 1+ = , Xx>0.
w=(5) (5) [ (5
2.1.5. Log-logistic distritution
If a=b=c=1, the McLL distribution reduces to the LL distribution with parameter@ndf.

a\ /x\*?! [ x\ %12
fo=(2) (% 1+<) } x>0,
w=(5)(5) B
2.1.6. Standard Ig-logistic distribution
If a=b=c=a = =1, the McLL distribution reduces to the standard LL distribution.
f(x) =[14+x 2, x>0.
Published by Atlantis Press
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2.2. Expansion of the McLL density

Re-calling the general form of McLL density, we have

00 = gragr 9% [600)" " [1-G(Y°]
A

b1 (2.11)

Usingthe binomialexpansion (1.8) to result A in (2.11) whdris real non-integer ani| < 1, the
(2.11) now can be expressed as

100 = graarrgy 900 [000)° 3 (-1 (*) (G001 212)
Simplifying further to(2.12),we have

10 =900 3 grgip; (-2 () (66, (2.13)

wherea is real non-intger

] icta—1

Using binomial expansion (1.8) to the tefi@(x) in (2.13), we have

6] = [1- [1- 6]

ij(_l)Hk (ic+jafl) (IJ<) [G(X)}k

] icta—1

S
=5 [6]"
Now, (2.12)becomes
f(x) = g(x) ivvisk [Gx)]" (2.14)
k:o\P/-’
Finally, we canwrite the McLL density as
f(x) = S R Gx)]* . 2.15
(x) &(fl kZO k [GX)] (2.15)

density of LL ~—— (cdfof LL)¥
sumof weights

3. BasicProperties

In this section we deal with the basic statistical properties of McLL distribution. Some basic proper-
ties such as rth moment, mean, variance, generating function and characteristic function have been
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given by Alexandeet al.(2012), some of which are as under:

=Y BB BA+L+k1-L) r=12.., (3.1)
k=0
H=EX) =73 RBB(l+z+kl-1) (3.2)
k=0
and
Variance= 3 B B2[B(1+2+k1-2)-B2(1+1+k1-1)]. (3.3)
k=

So, the otheimportantbasic properties such as quantile function and mode of the McLL distribution
are mathematically obtained below.

3.1. Quantile function and mode

Let Qaip(p) be the quantiléunction of the LL distribution with parameterg and 3, the quantile
function of theMcLL(a,b,c,a, B) distribution, sayx = Q(p) caneasily be obtained as

Ol

Qu(P)|Quacip (P)
x=Q(p) = ? [( o } 7, 0<p<Ll

1-Qu (P) [Qacry (P)] °

The Bowley skewness measure and Moors kurtosis (based on octiles) of the McLL distribution can
be calculated using the formulae given below:

Q(3/4)+Q(1/4)-2Q(2/4)
Q(3/4)-Q(1/4)

Sk=

and

_ Q3/8)+Q(1/8) + Q(7/8)-Q(5/8)

M Q(6/8)- Q(2/8)

whereQ(.) denoteghe quantilefunction.
Thefirst derivative of logf (x) for the McLL distribution is

dlogf(x) aa—-1
x - x (a+1)
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So, the modes of the McLL distribution are the roots of the following equation
-1
(5) (3)°
1+(%)°
-1 —1y ¢t -2
B @ H-1+HTT} 23] ]
1-{1-[1+ (g)“]‘l}c

There may benorethan one root to the above equationx # X, is a root of the above equation,

then it corresponds to a local maximum or local minimum or a point of inflexion depending on

Whetherdz'(‘(’j?()fz(x) < or > or = 0, respectiely.

If a=b=c=1inthe above, we get the mode of the LL distribution.

—(a+1)

—c(b—l)[

4. Mean Residual life and mean waiting time

In this section, the reliability properties mean residual life function (MRL) and mean waiting time
(MWT) are mathematically obtained for the McLL distribution.

The MRL at a given timé measures the expected remaining lifetime of an individual oftage
It is denoted bym(t). The MRL or life expectancy is defined as

1 t
m) = g5 [E(t) —/0 t f(t)dt} _t. (4.1)
Solvingtheintegral in (4.1), we obtain
t 00
| tiwae=p > RBu(l+g+ki-g) (4.2)
0 &
Inserting (4.2), (3.2and(2.7) in (4.1), the MRL of the McLL distribution will be

B3roR{BI+i+ki-1)-By(1+i+ki-})]
m(t) = [ 1-Ty(acLb) ]—t.

(4.3)
The MWT of anitem failed in a interval [Ot] is defined as

_ 1

a(t,0)=t— {F(t)/o tf(t)dt}. (4.4)
Using(4.2)and (2.6) in (4.4), the MWT of the McLL distribution obtained is
ko RBBw(1+3 +k1- é)]

lw(ac1,b) (4.5)

u(t,@):t—[

5. Entropies

Entropy has wide application in science, engineering and probability theory, and has been used
in various situations as a measure of variation of the uncertainty. Simply, an entropy of a random
variableX is a measure of uncertain amount of information in a distribution. Numerous measures
of entropy have been studied and compared in the literature. Here, we derive explicit expressions
for two important entropies for McLL distribution Viz.&yi entropy andj-entropy.
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5.1. Rényi entropy

We first consider the &yi entropy which plays a similar role as the kurtosis measure in comparing
the shapes of various densities, and also measuring heaviness oféaysirRroduced an entropy
in 1961, which is defined by

15Y) = 7 oo [ oge 5.1)

wherey > 0,y # 1 andy is a real non-integer.
Now takingyth power of McLL density given in (2.5) as

aa— a1 —(a a1-1)¢1b-1 y
fv<x>={3(a;7b)<g> (G (T - {1 ()17 ] } - 62)
Integrating (5.2)andthen using (1.8), we get

X

© < a -1 X\ a1 -y(a+1)—k
fY(x) dx = V.V ()Y (2yveatirg (2 dx 5.3
fy Pwex= 3 V() ()" (p)°) 63

Using transformatiom = (x/B)Or and then usingl.1),the (5.3) reduces to
/0 £Y(x Z vvk TR (MO a1 k- MO (5.4)

Y V(b _
whereV,; = [m} (—1)) (V(bj V) andV, = (—1) @)

Now, inserting (5.4) in (5.1), the &yi entropy expression for McLL distribution obtained is

Ix(y) = 1_ylog{J; A (g)le(V(“;l)Hj y(a+1)+k— W)} (5.5)

5.2. g-entropy

Theg- (orﬁ-entropy) was originally introduced by Havrda and Charvat (1967) and later applied
to physicalproblems by Tsallis (1988). Tsallis exploited its non-extensive features and placed it
in a physical setting (hence it is also known as Tsallis entropy). Moregventropy is a one-
parameter generalization of the Shannon entropy which can lead to models or statistical results
that are different from those obtained by using the Shannon entropy. It is to be noted here that the
g-entropy is a monotonic function of theeRyi entropy (Ullah, 1996).

For a continuous random variabfehaving pdff (x), theg-entropy is defined by

l4(Y) —il /fq X)dx| (5.6)

whereq > 0, q # 1 andq is areal non-integer.
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Now, takingqgth power of McLL density given in (27) as
q
B c a,  Xyaar-1 X\ aq—(atl) X\aq-1) 6101
909~ { sy () () e ()1 [ {1 (1)} e
Using (5.3) in (5.6)the expression aj-entropy for McLL distribution will be

lg(y) = [ -{ Z vvk 'B( N gla+ 1) +k- AL (58)

6. Maximum lik elihood estimation

Here, we consider estimation of the model parameters for Malli,c,a, 3) distribution by the
method of maximuniikelihood. We assume that ~McLL(a,b,c,a,) and let® = (a,b,c,a,)
be the parameterector of interest. The log-likelihood functioh= ¢(®) for a random sample
X1, %5, ..., X%n IS given by

¢=nlog[caB*[B(3,b) ] +(aa — 1)§1Iog( —(a+1) Zjog 1+ (B')"}

+(b—1) iilog{l— - {1+ (E)a}_l]c}.

Taking partial dematives of¢ with respect ta, b, ¢, o and3, we obtain five equations as

o/

a—a:%nw(ac‘l)+gw(ac +Db) +azllog( ) Zlog[1+< )}

ol

3= —nw(b)+nw(acl+b)+_ilog{1— [1— {1+ (2)0}_1]6}

M_n

na . na,
o= o @dc l)—i-?LIJ(aC Lib)

(-1 [[1{“(2)0}1}”{1
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wherew(.) =T (.)'/I'(.) is the digamma function.

By equating the above equations to zero, we can get MLEBslofc, a and by solving them
simultaneously using iterat methods, such as Newton-Raphson, BFGS, SANN, BHHH, NM and
L-BFGS-B.

7. A useful characterization

In practice, an investigator will be usually interested to know if the model under study fits the
requirements of the proposed distribution. To this end, the investigator relies on the characterizations
of the distribution which provide conditions under which the underlying distribution is indeed the
proposed distribution.

Our characterization will employ an interesting result due t@n2él (1987) (Theorem 1 below).
The advantage of this characterization is that it does not require the explicit closed form of the cumu-
lative distribution function. It also connects the probability density function with a solution of a first
order differential equation.

Theorem 1.Let (Q,F,P) be a given probability space and ldt= [a,b] be an interval for some
a<b(a= —o,b=cmight as well be allowed Let X : Q — H be a continuous random variable
with distribution functionF and letqg andh be two real functions defined dth such that

Ela(X) X=X =E[h(X) | X=X n(x), xeH,

is defined for someeal function n. Assume thatj, h € C1 (H), n € C?(H) andF is twice continu-
ously differentiable and strictly monotone function on theldefurther, assume that the equation
hn = ghas no real solution in the interior bf. Then,F is uniquelydetermined by the functiortg

handn, particularly
X
F@:c/
a

wheres = s(x) is a solution of the differential equatia{x) = [n’(x) h(x)]/[n (X)h(x) — q(x)] andC
is a constant chosesuch thatf,, dF = 1.

exp—s(u)] du,

n'(u)
n(uh(u)—q(u)

We mention that this kind of characterization based on the ratio of truncated moments is stable in
the sense of weak convergence, in particular, let us assume that there is a sédygoéeandom
variables with distribution function§F,} such that the functiong,, hy andn, (n € N) satisfy the
conditions of Theorerh and letq, — q, hy, — h for some continuously differentiable real functions
g andh. LetX be a random variable with distributidh Under the condition thai,(X) andh,(X)
are uniformly integrable and that the family is relatively compact, the sequéncenverges tX

Published by Atlantis Press
Copyright: the authors
77



M.H. Tahir, M. Mansoor, M. Zubair and G.G. Hamedani

in distribution if and only ifn, converges weakly tq, where

CE[(X) XX
X = EhX) [X=x

This stability theorem mads sure that the convergence of distribution functions is reflected by
corresponding convergence of the functignk andn, respectively. It guarantees, for instance, the
“convelgence” of characterization of the Wald distribution to that of téey-Smirnov distribution

if a— oo,

A further consequence dtiie stability property of Theorem 1 is the application of this theorem
to special tasks in statistical practice such as the estimation of the parameters of discrete distribu-
tions. For such purpose, the functiamg and, speciallyn should be as simple as possible. Since
the function tripletis not uniquely determined it is often possible to chogsas a linear func-
tion. Therefore, iis worth analyzing some special cases which helps to find new characterizations
reflecting the relationship between individual continuous univariate distributions in other areas of
statistics. In Theorem 1, the intervdl need not be closed. The goal is to have the functjoss
simple as possible.df a more detailed discussion on the choica pive refer the reader to &hzel
and Hamedani (20013nd Hamedani (2006).

Proposition 1. Let X:Q — (0,0) be a continuous random variable and let
a(l-a) B 1-b
ho) = (%) [1- {112+ (/B) Y]

a(2-a) B 1-b
4 = (3) " [1-{1-[1+0/B)? 1} for xe (0,00).
The pdf ofX for a> 1is(2.5) if and only if the functiom defined in Theorem 1 has the form

aw ra(p) | oeoo

and

nx =

Proof. Let X has pdf(2.5), then
c x\91°°
[1-F(X)] Eh(X) | X>X] = aB(ac L) [l+ () ] , x>0,
and

[1-F (0] Ela(X) X=X = Sy ;(acl7b) [1+ (;)a]_a [1+a<;>a] , x>0
Finally,

and hence
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s(X) = Iog{ [1+ (é)a}a} ,X> 0.
Now, in view of Theorem 1X has pdf (2.5).

Remark 1. Clearly, there are other tripletd,q,n) satisfying the conditions d®roposition 1.

Corollary 1. Let X : Q — (0,0) be a continuous random variable andHét) be as in Proposition
1. The pdf ofX fora> 1is (1.9) if and only if there exist functiorgsandn defined in Theorem 1
satisfying the diferential equation

PONX _aax i x\
roonco aca g 7 (3) | - o (.)

Remark 2. The generasolutionof the differential equation given in Corollary 1 is

109=[1+(5) [~ [aw(5) 1+ (5)) L {1 14 (5)"] )" a0,

for x > 0, whereD is aconstant. To see this note that (7.1) can be written as
aax?—! x\1 " aaxt—1 x\1 !
"(X) — x[l+<>} =—q(x)(h(x))* [1+<>] . 7.2
N (x)—n(x) Ba B q(x) (h(x)) Be B (7.2)

Now, replacingh(x) from Proposition 1 and then multiplying both sides of (7.2) [ty (%)a] -2
we obtain

%{n(x) [1+ (%)a]fa} _ _C;iq(x)(;)ual[l_i_ (%)a]f(aurl) [1_ {1_ [l—i— (%)a}fl}c]bfa

from which theexpression forn (x) given above will follow. One set of appropriate functions is
givenin Proposition 1 wittD = 0.

8. An application

In this section, we present an application of McLL to breast cancer data to illustrate its potentiality.
The MLEs of real data set are computed, and goodness-of-fit of McLL is compared with the other
competing models.

The real data set represent the survival times of 121 patients with breast cancer obtained from a
large hospital in a period from 1929 to 1938 (Lee, 1992). This data set has recently been studied by
Ramoset al. (2013). The data are: 0.3, 0.3, 4.0, 5.0, 5.6, 6.2, 6.3, 6.6, 6.8, 7.4, 7.5, 8.4, 8.4, 10.3,
11.0, 11.8, 12.2, 12.3, 13.5, 14.4, 14.4, 14.8, 15.5, 15.7, 16.2, 16.3, 16.5, 16.8, 17.2, 17.3, 17.5,
17.9, 19.8, 20.4, 20.9, 21.0, 21.0, 21.1, 23.0, 23.4, 23.6, 24.0, 24.0, 27.9, 28.2, 29.1, 30.0, 31.0,
31.0, 32.0, 35.0, 35.0, 37.0, 37.0, 37.0, 38.0, 38.0, 38.0, 39.0, 39.0, 40.0, 40.0, 40.0, 41.0, 41.0,
41.0, 42.0, 43.0, 43.0, 43.0, 44.0, 45.0, 45.0, 46.0, 46.0, 47.0, 48.0, 49.0, 51.0, 51.0, 51.0, 52.0,
54.0, 55.0, 56.0, 57.0, 58.0, 59.0, 60.0, 60.0, 60.0, 61.0, 62.0, 65.0, 65.0, 67.0, 67.0, 68.0, 69.0,
78.0, 80.0,83.0, 88.0, 89.0, 90.0, 93.0, 96.0, 103.0, 105.0, 109.0, 109.0, 111.0, 115.0, 117.0, 125.0,
126.0,127.0, 129.0, 129.0, 139.0, 154.0.

In the following, we compare McLL distribution with other seven lifetime models Viz. McDon-
ald Weibull (McW), ZBLL, BLL, KwLL, LL, Gamma (Ga) and Log-Normal (LN). The pdf of McW
is given Cordeiraet al. (2012).
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We estimate the unknown parameters of each model by the maximum likelihood. There exists
many maximization methods in R Packages like NR (Newton-Raphson), BFGS (Broyden-Fletcher-
Goldfarb-Shanno), BHHH (Berndt-Hall-Hall-Hausman), SANN (Simulated-Annealing) and NM
(Nelder-Mead). But here the maximum likelihood estimates (MLEs) are computed using Limited-
Memory quasi-Newton code for Bound-constrained optimization (L-BFGS-B) and the measures of
goodness of fit AIC, CAIC, BIC, Anderson-Darling{) and Crangér—von Mises\(V*) are used to
compare the eight models. The statisi¢s and A* are described in details in Chen and Balakr-
ishnan (1995). In general, the smaller the values of goodness-of-fit measure suggest the better the
fit to the data. The required computations are carried out using R-paékiageacyModel which
is recently introduced by Pedro Rafael Diniz Marinho ance® Rafael Barros Dias and is freely
available from
http://cran.r-project.org/web/packages/AdequacyModel /AdequacyModel.pdf.

Table 1. MLEs and their standard errors (in parentheses) for Breast Cancer Data

Distribution a b c a B u o

McW(a,b,c,a,8) 0.961 2926 38441 1.250  0.018 - -
(0.483) (3.953) (36.188) (0.429) (0.0.006) - -

ZBLL(a,a,B) 0.353 77.856  3.098 - - - -
(0.103) (12.562) (0.579) - - - -
BLL(a,b,a,B) 0.364 0732 53.251 3.368 - - -

(0.230) (0.482)  (9.731) (1.176) ; ] ]

McLL(a,b,c,a,B) 0519 48.676 30.988 2272  65.025 - -
(0.216) (78.698) (19.283)(0.680) (13.841) - -

LL (a,B) - - - 1.856  35.177 - -
- - - (0.141) (2.978) - -

KwLL(a,b,a,8) 33.968 23.048 0.336  0.044 - - -
(4.804) (13.979) (0.043) (0.020) - - -

Ga@,p) - - - 1.495  30.984 - -
- - - (0.175)  (4.290) - -

LN (i, o) - - - - - 3.46  1.033
] ] ] ] - (0.094) (0.066)

Table 1 lists the MLEs and their corresponding standard errors (in parentheses) of the model
parameters. The model selection is carried out using the following statistics: AIC (Akaike infor-
mation criterion), CAIC (consistent Akaike information criterion) and BIC (Bayesian information
criterion): AIC = —2¢(.) + 2p, CAIC = —2/(.) + n_zgfl andBIC = —2/(.) + plogn, where/(.)
denoteghe log-likelihood function evaluated at the maximum likelihood estimgtésthe number
of parameters, analis the sample size. The numerical values of statistics AIC, CAIC, BICand
A* are listed in Table 2.

We noted from Table 2 that McLL model shows lowest values of AIC and CAIC among the
fitted models: McW, ZBLL, BLL, LL, KwLL, Ga and LN, suggesting that the McLL distribution
shows the best fit, and therefore could be chosen as the best model. Further, the A&hstatistic
for McLL model is also smaller as compared to the other models especially to the ZBLL, suggesting
that McLL distribution seems to be a competitive model for the cancer data. The histogram of McLL
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estimated pdf and plot of McLL estimated cdf are displayed in Figure 3. It is clear from Table 2 and
Figure 3 that McLL distribution provided a better fit and therefore be one of the best models for
cancer data.

Table 2. The AIC, CAIC , BICA* andW*values for Breast Cancer data

Distribution ~ AIC CAIC BIC AW
McLL 11164661 [1165183] 1178.640 0.058
McW 1166.474  1166.996 1180.453 0.513 0.074
ZBLL 1167.063  1167.268 1175450 0.454 0.053
BLL 1171.861  1172.206 1183.045 0.494 0.066
LL 1179.199  1184.791 1179.301 1.258 0.209
KwLL 1189.937  1190.282 1201.120 1511 0.232
Ga 1166.474  1166.996 1180.453 0.513 0.074
LN 1194.067 1194.168 1199.658 2.043 0.318

(a) Estimated pdfs (b) Estimateccdfs
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Fig. 3. Plots ofthe estimated pdfs and cdfs McLL, McW and LL models

9. Concluding remarks

In this paper, we propose a new five parameter McLL distribution which generalizes LL distribution,
and we also obtained some of its structural properties. We provide for the new distribution: the
expression for mean residual life, mean waiting timénfd entropy andj-entropy. The model
parameters are estimated by the maximum likelihood. The usefulness of the new model is illustrated
in an application to real data set on breast cancer by using five goodness of fit measures. The new
model provides consistently better fit than the other seven models selected from the literature. We
hope that the proposed model may attract wider application in many areas such as engineering,
survival data, hydrology, economics (income inequality), and others.

Addendum. After the completion of the present work we came across a paper by Coedair¢to
appear in 2014) in which the authors have emplog¢x) = {1— [1+ (%)a]fk}. The properties
discussed ithat paper, however, are different from ours.
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