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1. Introduction

The statistical study of record values in a sequence of iid continuous random variables was first
formulated by Chandler (1952). For an extensive study in this area one can refer to the works of
Arnold et al. (1998) and Ahsanullah (1988, 1995). Dzuibdziela and Kopocinski (1976) have gener-
alized the concept of record values of Chandler (1952) by random variables of a more generalized
nature and we may call them as generalized record values ork-th record values. In this chapter we
mainly focus on the study of generalized record values from Gompertz distribution.

The Gompertz distribution was introduced by Gompertz (1825). This distribution plays an
important role in modelling human mortality and fitting actuarial tables. Ahuja and Nash (1967)
have shown that Gompertz distribution is related by a simple transformation to certain distributions
in the Pearson system of distribution. It can be viewed as extensions of the exponential distributions.
More recent survey of Gompertz distribution and its applications can be found in Al-Hussainiet al.
(2000) and Marshall and Olkin (2007).

Let {Xn, n > 1} be a sequence of iid random variables with cumulative distribution function
(cdf) F(x) = P(X 6 x) and probability density function (pdf)f (x). For a fixed positive integerk,
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we define the sequence
{

U (k)
m ,m > 1

}

of k-th upper record times of{Xn, n > 1} as follows:

U (k)
1 = 1, U (k)

m+1 = min
{

j >U (k)
m : X j: j+k−1 > X

U (k)
m :U (k)

m +k−1

}

.

The sequence
{

Y (k)
m , m > 1

}

whereY (k)
m = X

U (k)
m :U (k)

m +k−1
is called the sequence ofk-th upper record

values or generalized upper record values of{Xn, n > 1}. For convenience we shall also takeY (k)
0 =

0. For k = 1 andm = 1, 2, . . . we writeU (1)
m = Um. Then{Um, m > 1} is the sequence of upper

record times of{Xn, n > 1} as defined in Chandler (1952). We shall write,

µ(r)
m;k = E[(Y (k)

m )r], r, m = 1, 2, . . .

µ(r,s)
m,t;k = E[(Y (k)

m )r(Y (k)
t )s], 16 m 6 t −1, r, s = 1, 2, . . .

µ(r,0)
m,t;k = E[(Y (k)

m )r] = µ(r)
m;k, 16 m 6 t −1, r = 1, 2, . . .

µ(0,s)
m,t;k = E[(Y (k)

t )s] = µ(s)
t;k , 16 m 6 t −1, s = 1, 2, . . .

In Section 2, we derive recurrence relations for single and product moments of generalized upper
record values arising from Gompertz distribution. In Section 3, we derive the conditional distri-
bution of a generalized upper record valueY (k)

t given Y (k)
m = x for m < t and used a property of

conditional expectation of a function of generalized upper record values to characterize Gompertz
distribution. In Section 4, we discuss generalized lower record values and obtain recurrence relation
for single and product moments from inverted Gompertz distribution. Finally, in Section 5 we give
a charaterization result for the inverted Gompertz distribution.

2. Recurrence relation for single and product moments of generalized upper record
values from Gompertz distribution

A random variableX is said to have a Gompertz distribution if its pdf is of the form

f (x) = βeαxe

[

− β
α (eαx−1)

]

, 06 x < ∞, α , β > 0. (2.1)

The cdf corresponding to (2.1) is given by

F(x) = 1− e

[

− β
α (eαx−1)

]

. (2.2)

It can be seen that

f (x) =
[

β +α{− ln[F(x)]}
]

F(x), (2.3)

whereF(x) = 1−F(x).
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Let
{

Y (k)
m , m > 1

}

whereY (k)
m = X

U (k)
m : U (k)

m +k−1
be a sequence of generalized upper record values

from (2.1). Then the pdf ofY (k)
m , m > 1 is given by [see, Dziubdziela and Kopocinski, 1976]

f
Y (k)

m
(x) =

km

(m−1)!

[

− lnF(x)
]m−1[

F(x)
]k−1

f (x) (2.4)

and the joint density function ofY (k)
m andY (k)

t , 16 m < t, t > 2 is given by

f
Y (k)

m ,Y (k)
t
(x,y) =

kt

(m−1)!(t −m−1)!

[

lnF(x)− lnF(y)
]t−m−1

×
[

− lnF(x)
]m−1 f (x)

F(x)
[F(y)]k−1 f (y), x < y. (2.5)

Theorem 2.1. Fix a positive integer k > 1. For m > 1 and r = 0, 1, 2, . . .

µ(r+1)
m+1;k = µ(r+1)

m;k −
βk
mα

(µ(r+1)
m;k −µ(r+1)

m−1;k)+
(r+1)

mα
µ(r)

m;k. (2.6)

Proof. Form > 1 andr = 0, 1, 2, . . ., we have from (2.3) and (2.4)

µ(r)
m;k =

βkm

(m−1)!

∫ ∞

0
xr[− lnF(x)]m−1[F(x)]kdx

+
αkm

(m−1)!

∫ ∞

0
xr[− lnF(x)]m[F(x)]kdx.

Now, integrating by parts treatingxr for integration and the rest of the integrand for differentiation
and simplifying we get

µ(r)
m;k =

βk
(r+1)

µ(r+1)
m;k −

βk
(r+1)

µ(r+1)
m−1;k +

mα
(r+1)

µ(r+1)
m+1;k −

mα
(r+1)

µ(r+1)
m;k .

Now, rearranging the terms we get

µ(r+1)
m+1;k = µ(r+1)

m;k −
βk
mα

(µ(r+1)
m;k −µ(r+1)

m−1;k)+
(r+1)

mα
µ(r)

m;k,

which is relation (2.6).

Remark 2.1. For k = 1, wededuce the relation for single moments of upper record values estab-
lished by Khan and Zia (2009).

Theorem 2.2. For 16 m 6 t −2 and r, s = 0, 1, 2, . . .

µ(r+1,s)
m,t;k = µ(r+1,s)

m+1,t;k +
βk
mα

(µ(r+1,s)
m,t−1;k −µ(r+1,s)

m−1,t−1;k)−
(r+1)

mα
µ(r,s)

m,t;k (2.7)

and for m > 1, r, s = 0, 1, 2, . . .

µ(r+1,s)
m,m+1;k = µ(s+r+1)

m+1;k +
βk
mα

(µ(s+r+1)
m;k −µ(r+1,s)

m−1,m;k)−
(r+1)

mα
µ(r,s)

m,m+1;k. (2.8)
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Proof. From (2.5), for 16 m 6 t −1 andr, s = 0, 1, 2, . . ., we have

µ(r,s)
m,t;k =

kt

(m−1)!(t −m−1)!

∫ ∞

0
ys[F(y)]k−1 f (y)I(y)dy (2.9)

where,

I(y) =
∫ y

0
xr[lnF(x)− lnF(y)]t−m−1[− lnF(x)]m−1 f (x)

F(x)
dx. (2.10)

Using (2.3) in (2.10) we get

I(y) = β
∫ y

0
xr[lnF(x)− lnF(y)]t−m−1[− lnF(x)]m−1dx

+α
∫ y

0
xr[lnF(x)− lnF(y)]t−m−1[− lnF(x)]mdx. (2.11)

Integrating (2.11) by parts, treatingxr for integration and the rest of the integrand for differentiation,
we get fort > m+2,

I(y) =
β (t −m−1)

(r+1)

∫ y

0
xr+1[lnF(x)− lnF(y)]t−m−2 f (x)

F(x)
[− lnF(x)]m−1dx

−
β (m−1)
(r+1)

∫ y

0
xr+1[lnF(x)− lnF(y)]t−m−1 f (x)

F(x)
[− lnF(x)]m−2dx

+
α(t −m−1)

(r+1)

∫ y

0
xr+1[lnF(x)− lnF(y)]t−m−2 f (x)

F(x)
[− lnF(x)]mdx

−
αm

(r+1)

∫ y

0
xr+1[lnF(x)− lnF(y)]t−m−1 f (x)

F(x)
[− lnF(x)]m−1dx. (2.12)

Substituting (2.12) in (2.9) and on further simplification we get (2.7).
Further, fort = m+1 we have

I(y) =
β

(r+1)

[

yr+1[− lnF(y)]m−1− (m−1)
∫ y

0
xr+1[− lnF(x)]m−2 f (x)

F(x)
dx

]

+
α

(r+1)

[

yr+1[− lnF(y)]m −m
∫ y

0
xr+1[− lnF(x)]m−1 f (x)

F(x)
dx

]

. (2.13)

Substituting (2.13) in (2.9) and simplifying we get (2.8).

Remark 2.2. For k = 1, we deduce the relation for product moments of upper record values estab-
lished by Khan and Zia (2009).

3. Characterization result

Now we obtain the characterization of Gompertz distribution using conditional expectation of func-
tion of generalized upper record values. First we describe the conditional distribution of a general-
ized upper record valueY (k)

t givenY (k)
m = x for m < t. We make use of this conditional distribution to

obtain a characterization property of Gompertz distribution. The joint pdf ofY (k)
m andY (k)

t is given
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in (2.5) and the marginal distribution ofY (k)
m is given by (2.4). If we writeh(y | x) to denote this

conditional density, then the conditional pdf ofY (k)
t givenY (k)

m = x, 16 m < t is given by

h(y | x) =
kt−m

(t −m−1)![F(x)]k
[lnF(x)− lnF(y)]t−m−1[F(y)]k−1 f (y). (3.1)

Clearly h(y | x) is distributed as the pdf of the(t −m)th generalized upper record value arising from
the distribution truncated on the left atx. Thus we conclude that the conditional pdf of generalized
upper record values also shows a property similar to that of conditional pdf of an order statistic
arising from an absolutely continuous distribution given the value of a lower order statistic.
In particular, the conditional pdf ofY (k)

m+1 givenY (k)
m = x, is given by

h(y | x) =
k[F(y)]k−1 f (y)

[F(x)]k
, y > x. (3.2)

Theorem 3.1. Let X be an absolutely continuous r.v. with pdf f (x) and cdf F(x). Then X follows

Gompertz distribution with F(x) = 1− e−
β
α (eαx−1), α , β > 0, 0< x < ∞ if and only if

E

[

e−eαY
(k)
m+1

|Y (k)
m = x

]

=
βk

(α +βk)
e−eαx

. (3.3)

Proof. From (3.2) we get,

E

[

e−eαY
(k)
m+1

|Y (k)
m = x

]

=
k

[F(x)]k

∫ ∞

x
e−eαy

[F(y)]k−1 f (y)dy. (3.4)

Now, using (2.1) and (2.2) in (3.4) the proof of the necessary part follows.
Conversely, assume that (3.3) holds. Then

∫ ∞

x
e−eαy

[F(y)]k−1 f (y)dy =
β

(α +βk)
e−eαx

[F(x)]k. (3.5)

Differentiating both sides of (3.5) and simplifying we get,

−
d
dx

lnF(x) = βeαx,

which on further simplification leads to,F(x) = e−
β
α (eαx−1) and this proves the theorem.

4. Recurrence relation for single and product moments of generalized lower record
values from inverted Gompertz distribution

A r.v. X is said to have an inverted Gompertz distribution if its pdf is of the form

f (x) =
β
x2 e−

β
α (e

α
x −1)e

α
x , x > 0, α , β > 0 (4.1)

and its cdf is of the form

F(x) = e−
β
α (e

α
x −1). (4.2)

It should be noted that ifY follows a Gompertz distribution with pdf (2.1), thenX = 1/Y follows
the inverted Gompertz distribution defined by the pdf (4.1). For an inverted Gompertz distribution
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f (x) andF(x) are connected by the relation

x2 f (x) = [β +α(− lnF(x))]F(x). (4.3)

Let {Xn, n > 1} be a sequence of iid random variables as defined in Section 2. For a fixedk > 1,

we define the sequence
{

L(k)
m , m > 1

}

of k-th lower record times of{Xn, n > 1} (as introduced by
Pawlas and Szynal, 1998) as follows:

L(k)
1 = 1, L(k)

m+1 = min
{

j > L(k)
m : X

k:L(k)
m +k−1

> Xk: j+k−1

}

.

Fork = 1, we writeL(1)
m = Lm which are lower record times of{Xn, n > 1}.

The sequence
{

Z(k)
m , m > 1

}

whereZ(k)
m = X

k:L(k)
m +k−1

is called the sequence of generalized lower

record values ork-th lower record values of{Xn, n> 1}. For convenience we shall also takeZ(k)
0 =0.

For k = 1, we haveZ(1)
m = XLm, m > 1, which defines the usual sequence of lower record values of

{Xn, n > 1}. We shall define,

ν(r)
m;k = E[(Z(k)

m )r], r, m = 1, 2, . . .

ν(r,s)
m,t;k = E[(Z(k)

m )r(Z(k)
t )s], 16 m 6 t −1, r, s = 1, 2, . . .

ν(r,0)
m,t;k = E[(Z(k)

m )r] = ν(r)
m;k, 16 m 6 t −1, r = 1, 2, . . .

ν(0,s)
m,t;k = E[(Z(k)

t )s] = ν(s)
t;k , 16 m 6 t −1, s = 1, 2, . . .

The pdf ofZ(k)
m , m > 1 is given by

f
Z(k)

m
(x) =

km

(m−1)!
[− lnF(x)]m−1[F(x)]k−1 f (x) (4.4)

and the joint density function ofZ(k)
m andZ(k)

t , 16 m < t, t > 2 is given by

f
Z(k)

m ,Z(k)
t
(x,y) =

kt

(m−1)!(t −m−1)!
[lnF(x)− lnF(y)]t−m−1

× [− lnF(x)]m−1 f (x)
F(x)

[F(y)]k−1 f (y), x > y. (4.5)

Theorem 4.1. Fix a positive integer k > 1. For m > 1 and r = 1, 2, . . .

ν(r)
m+1;k = ν(r)

m;k +
βk
mα

(ν(r)
m−1;k −ν(r)

m;k)−
r

mα
ν(r+1)

m;k . (4.6)

Proof. For m > 1 andr = 1, 2, . . ., we have from (4.3) and (4.4)

ν(r+1)
m;k =

βkm

(m−1)!

∫ ∞

0
xr−1[− lnF(x)]m−1[F(x)]k−1dx

+
αkm

(m−1)!

∫ ∞

0
xr−1[− lnF(x)]m[F(x)]kdx.

Now, integrating by parts treatingxr−1 for integration and the rest of the integrand for differentiation
and simplifying we get relation (4.6).
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Theorem 4.2. For 16 m 6 t −2 and r, s = 1,2, . . .

rν(r+1,s)
m,t;k = βk

(

ν(r,s)
m−1,t−1;k −ν(r,s)

m,t−1;k

)

+mα
(

ν(r,s)
m,t;k −ν(r,s)

m+1,t;k

)

(4.7)

and for m > 1, r, s = 1, 2, . . .

rν(r+1,s)
m,m+1;k = βk

(

ν(r,s)
m−1,m;k −ν(s+r)

m;k

)

+mα
(

ν(r,s)
m,m+1;k −ν(s+r)

m+1;k

)

. (4.8)

Proof. The proof follows exactly in the same manner as in Theorem 2.2 and hence omitted.

5. Characterization result for inverted Gompertz distribution

Here we obtain a characterization property of inverted Gompertz distribution based on conditional
expectation of function of generalized lower record values. First we consider the conditional distri-
bution of a generalized lower record valueZ(k)

t given Z(k)
m = x for m < t. The joint pdf ofZ(k)

m and
Z(k)

t is given in (4.5) and the marginal distribution ofZ(k)
m is given by (4.4). If we writeg(y | x) to

denote this conditional density, then the conditional pdf ofZ(k)
t given Z(k)

m = x, 16 m < t is given
by

g(y | x) =
kt−m

(t −m−1)![F(x)]k
[lnF(x)− lnF(y)]t−m−1[F(y)]k−1 f (y). (5.1)

Clearlyg(y | x) is distributed as the pdf of the(t−m)th generalized lower record value arising from
the distribution truncated on the right atx. Thus we conclude that the conditional pdf of generalized
lower record values also shows a property similar to that of conditional pdf of an order statistic
arising from an absolutely continuous distribution given the value of a higher order statistic.
In particular, the conditional pdf ofZ(k)

m+1 givenZ(k)
m = x, is given by

g(y | x) =
k[F(y)]k−1 f (y)

[F(x)]k
. (5.2)

Theorem 5.1. Let X be an absolutely continuous r.v. with pdf f (x) and cdf F(x). Then X follows

an inverted Gompertz distribution with F(x) = e−
β
α (e

α
x −1) if and only if

E

[

e−eα/Z
(k)
m+1

| Z(k)
m = x

]

=
βk

(α +βk)
e−e

α
x . (5.3)

Proof. Using (5.2), the necessary part follows by direct computation.
Conversely, assume that (5.3) holds. Then

∫ x

0
e−e

α
y
[F(y)]k−1 f (y)dy =

β
(α +βk)

e−e
α
x [F(x)]k. (5.4)

Differentiating both sides of (5.4) and simplifying we get,

d
dx

lnF(x) =
βe

α
x

x2

which on further simplification leads to,F(x) = e−
β
α (e

α
x −1).
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