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Multivariate meta-analysis has potential over its univariate counterpart. The most common challenge in uni-
variate or multivariate meta-analysis is estimating heterogeneity parameters in non-negative domains under the
random-effects model assumption. In this context, two new multivariate estimation methods are demonstrated;
first, by extending the Sidik and Jonkman (2005) univariate estimates to a multivariate setting, and second,
by considering an iterative version of the Sidik and Jonkman method, namely, a Hybrid method developed in
Wouhib (2013). These two methods are compared with extended DerSimonian and Laird methods (Jackson et
al. 2009; Chen et al. 2012) by using an example and simulation in random-effects multivariate meta-analysis.
Finally, the benefits of the proposed estimates are evaluated in terms of precision in estimating vectors of effect
sizes and associated covariance matrices via simulation. Also, some limitations and remedies resulting from
negative definite matrix in estimating heterogeneity parameters will be discussed.
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1. Introduction

Multivariate meta-analysis has an abundance of potential and promise over the univariate meta-
analysis including one-way and meta-regression models. In particular, it can describe the associa-
tion between the estimates of effects in order to make predictions about the true effects of a new
study and provide estimates with better statistical properties than univariate due to the borrowing
of strength that it enables (Jackson et al. 2011). There are two scenarios that would warrant consid-
eration of a multivariate approach in meta-analysis. First, technically equivalent outcomes may not
be considered as a single entity because of differences in study design, aims or definitions. Second,
because outcomes may be strongly related among themselves, an evaluation of the agent should
"borrow strength’ not only across studies, as in traditional meta-analysis models, but also across
outcomes. The rationale to synthesizing coefficients of several independent regressions could be a
multivariate meta-analysis problem. Becker and Wu (2007) stated in their paper that the synthesis of
regression slopes has received increased attention in recent years, and can be handled in multivariate
meta-analysis as long as the regression variables are measured in a similar way across independent
studies.

*Disclaimer: The findings and conclusions stated in this manuscript are solely those of the author. They do not necessarily
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A. Wouhib

This paper begins with a discussion of the multivariate random-effects model and its practical
merit that has become more prevalent in meta-analyses in recent years. The validity of the estimators
and their adequacy or inadequacy is assessed by discussing the most recent methods of estimating
a matrix of heterogeneity parameters in a random-effects setting, which includes the multivariate
version of the DerSimonian and Laird (DL) method proposed by Jackson et al. (2009) and Chen
et al. (2012). Also two new methods are proposed, namely, a multivariate extension of the Sidik
and Jonkman (SJ) estimator and its iterative version called the Hybrid estimator (Wouhib, 2013). In
addition to the theoretical justification, the general approach in measuring the effectiveness of a new
method is examined by comparing it to the estimated mean effect sizes and associated covariance
matrices offered by other methods using simulation. Details of the SJ method along with the hybrid
method, will be discussed by presenting a generalized least squares (GLS) approach with remarks
on the challenges and limitations in synthesizing effect sizes in multivariate modeling.

The paper is organized as follows. Section 2 outlines the estimation of a matrix of heterogeneity
parameters based on extending the DL method for a random-effects multivariate meta-analysis.
Details of the two methods presented by Jackson et al. (2009) and Chen et al. (2012), with their
respective issues and limitations, are discussed here. The newly proposed methods, namely, the
multivariate extension of the SJ method and the Hybrid method, are also introduced and explained in
this section. Section 3 emphasizes an application by using a two dimensional example taken from a
recent paper of Jackson et al. (2013) and another three dimensional example from Chen et al. (2012).
In Section 4, simulation results are presented by using the estimates from the three dimensional
example as true population parameters. Finally, further discussion and issues that can arise from
estimating the matrix of the heterogeneity parameters are given in Section 5 by highlighting the
major findings of the research as a conclusion.

2. Methods

A random-effects meta-analysis model can be visualized in a p-dimensional multivariate setting,
by simply extending the one-way univariate meta-analysis model. Let the i/ variable b; be a p-
dimensional correlated vector of study i = 1,2,...k. The vector b; is assumed to be distributed
N (Bi, Li). Also, let the p-dimensional population vector f3; be assumed to be random and distributed
Bi ~ A (B, T), where X; and T are the p x p matrices of the within-study and between-study covari-
ances, respectively, and the p-dimensional vector, f3, is the overall unknown true effect size to be
estimated. Then, the random-effects model

b= B+ Vit @0
is a combination of the two models where
Vi~ A(0,T), &~ A(0,%) 2.2)
and
v Lg (2.3)

foralli=1,2,...k.
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Estimation of a Matrix of Heterogeneity Parameters
The random-effects multivariate model can be generalized as
b=7ZB+u+v, 2.4)

where the vectors b, 8, and u -+ v along with a matrix Z are defined to be:

/

b= (b1 ...b1p ... by "'bkl’)kva (2.5)
B=(Bi . Bppxt> (2.6)
u+v=_uj+v .. up+vp “'”kP+VP);<px1 2.7)
and
!/
Z= Iy, .. Iy “'IPXP)kpo' (2.8)

From the model, the covariance matrix of the additive error terms, (u+ v), is a kp x kp dimensional
diagonal box matrix,

A=Diag (A -+ A; -+ A

) k)kpxkp (29)

and
A=% 1T, (2.10)

with A; being a p X p matrix for study i = 1,2, ..., k.

Once the models are set, the generalized least square estimate of a p x 1 dimensional vector, f3,
is

B=(ZA"'2)"(ZAa D). (2.11)

In parallel with earlier developments of the methods of meta-analysis, when estimating the param-
eter vector, 3, the covariance matrix A, which is the diagonal box matrix of the A;, is assumed to be
known. Unfortunately, its heterogeneity parameter matrix, T has to be estimated from the data. The
multivariate version of the DerSimonian and Laird methods of estimating the heterogeneity param-
eters are discussed and compared to the newly proposed methods in the following two subsections.

2.1. The DerSimonian and Laird (DL) Extended Multivariate Estimators

The extended multivariate meta-analysis of the DL method, as specified by Jackson et al. (2009),
requires a pairwise estimation of the diagonal and off-diagonal elements of the heterogeneity matrix
separately. Hence, the method handles any multivariate model as a collection of several interdepen-
dent bivariate models in the estimation procedures. It treats a p-dimensional matrix as a collection of
D%, possible combinations of 2 x 2 matrices and builds its way up to the p-dimensional covariance
matrix of p(p+ 1)/2 elements. To estimate the 2 x 2 heterogeneity parameter matrix, the method
considers a subset bivariate random-effects model with three elements of heterogeneity parameters.
Hence, in the Jackson et al. (2009) method, there is no statistical methodology in place to estimate
a p x p matrix of heterogeneity parameters beyond the 2 x 2 entries at a given time. This estimator,
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which referred to as DLJ, is criticized by Chen et al. (2012) for failing to produce a valid matrix esti-
mate. Chen et al. (2012), however, also acknowledge that neither theirs nor Jackson’s method would
provide an estimator of the between-study covariance matrix that is always positive semi-definite,
especially when heterogeneity is low.

In Jackson’s method, the computation of an estimate for each pairwise entry (i.e., a separate 2 x 2
diagonal and off-diagonal elements) of the T matrix is accomplished by examining an appropriate
bivariate model until exhausting all p-dimensional variables to estimate a p X p matrix of hetero-
geneity parameters. However, the procedure in estimating the diagonal elements of the matrix is
quite similar to the DL method of estimating a univariate heterogeneity parameter. Jackson et al.
(2009) regards the DLJ method as an extended version of the univariate DL estimator in estimating

Tpry from 2 x 2 Q-matrix.
The Q-matrix for all u and v such that, ] <u <v < pis,

k (bm - Bu)z K (blu - Buu)(blv - va)
O = lzzl Oiuu lzzl v OiuuOivy
uV i (blu - Buu)(biv - va) i ( v Bv)
& /Cum =~ o,

(2.12)
Where,

pu="—, (2.13)

(2.14)

B ="—, (2.15)

and

- Z Gluu cYIVV
Boy ==X (2.16)

k
1; m
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Estimation of a Matrix of Heterogeneity Parameters

The expectation of Q,, is given by

k R )2 k k
E(Z(bmomfu)) k=1)+ (chuul Z mf/Z m;)fuu, (2.17)

k ) k k
Z cyi;v lVV /Z vy ) Tyy (218)
i= 1

-1/2
and for G; = (G Oivy) / )

k
k _ leiquz k ; G,‘2
E (Z(biu - Buu)( iv va l) Z pzuv lki + Z Gl' - l_k Tuy- (2.19)

i=1

The estimators for heterogeneity parameters, %,,, %,, and %,, = 7,,, can be obtained by matching
moments in equation (2.17), (2.18) and (2.19) respectively. Once a pairwise estimation procedure
as described above is implemented, then the matrix, TpLy, is formed as a collection of the pairwise
estimates. Then the overall mean effect size, 3, is estimated by

1k

k —
BoLs =<2Wi) Y WiBi, (2.20)
=1 Py
where
W; = (Tprs +%)). (2.21)

The other DL extension method of estimating a multivariate heterogeneity parameter matrix is pre-
sented by Chen et al. (2012). Unlike the DLJ, this method, which is called DLC was initiated by
extending the univariate DL estimation procedure in matrix form, and they estimated the hetero-
geneity parameters simultaneously. The estimation procedures are explained in the following steps:
Let

—1
k
¥ =Cov(fr)=(Zx'2)"! = (Z 2;‘) : (2.22)
j=1
and
k
d=y"'-Y rlwr ! (2.23)
i=1
k
Z J— (bj— Br)(bj— Br) — (k— 1)L, (2.24)
J:
where
Z=(Ipxp - Ipp) (2.25)
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a stack of p x p identity matrices, and ﬁp is an estimator for a fixed-effects model, and (1 < j < k).
Then, E(A) = ®T, for T is the heterogeneity parameter matrix of size p x p. Finally, to maintain
its symmetric property, the DLC estimator matrix is re-written as:

. d A + AP!

Tprc = 3 (2.26)

The authors of the DLC method stressed that their method provides similar results as the Jackson’s
DLJ method and conducted simulations to support their claim.

In both extended multivariate DL methods, a remedy was proposed if the diagonals of Tpry and
Tpic turned out to be negative. The remedy truncates the matrices to make them positive semi-
definite. Although the newly made positive semi-definite matrices are acknowledged to be biased,
it is difficult to draw similarities with truncating negative heterogeneity parameters in univariate
models.

In their recent paper, Jackson, et al. (2013) endorsed the extended DerSimonian and Laird
method of Chen et al. (2012) as a multivariate generalization of estimating the heterogeneity param-
eter matrix. Jackson et al. (2013) stated that their new method can handle missing data, can adjust
for covariates in a meta-regression, and reduces to the method of Chen et al. (2012) with complete
data and no covariates. Like the method by Chen et al. (2012), the new Jackson et al. (2013) method
is based on matrix operations and invariant to linear transformations.

2.2. The Sidik Jonkman(SJ) & the Hybrid Methods of Estimating Heterogeneity

Parameters
The SJ multivariate method for estimating the heterogeneity parameter matrix emulates the SJ
method of estimating the heterogeneity parameter under a univariate meta-analysis model. In the
univariate meta-analysis, the fundamental difference of the SJ method from others is the assump-
tion of 72 > 0. Equivalently, the SJ method in a multivariate random-effects model is the assumption
of heterogeneity parameter matrix, which is always positive definite and invertible.

From the random-effects model, the expectation for the i’ study is

E(b;) =B, (2.27)
and the variance is
var(b;) = (T+L;). (2.28)
If
Ri=T"'*5,71/2 (2.29)

is known and if T is positive definite, then the total covariance matrix for study i can be rewritten
as,

L+ T =T2R; + Lyx,)TV*=T"2vT"/? (2.30)
for
Vi=(Ri+1Ipxp). (2.31)
Published by Atlantis Press
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Estimation of a Matrix of Heterogeneity Parameters
Then by changing the center of the distribution,
(bi— B) ~ N (o, Tl/zViTl/z). (2.32)
Since V; is a positive definite matrix, its inverse, V.~ I'is also positive definite. Let

0, = V_—1/2 _ (T—I/ZZiT—l/Z _prp)—l/z (2.33)

1

then, Q;0; = Vfl and equivalently, Qi’lQi’ = V;. Note that V; and Q; are symmetric matrices. By
multiplying (b; — ) with Q; then,

Qi(bi—B) ~. N (0, T),Vi=1,2,...,k. (2.34)

The variance of the distribution Q;(b; — ), namely, Q;(X; + T)Q;, can be expressed as

Qi(Zi+T)Qi = 0T ?viT' 2,

=120 10712, (2.35)

Taking the first component of (2.35), which is Q;T"/ 2Qi’l, and multiplying both ends by an identity
matrix

[=T'/AT V4 = 7 V/ATI/A,
we get

QiTl/zQi—l _ T1/4T_]/4QiT1/4T1/4Qi_1T_1/4T1/4. (2.36)
Further, the component

T-140,T4 = T’1/4(T’1/22,~T’1/2 +I)71/2T1/4
_ (T—l/z(T—l/ZEiT—l/Z_|_I)T1/2>*1/2

=(T7'5i+07"2,
Similarly,

_ (T—]/Z(T—I/ZEiT—l/Z+I)T1/2)1/2

= (1'%
Then, from equation (2.36),
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is simplified as
TV A =T/, (2.37)

We may also note that the second component of (2.35), Qfl TY2Q;, isa transpose of Q,-Tl/ZQi’l,
the first component. As a result,

Note that if
QiTl/zQ;l :Tl/2:>Q1_T1/2:T1/2Qi7

this implies that 7'/2 and Q; are commutative matrices.
Finally, the variance of

Qi(bi—B) = QT *ViT'?Q; =T, (2.39)
and hence the distribution,
Qi(bi—B) ~A(0,T). (2.40)
Applying the fundamental theory of the normal distribution,
(Qi(bi—B)) (Qibi—B)) ~ W, (1, T), (2.41)

a p-dimensional Wishart distribution with 1 degree of freedom and parameter 7, Vi=1,2,... k.
Then the sum of p-dimensional k independent studies distributed as,

k
Vi Z(Ql(b B)) ~.A(0,T). (2.42)
If
k !
S=k) (Qi(b;—pB))(Qi(bi—pB)) , (2.43)
i=1
then
S~ Wy (k, T). (2.44)

Under the random-effects model, the generalized least square (GLS) estimator of the population
effect size, B is PBas, where Py = (ZA~'Z)~'(Z A~'b) is the Best Linear Unbiased Estimator
(BLUE). The matrix, Zypxp, is a stack of k identity matrices of size p X p, the covariance matrix
A is a kp X kp box diagonal matrix of (X;+T), each of size p x p of matrices of k studies of
i=1,2,...,k, and the random vector, b, is a kp x 1 stacked with by, b,, ..., by, each a p x 1 vector.
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Since
R k -1 k
Bais = <Z(Zi+T)l> Y Ei+T) ' (2.45)
i=1 i=1
and also
R k —1
Bets ~ N(ﬁ, <Z(21+T)_1> ) (2.46)
i=1
if

!

§* = il (Qi (bi— 3)) (Qi (bi— ﬁ)) : (2.47)

then from the properties of multivariate normal distribution,

= i (Qi(bi - 3)) (bi - 3), (Q) ~Wy(k—1, T), (2.48)
i=
a Wishart distribution with k — 1 degrees of freedom for known Q;. Obviously, the expectation,
E (S*/T) =k—1, (2.49)
implies that,
T =s"/(k-1) (2.50)

is an unbiased estimator of T. But, S* is a function of E and needs to be estimated first. Clearly,
the estimator T is unbiased if the parameter Q; is known and fixed for all values of i = 1,2,...k.
Unfortunately, T is a function of Q; which is not known and has to be estimated from the data. In
other words, since the matrix 7 is component of Q; for the study i, a reasonable initial estimate
of T is needed to estimate Q;. In the case of univariate meta-analysis, Sidik and Jonkman (2005),
suggested an the average of the sums of the squares of the effect sizes to be an initial value for the
heterogeneity parameter.

In the multivariate case, let the initial matrix for estimating 7" be

To=Y (bi—b) (bi—b)/k, (2.51)

™=

1

and
_ k
b= bj/k (2.52)
i=1

an arithmetic mean vector of the effect sizes. Then, as in the univariate meta-analysis, the initial
matrix for Q; can be estimated as

-1/2
Q=1 <zi +T0> = (Ty " PmiTy 2 4 1) /2 (2.53)
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Using (A)?, the initial value for 8 can be estimated as

R k . -1 k .
B’ =<Z(21+T0)_1> Y (5 +To) "o (2.54)

i=1 i=1
Then, the SJ estimator of multivariate heterogeneity parameter matrix is

Kk
=Y (@080 B0 ) /- .59
i=1
Once the heterogeneity parameter matrix is estimated, the overall effect size vector, B can be esti-
mated as

—~ Kk -1k
Bsi :<Z(Zi+TSJ)_l> Y (Zi+Tsi)~'bs. (2.56)
i=1 i=1

The SJ estimator is a general heterogeneity variance estimator that can be applied to any random-
effects model regardless of its dimension. In a univariate case, Sidik and Jonkman (2005) stated
that the estimator does not share a shortcoming of other estimators because it always yields a non-
negative estimate. Moreover, it is derived from the weighted residual sum of squares in the frame-
work of a linear regression model without covariates, where the weight is formulated in terms of the
ratio of the study-specific variance to the heterogeneity variance. The SJ multivariate heterogeneity
variance parameter matrix estimator is an extension of the univariate SJ method and should have
the same properties as its univariate counterpart. Hence, under minimal heterogeneity, Tsy, has a
tendency of overestimating the true matrix of heterogeneity parameters. As a consequence, explor-
ing an alternative method in estimating the heterogeneity parameter matrix, which is based on the
SJ method and that addresses the over-estimation concern, is important. The new estimator, which
is called the Hybrid method, maintains all the desired properties of the SJ method and performs
much better in the area where the SJ method reveals some concerns, especially when heterogeneity
is minimal. Like SJ, the Hybrid method also assumes the heterogeneity true matrix to be positive
definite matrix. This method is called the Hybrid method because the SJ estimator initiates an itera-
tive procedure to estimate the heterogeneity parameters in a form of matrix. For the Hybrid method,
first, a convergence criterion to stop the iteration has to be established and the SJ estimators, Ts;
and [351 are used as initial estimates in the first iteration. Then the second round of iteration takes
place using Ts; and BSJ in equation (2.47) to estimate the second round heterogeneity parameter
matrix estimator, T,. Subsequently, the second round effect size vector, 32 is estimated by using T.
The iteration procedure continues until the specified convergence criterion is met. If the criterion
is met at the j'" iteration, then Tj is designated as THyb, the Hybrid estimator of the heterogeneity
parameter matrix. Similarly, the estimated overall effect size at the j'" iteration, ﬁj = 3Hyb is the
Hybrid estimator for any dimensional multivariate random-effects meta-analysis.

3. An illustrative Examples
3.1. Example I

From the recent paper of Jackson, et al. (2013), a real study of hypertension treatment is taken
as the first illustrative example. The example involves 10 studies that assess the effectiveness of
hypertension treatment for lowering blood pressure. Each study provides complete data on two

Published by Atlantis Press
Copyright: the authors
55



Estimation of a Matrix of Heterogeneity Parameters

treatment effects, the difference in systolic blood pressure (SBP) and diastolic blood pressure (DBP)
between the treatment and control groups, where these differences are adjusted for the participants’
baseline blood pressures. A bigger reduction in blood pressure is a desirable outcome, so negative
estimates indicate that the treatment is beneficial. The within-study correlations are known, so that
the within-study covariance matrices are also known, and the data are shown in the following table
below.

Table 1: Data on the Effectiveness of Hypertension Treatment for Lowering Blood Pressure

Study SBP SEsgp DBP  SEpgp p

1 -6.66 072 -299 027 0.780
2 -14.17 473  -7.87 144 0450
3 -12.88 1031 -6.01 1.77 0.590
4 -871 030 -5.11 0.10 0.770
5 -870  0.14 -464 005 0.660
6 -10.60 058 -556 0.18 0490
7 -11.36 030 -398 027 0500
8 -1793 582 -6.54 131 0611
9 -6.55 041 -2.08 0.11 0451
10 -1026 020 -349 0.04 0511

In the Table 1, SBP and DBP are the treatment effects on the systolic and diastolic blood
pressures, respectively. The within-study standard error corresponding to each estimate, SEspp and
SEppp, along with the study-level correlations denoted by p are also given.

Results from the multivariate meta-analysis using the Jackson, et al. (2009) method, the Chen,
et al. (2012) method along with the SJ and the Hybrid methods are shown in Table 2. The between-
study correlation estimates are also presented in this table.

In the presence of substantial heterogeneity, Sidik and Jonkman (2007) showed that the Der-
Simonian and Laird method tends to underestimate the population heterogeneity parameter. In
their univariate simulation study, they showed that the underestimation exacerbates as heterogeneity
increases. Both DLJ and DLC methods seem to underestimate the heterogeneity parameter matrix
in example I. As a result of the underestimation, the off-diagonal parameter, Tp 1, has much smaller
estimates for both DLJ and DLC methods, implying small correlation between SBP and DBP for
the treatment effect across studies. However, the underestimated heterogeneity parameters do not
seem to have much influence on the estimated effect sizes.

3.2. Example I1

Here the High School Longitudinal Study of 2009 (HSLS:09), cited by Chen et al. (2012) on a
three dimensional multivariate meta-analysis of random-effects model is revisited to estimate het-
erogeneity parameter matrices of 3 x 3 dimension. HSLS:09 is a nationally representative, longitu-
dinal study of more than 21,000 ninth graders in 944 schools who were be followed through their
secondary and postsecondary years.
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Table 2: Estimates of Regression Coefficients with Associated Covariances and Heterogeneity
Parameter Matrix Using the Example on the Effectiveness of Hypertension Treatment

Parameter DLJ DLC SJ Hyb

Bo -9.1738  -9.1906 -9.8473 -9.5531
B -43367 -43188 -45127 -4.5625
Var(fo) 0.2952 03082 13035 0.5526
Var(B) 0.1325 0.1365 0.3087 0.4828
Cov(fo,B1) 0.0147 0.0439 0.4661  0.4030
Too 1.9473 20431 58147 4.3731
T, 1.0293  1.0931 32023 4.3685
To. 0.0598 0.2822 3.6243  3.5897
pr 0.0422 0.1889 0.8399 0.8213

In the within-study level analyses, the interest was to know whether sex, socioeconomic status
and sex by socio-economic status interaction are predictive of the mathematics standardized theta
score. Regression was performed for each of the eight race groups and the regression coefficients
were estimated. Once the summary results were available, the second stage of the analysis was
to estimate a vector of the overall effect sizes and heterogeneity parameter matrix. The estimated
regression coefficients and associated covariance matrix for each of the eight race groups in Table
1 are taken from Chen et al. (2012). The value b;; is the regression coefficient for sex, b, is the
regression coefficient for socioeconomic status score and b;3 is the regression coefficient for sex by
socio-economic status score interaction for race group i.

Table 3: Summary of Regression Results for Eight Race Groups and Three Regression Coefficients

Effect Size Variance Covariance
R; by by; b3; by by bs; (briyb2i)  (b1iyb3i) (b b3i)
1 03161 7.4015 0.4278 2.3568 9.7029 44114 -1.2105 0.8524 -6.1753
2 -0.3201 6.9426 -0.9816 0.2529 0.7016  0.2743 0.1498 -0.1019 -0.4167
3 0.6983 4.6680 -0.2415 0.1444 0.6481 0.2608 -0.0652  0.0433 -0.3899
4  3.2736 4.3080 0.2052 3.8428 10.3517 4.8268 -4.5587 3.2892 -6.6684
5 -0.1599 5.6398 -0.6782 0.1161 0.4363 0.1733 -0.0992  0.0645 -0.2610
6 -0.6989 6.3158 -0.7918 0.1603  0.7697 0.3180 0.0242  -0.0129 -0.4686
7 -3.6094 93429 -2.8711 3.2054 17.8889 17.2101 -1.1984  0.8437 -10.7697
8 02172 6.4078 -0.6093 0.0278 0.1184  0.0482 0.0136  -0.0091 -0.0716
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By applying the extended DL multivariate methods for estimating the between-study covariance
matrix as described by Jackson et al. (2009), one can obtain the estimated matrix as,

0.2079 —0.2135 0.1179
Tpry= | —0.2135 —0.0473 0.2616
0.1179 0.2616 —0.1954

However, the estimated matrix has negative diagonal elements. As remedy to overcome this dif-
ficulties, Jackson et al. (2009) and Chen et al. (2012) proposed either to leave the estimated matrix as
is or transform the original estimate to a positive semi-definite matrix by means of spectral decom-
position. Since ToL J 1s a symmetric matrix, it can be stated as, TorL 7 =UDU’, where U is a diagonal
matrix with eigenvalues of Tp;;. By replacing negative elements of D with zeroes and renaming the
diagonal matrix with replaced zeros as Dr, the transformed estimator would be Tp ;7 = UD7U'.
But, the transformed positive semi-definite matrix is biased.

After applying the remedy to make the original negative definite matrix estimated by Jackson,
et al. (2009), the transformed new positive semi-definite matrix is referred here as ToLT, where

0.2557 —0.1220 0.0097
Torr =1 —0.1220 0.1279 0.0542
0.0097 0.0542 0.0501

Obviously, the new matrix is positive semi-definite but very different from the originally esti-
mated matrix. However, both Jackson et al. (2009) and Chen et al. (2012) did not interpret the
elements of the newly formed positive semi-definite matrix with respect to further statistical infer-
ences, such as analyzing correlation between-studies. The estimates for the overall effect sizes and
the associated covariance matrix using the corrected (transformed) heterogeneity parameter matrix
is

—0.0612
Bpryr = | 6.1873
—0.7038

0.0675 —0.0241 0.0046
Cov(Bprir) = | —0.0241 0.0884 —0.0302
0.0046 —0.0302 0.0357

If the Chen’s extended DL heterogeneity parameter matrix estimates in the original form is Tp; ¢,
then the estimated matrix before applying the remedy is,

0.2553 —0.1665 0.0857
Tore = | —0.1665 —0.1022 0.2958
0.0857 0.2958 —0.2178

Similar to the DLJ, the estimator by Chen, et al. (2012), Tprc also has negative diagonal ele-
ments and need to be a positive semi-definite matrix applying the proposed remedy. As the original
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DCL, the estimated matrix is modified by using the remedy to get rid of the negative diagonal
elements in the matrix. The newly transformed matrix is called Tprer and it is

0.2805 —0.0947 0.0031
Torer = | —0.0947 0.1025 0.0602
0.0031 0.0602 0.0533

Similarly, the overall effect sizes and its associated covariance matrix based on the corrected
heterogeneity covariance matrix of Chen et al. (2012) are estimated as PBpr;r and C‘ovﬁ

3 and
'DLJT
displayed below:

—0.0604

3DLCT: 6.1821 ,
0.7009

- 0.0720 —0.0187 0.0030
Cov(Bprer) = | —0.0187 0.0834 —0.0287
0.0030 —0.0287 0.0359

Using the SJ method for multivariate random-effects model, the heterogeneity parameter matrix,
TSJ is estimated as

3.5975 —-2.5579 1.7711
Tsy= | —2.5579 2.3114 —1.3155
1.7711 —1.3155 1.0233

The SJ estimates for overall effect size and associated covariance matrix are

—0.0604
Psy=| 6.1855
—0.6541
and
- 0.0150 0.0056 0.0028
Cov(Bsy) = [ 0.0056 0.0968 —0.0027 |,
0.0028 —0.0027 0.0644
respectively.

Furthermore, when the Hybrid method is applied, convergence was slow and the iteration was
longer than usual. That could be due to the ill-conditioned nature of the true heterogeneity parameter
matrix or due to a very small heterogeneity in the data. Perhaps, it could be also the main reason for
the estimated singular matrices in both the Jackson et al. (2009) and Chen et al. (2012) methods.
The instability of the true heterogeneity parameter matrix slowed the iteration for convergence and
as a consequence, the Hybrid method attained the maximum number of iterations set by a stopping
rule. The stopping rule for estimating the heterogeneity parameter matrix is set to be, either a very
small difference between matrices of successive iterations or a reasonable number of maximum
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iterations, whichever comes first. Because of this rear scenario, the estimated Hybrid heterogeneity
parameter matrix is not as well conditioned and has a positive determinant that is close to zero.

1.8070 —1.7276 —0.2946
Tuy, = | —1.7276 1.7373  0.3337
~0.2946 0.3337 0.0798

Similarly, the estimated effect sizes and associated covariance matrix of the effect size are

A —0.1527
By = | 6.2307
—0.6650

and

- 0.2726 —0.2397 —0.0360
Cov(Buyp) = | —0.2397 0.3057 0.0059
—0.0360 0.0059 0.0384

Both Ty and THyb produce matrices with quadratic forms and they are positive definite. Despite
the similarities in estimated effect sizes, the estimated heterogeneity parameter matrices are quite
different from method to method in the above example. Although each method expected to pro-
duce different results, the outcome in this example exacerbated by the true heterogeneity parameter
matrix of the data. The results are consistent with univariate cases as close to zero heterogeneity
parameter slows the convergence process of the Hybrid method and produces negative estimates for
other methods including the DerSimonian and Laird method (Wouhib, 2013).

4. Simulation Studies

After estimating the heterogeneity parameters in the example, a simulation study was performed by
choosing appropriate population parameters. The simulation is based on three dimensional multi-
variate data populated with study numbers, kK = 10 with unequal sample sizes, n; = 12,13, ..., 17 for
i=1,2,...,10 and 1,000 replications. In the simulation, T, a 3 x 3 matrix of heterogeneity param-
eters and f3, a three-dimensional zero vector, were used as true population covariance and mean
respectively. The within-study covariance matrices were populated similar to Jackson et al. (2009)
as stated in section 5.1 for 3-dimensional analysis. The vector for the population effect size is set to
be zero since it has no major impact on the heterogeneity parameter matrix estimation procedures.
The between-study heterogeneity parameter matrix and the effect size vector of the population in
the simulation are

1.8070 —1.7276 —0.2946
T=| —1.7276 1.7373 0.3337
—0.2946 0.3337 0.0798

and

0.00
B = 0.00
0.00
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respectively.

Using the Jackson et al. (2009) method for extended DL, the estimated heterogeneity parameter
matrix and the vector of overall effect sizes are computed from the simulation as Tprs and BoLs
respectively and presented as

1.82359 —1.70926 —0.29111
Tpry = [ —1.70926 1.75092 0.32293
—0.29111 0.32293 0.09129

The effect size vector along with the corresponding covariance matrix are also estimated as

—0.00749
BoLy = | —0.01433
0.00278

and

- 0.18457 —0.16941 —0.02838
Cov(Ppry) = | —0.16941 0.17735 0.03246
—0.02838 0.03246 0.01272

Based on the Chen et al. (2012) method, the estimated heterogeneity parameter matrix is

1.93840 —1.61902 —0.30542
Tpre= | —1.61902 1.91788 0.35403 |,
—0.30542 0.35403 0.17044

and similar to the DLJ, the effect size vector for DLC is also estimated as

—0.00566
BoLc = | 0.00523 |,
—0.04659

along with the corresponding covariance matrix,

- 0.19665 —0.15986 —0.02928
Cov(fpLc) = | —0.15986 0.19458 0.03598
—0.02928 0.03598 0.02075

The estimated matrix using the SJ method for heterogeneity parameters, the estimated vector
for effect sizes, and associated covariance matrix are stated as follows:

1.84236 —1.72513 —0.29268
Tsy= | —1.72513 1.76380 0.33049 |,
—0.29268 0.33049 0.11337

0.00148
fsy = | —0.00527 |,
0.00234
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and

- 0.17098 —0.15140 —0.02424
Cov(Bsy) = [ —0.15140 0.16400 0.03014
—0.02424 0.03014 0.018487

The Hybrid method estimates of heterogeneity matrix and the effect sizes vector are presented
along with the associated covariance matrix of the estimated effect sizes as

1.83654 —1.73297 —0.29747
THyb: —1.73297 1.75359 0.33286 |,
—0.29747 0.33286 0.09842

0.00238
Bayp = | —0.00411 |,
0.00183
and
- 0.18605 —0.17169 —0.02876
Cov(Buyp) = | —0.17169 0.17765 0.03363
—0.028761 0.03363 0.01350
respectively.

In this simulation, the heterogeneity parameter matrix, which was taken from the Hybrid method
estimate of Example II is not stable with a determinant very close to zero. As explained earlier, this
is mainly due the nature of the data used in the example or the condition of the true heterogene-
ity parameter matrix itself. Because of that, the simulation produced (not shown) negative definite
matrices in more than 74 % and 67 % cases of the DLJ and DLC methods respectively, when esti-
mating the true heterogeneity parameter matrix. Hence, the negative definite matrices from these
methods were transformed to non-negative definite form using the remedy proposed by Jackson, et
al. (2009) and Chen, et al. (2012). Obviously, the estimates are biased and the remedy in correct-
ing the matrices may affect estimates of the population heterogeneity parameter matrix for these
methods and consequently, the estimated effect sizes are also affected. Perhaps, the DLJ and DLC
methods are unable to work properly where the true population heterogeneity parameter matrix is
close to homogeneity as seen in this simulation. Nevertheless, in multiple other sets of simulations
[24], where the population heterogeneity parameter matrix was selected to be stable and substantial,
the DLJ and the DLC methods estimated the heterogeneity parameters with a very small propor-
tion of negative definite matrices with the tendency of overestimation (Example I). In the case of
substantial heterogeneity, still the SJ and the Hybrid methods have shown much better results in
estimating both the population heterogeneity parameter matrix as shown in the first example. We
should also notice that both the SJ and the Hybrid methods do not need correction remedies and the
estimates for the heterogeneity parameter matrix are always positive definite.
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5. Discussion and Conclusion

From the simulation, both the SJ and the Hybrid estimators of the of the heterogeneity parame-
ter matrix performed better than the Chen et al. (2012) method in terms of proximity to the true
heterogeneity matrix and in producing always non-negative definite matrices. Moreover, the sim-
ulation showed that the Hybrid estimator does better than the SJ estimator for both diagonal and
off-diagonal elements of the heterogeneity parameter matrix. Although our simulation does not
include Maximum Likelihood (ML) and Restricted Maximum Likelihood (REML) methods, in a
close to homogeneity cases, these methods are likely to produce estimates with negative definite
matrix, similar to the DL methods. Truncating a negative definite matrix by means of the spectral
decomposition not only changes the negative definite matrix into positive semi-definite form of
nonzero diagonal element, but it also changes the off-diagonal elements of the matrix. This can lead
to a meaningless interpretation of the elements of the truncated matrix. Moreover, unlike the widely
used truncation in the univariate meta-analysis, the application of spectral decomposition may has
unintended consequences in multivariate meta-analysis when transforming a negative definite het-
erogeneity matrix to a nonnegative form. As we have seen in the second example, estimating the
between-study correlation coefficients could be misleading when estimated heterogeneity parameter
matrices of DLJ and DLC are used after transformation.

The SJ and the Hybrid methods have important features in estimating matrices of heterogeneity
parameters. The estimated matrices are always positive definite, and no need for matrix truncation
or spectral decomposition. Similar to a one-way random-effects meta-analysis, the newly proposed
methods are viable alternatives and perhaps the only option when other methods fail to properly
estimate a matrix of heterogeneity parameters for a multivariate random-effects model(Wouhib,
2013). The SJ and the Hybrid methods perform nicely with any multidimensional meta-analysis
whether heterogeneity is substantial or minimal. Among these two methods, the simulation showed
that the Hybrid method does much better in estimating the true heterogeneity parameter matrix in
terms of closeness to the true parameters of the between-study covariance matrix. Although the
Hybrid method is iterative; Wouhib (2013) has shown that it usually converges faster than other
iterative methods including ML and REML.
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