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1. Introduction

Let X be a non-negative continuous random variable with distribution function F(·) and proba-

bility density function f (·). Shannon (1948) introduced a measure of uncertainty associated with

distribution function F(·) as

H(F) =−

∫ ∞

0
f (x) ln f (x)dx =−E[ln f (X)] , (1.1)

where by convention 0 ln0 = 0.

The above differential entropy plays a central role in information theory. It measures the uncer-

tainty associated with the distribution function F . It is obvious that this function H(F) does not

characterize the distribution function. In this connection, Ebrahimi (2001) presented some results

that identify certain conditions based on the entropy under which the two random variables are

stochastically equal.

The question now arises if the entropy of order statistics characterizes the distribution. For this pur-

pose, Baratpour et al. (2007, 2008) explored some properties of the entropy of order statistics and

record values and established some characterization results.

If we think X as life of a new unit, then H(F) can be useful for measuring the associated uncer-

tainty. However, for a used unit, H(F) is no longer useful for measuring the uncertainty about the
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remaining life of the unit. In such situations, if the unit has survived upto time t, we consider the

uncertainty of the residual lifetime distribution as

H(F; t) =−
∫ ∞

t

f (x)

F(t)
ln

f (x)

F(t)
dx

= 1−
1

F(t)

∫ ∞

t
f (x) ln λF(x)dx

= 1−E[lnλF(X) | X > t], (1.2)

where F(·) is the survival function corresponding to F(·) and λF(x) is its failure rate or hazard rate

defined by f (x)/F(x). After the component has survived upto time t, H(F; t) measures the expected

uncertainty contained in the conditional density of X − t given X > t about the predictability of the

remaining life of the component. Clearly for t = 0, H(F;0) = −
∫ ∞

0 f (x) ln f (x)dx represents the

Shannon uncertainty contained in X .

Analogous to the residual entropy, the entropy of X |X 6 t, called the past entropy at time t has also

drawn attention in the literature. The past entropy is given by

H(F; t) =−

∫ t

0

f (x)

F(t)
ln

f (x)

F(t)
dx

= 1−
1

F(t)

∫ t

0
f (x) ln τF(x)dx , (1.3)

where τF(x) is the reversed hazard rate of X given by f (x)/F(x). Lately, the reversed hazard rate

has drawn considerable attention, see for example Block et al. (1998), Di Crescenzo and Longob-

ardi (2002, 2004) and Gupta and Gupta (2007).

A natural question arises: whether H(F; t) and H(F; t) characterize the distribution. In this connec-

tion, Ebrahimi (1996) proved a characterization of a lifetime distribution in terms of the residual

entropy. This was followed by Belzunce et al. (2004) who pointed out that the proof of Ebrahimi

(1996) was not valid without some additional assumptions. Under the additional assumptions

Belzunce et al. (2004) proved that H(F; t) characterize the distribution. Recently Gupta (2009)

presented a general result to determine whether H(F; t) or H(F; t) determine the distribution.

Let X1, X2, . . . , Xn be n independent and identically distributed observations from a distribution F ,

where F(·) is differentiable with a density f (·) which is positive in an interval and zero elsewhere.

The order statistics of the sample is defined by the arrangement of X1, X2, . . . , Xn from the smallest

to largest denoted as X1:n, X2:n, . . . , Xn:n. These statistics are widely used in reliability theory and

survival analysis to study (n−k+1)-out-of-n system which works if and only if atleast (n−k+1)-

out-of-n components are working. Series and parallel systems are particular cases of these system

corresponding to k = 1 and k = n, respectively.

In this paper, we shall explore the properties of the residual entropy of order statistics. We shall also

consider the characterization results based on the entropy function of the order statistics based on

residual lifetime distribution and the past life distribution. The organization of this paper is as fol-

lows: In Section 2, we present some basic results for the residual entropy and the past entropy based

on order statistics together with some examples. Section 3 deals with the stochastic comparisons

based on the residual entropy of order statistics. Section 4 contains some characterization results

based on the entropy function of the residual lifetime distribution and the past life distribution. The

proofs are based on using sufficient condition for the uniqueness of the solution of an initial value
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problem (IVP) encountered in the study of certain differential equation. Finally some conclusions

and comments are given in Section 5.

2. Entropy of Order Statistics

Suppose X is a continuous random variable with distribution function FX(x). It is well known that

U = FX(X) has a uniform distribution in [0,1]. Let U1,U2, . . . ,Un be a random sample from a uni-

form distribution [0,1] and W1 <W2 < · · ·<Wn be the order statistics, then Wi, i = 1, 2, . . . ,n has a

beta distribution with density function

gi(w) =
1

B(i,n− i+1)
wi−1(1−w)n−i, 0 6 w 6 1, (2.1)

where B(a;b) = Γ(a)Γ(b)
Γ(a+b) .

The entropy of Wi is given by

Hn(Wi) = lnB(i,n− i+1)− (i−1)[ψ(i)−ψ(n+1)]− (n− i)[ψ(n− i+1)−ψ(n+1)], (2.2)

where, ψ(z) = d logΓ(z)
dz

is the digamma function.

The entropy of the order statistics Xi:n is given by

H(Xi:n) = Hn(Wi)−Egi
[ln( f (F−1(Wi)))] , (2.3)

where gi(w) is given by (2.1), refer to Ebrahimi et al. (2004).

The residual entropy of order statistics Xi:n is given by

H(Xi:n; t) =−

∫ ∞

t

fi:n(x)

F i:n(t)
ln

(

fi:n(x)

F i:n(t)

)

dx

= 1−
1

F i:n(t)

∫ ∞

t
fi:n(x) lnλFi:n

(x)dx , (2.4)

where λFi:n
(x) is the hazard rate of the ith order statistics.

Similarly, the entropy of the order statistics of the past life distribution is given by

H(Xi:n; t) =−
∫ t

0

fi:n(x)

Fi:n(t)
ln

fi:n(x)

Fi:n(t)
dx

= 1−
1

Fi:n(t)

∫ t

0
fi:n(x) ln τFi:n

(x)dx , (2.5)

where τFi:n
is the reversed hazard rate of the ith order statistics.

2.1. Some Special cases

In reliability engineering (n− k+1)-out-of-n systems are very important kind of structures. A (n−

k+1)-out-of-n system functions if and only if at least (n− k+1) components out of n components

function. If X1,X2, . . . ,Xn denote the independent lifetimes of the components of such system, then

the lifetime of the system is equal to the order statistic Xk:n. The special case of k = 1 and n, that

is for sample minima and maxima correspond to series and parallel systems respectively. Here, we

calculate the residual and the past entropy of first order (sample minima) and nth order (sample
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maxima) statistics, for an exponentially distributed random variable.

The residual entropy of X1:n can be obtained using (2.4) as

H(X1:n; t) =

(

n−1

n

)

− lnn+ lnF(t)−n

∫ 1

F(t)
(1−u)n−1

ln [ f (F−1(u))]du . (2.6)

We calculate the residual entropy of the first order statistics X1:n for an exponentially distributed

random variable with p.d.f. f (x) = θe−θ x, θ > 0, x > 0. The p.d.f. of the ith order statistics Xi:n, for

i = 1,2, . . . ,n is given by

fi:n(x) =
1

B(i,n− i+1)
[F(x)]i−1[1−F(x)]n−i f (x), (2.7)

for details refer to Arnold et al. (1992).

Putting i = 1 in (2.7) and using (2.6), we get that the residual entropy of the first order statistics for

an exponentially distributed random variable is 1− lnnθ .

We calculate the past entropy of the nth order statistics Xn:n for an exponentially distributed random

variable with p.d.f. f (x) = θe−θ x, θ > 0, x > 0. Note that using (2.7), fn:n(x) = nFn−1(x) f (x) and

hence Fn:n(x) = Fn(x). Putting these values in (2.8) we get

H(Xn:n; t) =− lnn− (n−1) lnF(t)+

(

n−1

n

)

−
n

Fn(t)

∫ F(t)

0
un−1 ln f (F−1(u))du+n lnF(t) . (2.8)

It can be easily seen that f (F−1(u)) = θ(1−u). Putting this value in (2.9) and let t → ∞, we get

lim
t→∞

H(Xn:n; t) = 1− lnnθ + γ +ψ(n), (2.9)

where γ =−ψ(1)≈ 0.5772, which is same as derived by Ebrahimi et al. (2004).

2.2. Upper bound for dynamic entropies

We derive the upper bound for the dynamic entropies under the condition that the pdf for the ith

order statistics is less than 1. Note that

H(Xi:n; t) =−

∫ ∞

t

fi:n(x)

F i:n(t)
ln

fi:n(x)

F i:n(t)
dx

= lnF i:n(t)−
1

F i:n(t)

∫ ∞

t
fi:n(x) ln fi:n(x)dx.

We know that, for t > 0, lnF i:n(t)6 0. Using this we get

H(Xi:n; t)6−
1

F i:n(t)

∫ ∞

t
fi:n(x) ln fi:n(x)dx

6−
1

F i:n(t)

∫ ∞

0
fi:n(x) ln fi:n(x)dx .

Hence

H(Xi:n; t)6
H(Xi:n)

F i:n(t)
(2.10)
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with equality when t → 0.

Next, we calculate an upper bound for the past entropy. We have

H(Xi:n; t) =−

∫ t

0

fi:n(x)

Fi:n(t)
ln

(

fi:n(x)

Fi:n(t)

)

= lnFi:n(t)−
1

Fi:n(t)

∫ t

0
fi:n(x) ln fi:n(x)dx .

For t > 0, we have lnFi:n(t)6 0

H(Xi:n; t)6−
1

Fi:n(t)

∫ t

0
fi:n(x) ln fi:n(x)dx

6−
1

Fi:n(t)

∫ ∞

0
fi:n(x) ln fi:n(x)dx.

Hence

H(Xi:n(t))6
H(Xi:n)

Fi:n(t)
. (2.11)

The equality is obtained when t → ∞.

3. Stochastic Comparisons Based on Residual Entropy of Order Statistics

We have the following definitions:

1. A non-negative random variable X is said to have increasing (decreasing) failure rate IFR (DFR)

if λX(t) =
fX (t)

FX (t)
is increasing (decreasing).

2. A random variable X is said to be less than Y in dispersion ordering (denoted by (X
disp

6 Y ) if

F−1(u)−F−1(v)6 G−1(u)−G−1(v), ∀0 6 v 6 u 6 1.

3. A random variable X is said to be less than Y in likelihood ratio ordering (denoted by X
lr

6 Y ) if
fX (x)
gY (x)

is non increasing in x.

4. A random variable X is said to be less than Y in the failure rate ordering (denoted by X
fr

6 Y ) if

λF(x)> λG(x), for all x> 0, where λF(x) and λG(x) are the failure rates of X and Y , respectively.

5. A random variable X is said to be less than Y in the stochastic ordering (denoted by X
st

6 Y ) if

F(x) 6 G(x) for all x, where F(x) and G(x) are the survival functions of X and Y respectively.

6. A random variable X is said to be smaller than Y in residual entropy ordering (denoted by X
re

6Y )

if H(F; t)6 H(G; t), for all t > 0.

It is well known that X
lr

6 Y ⇒ X
fr

6 Y ⇒ X
st

6 Y .

We want to compare the residual entropy of order statistics. For that we present the following results.

Theorem 3.1. Let X
lr

6 Y and λF(x) or λG(x) be non increasing in x. Then X
re

6 Y .

Proof. Refer to Ebrahimi and Pellerey (1995), Theorem 2.3.

The above result can be strengthened for failure rate ordering as follows.
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Theorem 3.2. Let X
fr

6 Y and λF(x) or λG(x) be non increasing in x. Then X
re

6 Y .

Ebrahimi and Kirmani (1996) proved the following result for dispersive ordering.

Theorem 3.3. Let X
disp

6 Y and λF(x) or λG(x) be increasing in x. Then X
re

6 Y .

Infact Bagai and Kochar (1986) proved the following.

Theorem 3.4. Let X
disp

6 Y and λF(x) or λG(x) be increasing in x. Then X
fr

6 Y .

Let X1, X2, . . . , Xn be a random sample of size n from a distribution F and let X1:n < X2:n < · · ·<

Xn:n be the order statistics. It is known that X1:n

lr
< X2:n

lr
< · · ·

lr
< Xn:n, see Chan et al. (1991).

Ma (1998), under some weaker conditions, extended the above result when X1, X2, . . . , Xn are inde-

pendent, but not necessarily identically distributed.

Boland et al. (1994) showed that for independent but not necessarily identically distributed random

variables Xk:n

fr

6 Xk+1:n, for k = 1,2, . . . ,n−1.

Let us now compare the random variable X to Xi:n, i = 1,2, . . . ,n, in the likelihood ratio. For that

Raqab and Amin (1996) and Khaledi and Kochar (1999) proved that Xi:m

lr

6 X j:n whenever i 6 j and

m− i > n− j.

In particular X1:n

lr

6 X and X
lr

6 Xn:n. Using the above results we have the following theorem.

Theorem 3.5. Suppose X1:n < X2:n < · · · < Xn:n be the order statistics based on a random sample

of size n from a distribution F(·). Suppose X has a decreasing failure rate. Then X
re

6 Xn:n.

Proof. As shown above X
lr

6Xn:n. Since X has a decreasing failure rate, it follows from Theorem 3.1

that X
re

6 Xn:n. Note that if X has a decreasing failure rate, then Xn:n has a decreasing failure rate, see

Takahasi (1988).

Now we compare Xi:n and X j:n, i < j. We have the following result.

Theorem 3.6. Suppose X1:n < X2:n < · · · < Xn:n be the order statistics based on a random sample

of size n from a distribution F(·). Suppose X has a decreasing failure rate. Then Xi:n

re

6 X j:n, i < j.

Proof. Using the result of Chan et al. (1991) we have Xi:n

lr

6 X j:n. This implies that Xi:n

fr

6 X j:n.

Since X has a decreasing failure rate, Xi:n has a decreasing failure rate, see Takahasi (1988). Using

Theorem 3.2, we conclude that Xi:n

re

6 X j:n.

The following result deals with the likelihood ratio ordering of order statistics of different sam-

ple sizes.

Theorem 3.7. Suppose X1, X2, . . . , Xn, Xmax(m,n) are independent and identically distributed ran-

dom variables where m and n are positive integers. Then X j:m

lr

6 Xi:n whenever j 6 i and m− j >

n− i.

Proof. See Shaked and Shanthikumar (2007).
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In particular Xn:n

lr

6 Xn+1:n+1 and X1:n+1

lr

6 X1:n. Using the above result, we have the following

theorem.

Theorem 3.8. Suppose X1, X2, . . . , Xn+1 are independent and identically distributed random vari-

ables from a distribution function F(·). Suppose X has a decreasing failure rate. Then

(i) Xn:n

re

6 Xn+1:n+1

(ii) X1:n+1

re

6 X1:n.

Proof. Using the above result, we have Xn:n

lr

6 Xn+1:n+1. Since X has decreasing failure rate, Xn:n

and Xn+1:n+1 have increasing failure rate. Using Theorem 3.1 we conclude that Xn:n

re

6 Xn+1:n+1.

Similarly we can prove (ii).

In the case of dispersive ordering, we have the following result.

Theorem 3.9. Suppose X1:n < X2:n < · · ·< Xn:n be the order statistics from a sample of size n from a

distribution F(·). Suppose X has an increasing failure rate and Xi:n

disp
< X j:n, i < j. Then Xi:n

re
< X j:n.

Proof. Since X has increasing failure rate, Xi:n has increasing failure rate, see Takahasi (1988).

Using Theorem 3.3 and the fact that Xi:n

disp
< X j:n, we can conclude that Xi:n

re
< X j:n.

4. Some Characterization Results

In this section, we present some characterization results based on dynamic entropy of order statis-

tics. Baratpour et al. (2007) have studied characterizations based on Shannon entropy of order statis-

tics using Stone-Weistrass Theorem. We study characterizations with a different approach given

below:

Consider a problem of finding sufficient condition for the uniqueness of the solution of the initial

value problem (IVP)

dy

dx
= f (x,y), y(x0) = y0, (4.1)

where f is a given function of two variables whose domain is a region D ⊂R
2, (x0,y0) is a specified

point in D, y is the unknown function. By the solution of the IVP on an interval I ⊂ R, we mean a

function φ(x) such that (i) φ is differentiable on I, (ii) the growth of φ lies in D, (iii) φ(x0) = y0

and (iv) φ ′(x) = f (x,φ(x0)), for all x ∈ I. The following theorem together with other results will

help in proving our characterization result.

Theorem 4.1. Let the function f be defined and continuous in a domain D ⊂ R
2, and let f satisfy

a Lipschitz condition (with respect to y) in D, namely

| f (x,y1)− f (x,y2)|6 k |y1 − y2|, k > 0, (4.2)

for every point (x,y1) and (x,y2) in D. Then the function y = φ(x) satisfy the initial value problem

y′ = f (x,y) and φ(x0) = y0, x ∈ I, is unique.

Proof. See Gupta and Kirmani (2008).
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For any function f (x,y) of two variables defined in D ⊂ R
2, we now present a sufficient condi-

tion which guarantees that the Lipschitz condition is satisfied in D.

Lemma 4.1. Suppose that the function f is continuous in a convex region D ⊂R
2. Suppose further

that
∂ f
∂y

exists and is continuous in D. Then the function f satisfies Lipschitz condition in D.

Proof. See Gupta and Kirmani (1998).

We now present our two characterization results.

Theorem 4.2. Let X be a non-negative continuous random variable with distribution function F(·).

Let the residual entropy of kth order statistics based on a random sample of size n, be denoted by

H(Fk:n; t)< ∞, t > 0. Then H(Fk:n; t) characterizes the distribution.

Proof. Suppose there exists two functions F1 and F2 such that

H(F1k:n; t) = H(F2k:n; t),

for all t > 0 and for all k 6 n. Then

H ′(Fik:n; t) = λFik:n
(t)[H(Fik:n; t)−1+ lnλFik

(t)], i = 1, 2. (4.3)

where λFik:n
is the hazard rate of the kth order statistics, for i = 1, 2. Differentiating the above equa-

tion with respect to t and simplifying, we get

λ ′
Fik:n

(t) =
λFik:n

(t)

λFik:n
(t)+H ′(Fik:n; t)

[H ′′(Fik:n(t))−λFik:n
(t)H ′

Fik:n
(t)] (4.4)

Suppose now

H(F1k:n; t) = H(F2k:n; t) = g(t), (4.5)

Then for all t,

λ ′
F1k:n

(t) = ψ(t,λF1k:n
(t)) and λ ′

F2k:n
(t) = ψ(t,λF2k:n

(t)), where

ψ(t,y) =
y

y+g′(t)
[g′′(t)− y g′(t)].

It follows from Theorem 4.1 and Lemma 4.1 that λF1k:n
(t) = λF2k:n

(t).

This proves our main characterization result.

Theorem 4.3. Let X be a non-negative continuous random variable with distribution function

F(·). Let the past entropy of kth order statistics based on random sample of size n, be denoted

by H(Fk:n; t)< ∞, t > 0. Then H(Fk:n; t)< ∞ characterizes the distribution.

Proof. Suppose that there are two functions F1 and F2 such that

H(F1k:n; t) = H(F2k:n; t)

for all k > 0 and for all k 6 n.

Then

H
′
(Fik:n; t) = τFik:n

(t)[−H(Fik:n; t)+1− lnτFik:n
(t)], i = 1, 2 (4.6)

where τFik:n
(t) is the reversed hazard rate of the kth order statistics.
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Differentiating (4.7) with respect to t and simplifying, we get

τ ′
Fik:n

(t) =
τFik:n

(t)

H
′
(Fik:n; t)− τFik:n

(t)
[H

′′
(Fik:n; t)+ τFik:n

(t)H
′
(Fik:n; t)], i = 1, 2. (4.7)

Suppose now

H(F1k:n; t) = H(F2k:n; t) = g(t), say.

Then, for all t > 0,

τ ′
F1k:n

(t) = ψ(t,τF1k:n
(t)), τ ′

F2k:n
(t) = ψ(t,τF2k:n

(t)),

where

ψ(t,y) =
y

g′(t)− y
[g′′(t)+ yg′(t)].

It follows from Theorem 4.1 and Lemma 4.1 that τF1k:n
(t) = τF2k:n

(t). Since this result is true for all

t > 0 and for all k 6 n, our characterization theorem is proved.

Next we present a characterization result of the linear mean residual family of distributions

based on Theorem 4.2. The linear mean residual life of a distribution is given by µF(t) = a+ bt,

a > 0, b > −1. It can be verified that the corresponding failure rate is given by λF(t) =
1+b
a+bt

.

This model has been studied among others by Hall and Wellner (1981), Oakes and Dasu (1990)

and Gupta and Kirmani (1998). It includes the exponential distribution for b = 0 and the power

distribution for −1 < b < 0.

Theorem 4.4. Let X be a non negative absolutely continuous random variable with hazard rate

λF(t) and residual entropy H(F; t). Then H(X1:n; t) = 1+ b
1+b

− lnλF1:n
(t) if and only if µF1:n

(t) =

a+bt and hazard rate λF1:n
(t) = 1+b

a+bt
.

Proof. We have

H(X1:n; t) = 1−E[lnλF1:n
(t)|X > t]

= 1− ln(1+b)+

∫ ∞

t
ln(a+bx)

f (x)

F(t)
dx.

To evaluate
∫ ∞

t ln(a+bx) f (x)dx, we proceed as follows.

Consider

E[(a+bX)r|X > t] =
∫ ∞

t
(a+bx)r f (x)

F(t)
dx

=
(1+b)

(b+1−br)
(a+bt)r, r < 1+

1

b
. (4.8)

Taking the derivative of the above equation with respect to r and evaluating at r = 0, we get

E[ln(a+bx)|X > t] =
b

1+b
+ ln(a+bt).
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Thus

H(X1:n; t) = 1− ln(1+b)+
b

1+b
+ ln(a+bt)

= 1+
b

1+b
− ln

(

1+b

a+bt

)

= 1+
b

1+b
− lnλF1:n

(t). (4.9)

To prove the converse, equation (4.4) gives

H ′(X1:n; t) = λF1:n
(t)[H(F1:n; t)−1+ lnλF1:n

(t)]

= λF1:n
(t)[1+b− lnλF1:n

(t)−1+ lnλF1:n
(t)].

This gives

λ ′
F1:n

(t)+
b

1+b
λ 2

F1:n
(t) = 0,

whose solution is

λF1:n
(t) =

1+b

a+bt
.

5. Conclusions and comments

The concept of entropy as studied by Shannon (1948) in information theory plays a crucial role in

many applications. For a system, which is observed at time t the residual and past entropies mea-

sure the uncertainty about the remaining and the past life of the distribution respectively. Entropy

measures based on order statistics are crucial for measuring uncertainty in statistical modeling. The

dynamic entropy measures based on order statistics characterize uniquely the underlying distribu-

tion and are also bounded above in terms of Shannon entropy of order statistics. The stochastic

comparisons and the characterization results studied in this paper can be of wide interest and may

find applications in statistical modeling.
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