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We introduce a new family of distributions called the gamma extended Weibull family. The proposed family
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1. Introduction

Recently, Zografos and Balakrishnan [24] introduced and studied a broad family of univariate dis-
tributions through a particular case of Stacy’s generalized gamma distribution, in the same way as
Jones’s family is defined following the beta distribution. This new family stems from the general
class: if G denotes the baseline cumulative distribution function (cdf) of a random variable, then a
generalized class of distributions can be defined by

F(x;δ ) = γ{δ ,− log[1−G(x)]}, (1.1)

where x ∈X ⊆ R, δ > 0, γ(δ ,z) = Γ(δ )−1 ∫ z
0 tδ−1 e−t dt denotes the incomplete gamma function

and Γ(·) is the gamma function. This family of distributions has probability density function (pdf)
given by

f (x;δ ) =
1

Γ(δ )
{− log[1−G(x)]}δ−1 g(x). (1.2)
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Moreover, the class of extended Weibull (E W ) distributions, as proposed by Gurvich et al. [8],
has achieved a prominent position in new probability models. Its cdf is

G(x;α,ξξξ ) = 1− exp[−αH(x;ξξξ )], (1.3)

where x ∈D ⊆ R+, α > 0 and H(x;ξξξ ) is a non-negative monotonically increasing function which
depends on the parameter vector ξξξ . The corresponding pdf is given by

g(x;α,ξξξ ) = α exp[−αH(x;ξξξ )]h(x;ξξξ ), (1.4)

where h(x;ξξξ ) is the derivative of H(x;ξξξ ).
Note that different functions H(x;ξξξ ) in equation (1.3) yield important statistical models such

as: H(x;ξξξ ) = x gives the exponential distribution; H(x;ξξξ ) = x2 leads to the Rayleigh distribution;
H(x;ξξξ ) = log(x/k) leads to the Pareto distribution and H(x;ξξξ ) = β−1[exp(βx)−1] gives the Gom-
pertz distribution. Table 1 displays the functions H(·; ·) and h(·; ·) and the corresponding parameter
vectors for special distributions.

In this paper, we derive a new family of distributions by compounding the classes of gamma and
E W distributions. The compounding procedure follows by taking the E W family of distributions
as the baseline distribution in (1.1). The gamma extended Weibull (G E W ) family of distributions
contains as special models the modified Weibull, Pareto and Gompertz distributions, among those
listed in Table 1.

The paper is organized as follows. In Section 2, we define the G E W class of distributions and
obtain useful expansions for its cumulative and density functions. Some mathematical properties are
derived and discussed in Sections 3-6: quantile function, order statistics, generating function, incom-
plete moments and mean deviations. Additionally, some information theory measures for the pro-
posed family are derived. Formulas for the Rényi and Shannon entropies are presented in Section 7
and 8, respectively. In Section 9, we present expressions for the cross entropy and Kullback-Leibler
divergence. The maximum likelihood method and the observed information matrix are investigated
in Section 10. Some special cases are studied in some detail in Section 11. An application to a real
data set is performed in Section 12 in order to illustrate the flexibility and potentiality of the new
family. Finally, main conclusions are addressed in Section 13.

2. The G E W family of distributions

Taking the E W family of distributions as the baseline model in equation (1.1), we have

F(x;δ ,α,ξξξ ) = γ[δ ,α H(x;ξξξ )], (2.1)

where x ∈D , α > 0 and δ > 0. The corresponding pdf has a very simple form

f (x;δ ,α,ξξξ ) =
αδ

Γ(δ )
h(x;ξξξ )H(x;ξξξ )δ−1 exp[−αH(x;ξξξ )], (2.2)

where H(x;ξξξ ) corresponds to a special distribution listed in Table 1 with cdf given in (1.3).
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Table 1. Special distributions and corresponding H(x; ξξξ ) and h(x; ξξξ ) functions

Distribution H(x;ξξξ ) h(x;ξξξ ) α ξξξ

Exponential (x≥ 0) [9] x 1 α /0
Pareto (x≥ k) [9] log(x/k) 1/x α k
Rayleigh (x≥ 0) [18] x2 2x α /0
Weibull (x≥ 0) [9] xγ γxγ−1 α γ

Modified Weibull (x≥ 0) [11] xγ exp(λx) xγ−1 exp(λx)(γ +λx) α [γ, λ ]

Weibull extension (x≥ 0) [23] λ [exp(x/λ )β −1] β exp(x/λ )β (x/λ )β−1 α [γ, λ , β ]
Log-Weibull (−∞ < x < ∞) [21] exp[(x−µ)/σ ] (1/σ)exp[(x−µ)/σ ] 1 [µ, σ ]

Phani (0 < µ < x < σ < ∞) [17] [(x−µ)/(σ − x)]β β [(x−µ)/(σ − x)]β−1 α [µ, σ , β ]

× [(σ −µ)/(σ − t)2]

Weibull Kies (0 < µ < x < σ < ∞) [10] (x−µ)β1/(σ − x)β2 (x−µ)β1−1(σ − x)−β2−1 α [µ, σ , β1, β2]
× [β1(σ − x)+β2(x−µ)]

Additive Weibull (x≥ 0) [22] (x/β1)
α1 +(x/β2)

α2 (α1/β1)(x/β1)
α1−1 1 [α1, α2, β1, β2]

+(α2/β2)(x/β2)
α2−1

Traditional Weibull (x≥ 0) [14] xb[exp(cxd −1)] bxb−1[exp(cxd)−1] α [b, c, d]
+cdxb+d−1 exp(cxd)

Gen. power Weibull (x≥ 0) [15] [1+(x/β )α1 ]θ −1 (θα1/β )[1+(x/β )α1 ]θ−1(x/β )α1 1 [α1, β , θ ]

Flexible Weibull extension(x≥ 0) [1] exp(α1x−β/x) exp(α1x−β/x)(α1 +β/x2) 1 [α1, β ]

Gompertz (x≥ 0) [6] β−1[exp(βx)−1] exp(βx) α β

Exponential power (x≥ 0) [19] exp[(λx)β ]−1 βλ exp[(λx)β ](λx)β−1 1 [λ , β ]

Chen (x≥ 0) [4] exp(xb)−1 bxb−1 exp(xb) α b
Pham (x≥ 0) [16] (ax)β −1 β (ax)β log(a) 1 [a, β ]

The survival function of the G E W family of distributions is given by

S(x;δ ,α,ξξξ ) = 1− γ[δ ,α H(x;ξξξ )],

x > 0, and its hazard rate function becomes

τ(x;δ ,α,ξξξ ) =
αδ h(x;ξξξ )H(x;ξξξ )δ−1 exp[−αH(x;ξξξ )]

Γ(δ )S(x;δ ,α,ξξξ )
,

x > 0.

2.1. Expansions for the distribution and density functions

Here, we derive useful expansions to obtain some important statistical quantities such as the noncen-
tral moment, generating function and Rényi entropy. Raising the density function (2.2) to a positive
power s gives

f (x;δ ,α,ξξξ )s =
αsδ

Γ(δ )s h(x;ξξξ )s H(x;ξξξ )s(δ−1) exp[−sαH(x;ξξξ )].

For any real number δ > 0, we have the following equality (see http://functions.wolf

ram.com/ElementaryFunctions/Log/06/01/04/03/)

{− log[1−G(x;α,ξξξ )]}δ−1 = (δ −1)
∞

∑
k=0

(
k+1−δ

k

) k

∑
j=0

(−1) j+k
(k

j

)
p j,k

(δ −1− j)
G(x;α,ξξξ )α+k−1, (2.3)
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where the quantities p j,k can be obtained recursively, for k = 1,2, . . . , as

p j,k =
1
k

k

∑
m=1

[k−m( j+1)]cm p j,k−m,

p j,0 = 1 and ck = (−1)k+1/(k+1). Applying (2.3) in equation (1.2) and using the binomial expan-
sion, we can express (2.2) as an infinite linear combination of E W densities. We have

f (x;δ ,α,ξξξ ) =
∞

∑
r=0

νr g(x;α(r+1),ξξξ ), (2.4)

where

νr =
(−1)r (δ −1)
(r+1)Γ(δ )

∞

∑
k=0

k

∑
j=0

(−1) j+k

(δ −1− j)

(
k
j

)(
k+1−δ

k

)
. (2.5)

Equation (2.4) is the main result of this section.

3. Moments, generating function and log-moment

3.1. Moments

Let X be a random variable following the G E W distribution with parameters δ ,α and ξξξ , say
X ∼ G E W (δ ,α,ξξξ ). The nth noncentral moment is given by

E(Xn) =
∫

D
xn αδ−1

Γ(δ )
H(x;ξξξ )δ−1 g(x;α,ξξξ )dx =

αδ−1

Γ(δ )
EY [Y n H(Y ;ξξξ )δ−1]. (3.1)

Here and henceforth Y , denotes a random variable following the E W distribution with pdf given by
(1.4). We can also rewrite (3.1) as

E(Xn) =
∫

D
xn f (x;δ ,α,ξξξ )dx =

αδ

Γ(δ )

∫
D

xn H(x;ξξξ )δ−1 h(x;ξξξ )exp [−αH(x;ξξξ )]dx.

Setting u = H(x;ξξξ ), we have du = h(x;ξξξ )dx, x = H−1(u;ξξξ ) and then

E(Xn) =
αδ

Γ(δ )

∫
A
[H−1(u;ξξξ )]n uδ−1 exp(−α u)du, (3.2)

where A = {u : H−1(u;ξξξ ) ∈ D}. The integral in (3.2) can be obtained in closed-form for some
special models.

In Table 2, we list the H−1(x;ξξξ ) function for some special cases. Table 3 provides E(Xn) for the
exponential, Rayleigh, Weibull and Pareto distributions.
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Table 2. The H−1(x;ξξξ ) function

Distribution H−1(x;ξξξ )

Exponential power [log(x+1)]1/β

λ

Chen [log(x+1)]1/β

Weibull extension λ
[
log
( x

λ
+1
)]1/β

Log-Weibull σ log(x)+µ

Kies x1/β σ+µ

x1/β+1

Gen. Power Weibull β

[
(x+1)1/θ −1

]1/α1

Gompertz log(β x+1)
β

Pham
[

log(x+1)
log(a)

]1/β

Table 3. Values of E(Xn)

E(Xn)

Exponential Rayleigh Weibull Pareto (for k > α)

Γ(n+δ )
αnΓ(δ )

Γ( n
2 +δ)

α
n
2 Γ(δ )

Γ

(
n
γ
+δ

)
α

n
γ Γ(δ )

αδ kn

(k−α)δ

3.2. Moment generating function

In a similar manner, the moment generating function (mgf) of the G E W family of distributions is
given by

M(t) = E
(
etX)= αδ−1

Γ(δ )
EY

[
etX H(Y ;ξξξ )δ−1

]
.

This equation can be expressed as

M(t) =
αδ

Γ(δ )

∫
D

h(x;ξξξ )H(x;ξξξ )δ−1 exp [−αH(x;ξξξ )+ tx]dx.

Setting again u = H(x;ξξξ ), we obtain M(t) = αδ Γ−1(δ )
∫
A uδ−1 exp

[
−α u+ t H−1(u;ξξξ )

]
du.

3.3. Log moment

The kth log-moment of the G E W family of distributions reduces to

E[logk(X)] =
∫

D
logk(x) f (x;δ ,α,ξξξ )dx =

αδ−1

Γ(δ )

∫
D

logk(x)H(x;ξξξ )δ−1 g(x;α,ξξξ )dx

=
αδ−1

Γ(δ )
EY [logr(Y )H(Y ;ξξξ )δ−1].

3.4. Dependent-H moment

Theorem 1. Let Y and X be two random variables represented by the cdf’s (1.3) and (2.1), respec-
tively. Thus, the following results hold:
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(1) EX [H(X ;ξξξ )k] = Γ(δ+k)
αkΓ(δ )

;

(2) EX
{

log[H(X ;ξξξ )]k H(X ;ξξξ )r−δ+1
}
= αδ−1

Γ(δ )
∂ k

∂ rk

[
Γ(r+1)

αr

]
;

(3) EX
{

logk[H(X ;ξξξ )]
}
= αδ−1

Γ(δ )
∂ k

∂δ k

[
Γ(δ )

αδ−1

]
.

Setting δ = 1 in these equations, we obtain the corresponding expressions for the random vari-
able Y . The proof of this theorem is given in the appendix B.

3.5. Incomplete moments

The kth incomplete moment of a random variable X following the G E W distribution is determined
as

Tk(z) = E(Xk | X < z) =
∫ z

−∞

xk f (x;δ ,α,ξξξ )dx =
∞

∑
r=0

νr T ′k (z)

and then

Tk(z) =
∞

∑
r=0

νr T ′k (z), (3.3)

where T ′k (z) =
∫ z
−∞

xk g(x;α(r+1),ξξξ )dx is the kth incomplete moment of the E W distribution and
the quantity νr is given in (2.5).

4. Quantile function and random number generator

The G E W quantile function can be expressed in terms of the quantile function of the gamma dis-
tribution and of the inverse function of H, which are denoted by QΓ(δ ;u) and H−1(·), respectively.
From the G E W cumulative distribution F(x;δ ,α,ξξξ ) = γ[δ ,αH(x;ξξξ )], we have γ[δ ,αH(x;ξξξ )] = u
and, as a consequence, αH(x;ξ ) = QΓ(δ ;u). Therefore, the G E W quantile function can be
expressed as

Q(δ ,α,ξξξ ;u) = H−1
(

QΓ(δ ;u)
α

;ξξξ

)
. (4.1)

For example, from Table 2, the quantile functions for the Chen and Pham distributions are given
by

[log(QΓ(δ ,u)+1)]1/β and
[

log(QΓ(δ ,u)+1)
log(a)

]1/β

, respectively.

Hence, the generator for X ∼ G E W (δ ,α,ξξξ ) can be given by the following algorithm:
1: Generate U ∼U(0,1).
2: Specify a function H(·; ·) such as anyone in Table 1.
3: Obtain a outcome of X by X = H−1

(
QΓ(δ ;U)

α
,ξξξ
)

.
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4.1. Expansion for the quantile function

The quantile function of the G E W distribution can be expressed in terms of a power series of a
transformed variable v, which takes the form v = p(u− t)ρ , for p, t and ρ known constants,

Q(u) =
∞

∑
i=0

mi vi, (4.2)

where the coefficients mi are suitably chosen real numbers. In Steinbrecher and Shaw [20], for the
gamma distribution with shape parameter δ > 0, equation (4.2) is defined by v = [Γ(δ +1)u]1/δ and

mi =


0, if i = 0
1, if i = 1
ai+1, if i≥ 1,

where

ai+1 =
1

i(δ + i)

{ i

∑
r=1

i−s+1

∑
s=1

ar as ai−r−s+2 s(i− r− s+2)−∆(i)
i

∑
r=2

ar ai−r+2 r [r−δ − (1−δ )(i+2− r)]
}
,

∆(i) = 0 if i < 2 and ∆(i) = 1 if i ≥ 2. In this case, the first coefficients are a2 = 1/(δ + 1),
a3 = (3δ +5)/[2(δ +1)2(δ +2)], . . . Hence, the power series for the gamma quantile function can
be expressed as

QΓ(δ ;u) =
∞

∑
i=0

mi Γ(δ +1)i/δ ui/δ . (4.3)

Applying (4.3) to equation (4.1), it follows the G E W quantile function

Q(δ ,α,ξξξ ;u) = H−1

(
1
α

∞

∑
i=0

mi Γ(δ +1)i/δ ui/δ ;ξξξ

)
.

4.2. Skewness and kurtosis

There are several robust measures in the literature for location and dispersion. The median, for
example, can be used for location and the interquartile range. Both the median and the interquartile
range are based on quantiles. From this fact, Bowley [2] proposed a coefficient of skewness based
on quantiles given by

SK =
Q(3/4)+Q(1/4)−2Q(1/2)

Q(3/4)−Q(1/4)
,

where Q(·) is the quantile function of a given distribution. It can be shown that Bowley’s coefficient
of skewness takes the value zero for symmetric distributions. Additionally, its largest value is one
and the lowest is −1.

Moors [12] demonstrated that the conventional measure of kurtosis may be interpreted as a
dispersion around the values µ +σ and µ −σ . Thus, the probability mass focuses around µ or
on the tails of the distribution. Therefore, based on this interpretation, Moors [12] proposed, as an
alternative to the conventional coefficient of kurtosis, a robust measure based on octiles given by

KR =
[Q(7/8)−Q(5/8)]+ [Q(3/8)−Q(1/8)]

Q(6/8)−Q(2/8)
.
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5. Order statistics

In the following discussion, we derive the order statistics and their moments. The pdf of the ith
order statistic Xi:n, for i = 1,2, . . . ,n, can be expressed as

fi:n(x) =
f (x)

B(i,n− i+1)
F i−1(x) [1−F(x)]n−i =

f (x)
B(i,n− i+1)

n−i

∑
k=0

(−1)k
(

n− i
k

)
F i+k−1(x).

From equation (C.2) given in Appendix C, we obtain

fi:n(x) =
g(x)

B(i,n− i+1)

n−i

∑
k=0

(−1)k
(

n− i
k

)
∞

∑
m=0

ηm,v H(x;ξξξ )m+δ (i+k)−1,

where ηm,v = αδ−1 sm,v/Γ(δ ) and sm,v is defined in this appendix. Additionally, from equation (C.2)
given in Appendix C, the vth ordinary moment of Xi:n becomes

E(Xv
i:n) =

∫
D

xv fi:n(x)dx =
1

B(i,n− i+1)

n−i

∑
k=0

(−1)k
(

n−i
k

)
µv,i+k−1,

where the quantity µv,i+k−1 = E[XvF i+k−1(X)] is the probability weighted moment (pwm) of the
G E W distribution.

6. Mean deviations

The mean deviations about the mean and the median for the G E W family of distributions can be
expressed as

δ1(X) =
∫

D
|x−µ| f (x;δ ,α,ξξξ )dx and δ2(X) =

∫
D
|x−M| f (x;δ ,α,ξξξ )dx,

respectively, where µ = E(X) denotes the mean and M = Median(X) the median. The median
follows from the nonlinear equation F(M;δ ,α,ξξξ ) = 1/2. These quantities can be reduced to

δ1(X) = 2 µ F(µ;δ ,α,ξξξ )−2T1(µ) and δ2(X) = µ−2T1(M),

where T1(z) =
∫ z
−∞

x f (x;δ ,α,ξξξ )dx is the first incomplete moment.
From equation (3.3), the quantity T1(z) for the G E W distribution becomes T1(z) =

∑
∞
r=0 νr T ′1(z), where T ′1(z) =

∫ z
−∞

xg(x;α(r + 1),ξξξ )dx is the first incomplete moment of the E W
distribution.

7. Rényi entropy

Let Y be a random variable with density f (y;θ) with support y ∈ A ⊂ R. The Rényi entropy is
defined by

Hs
R(Y ) =

1
1− s

log
{

EY [ f (Y ;θ)s−1]
}
=

1
1− s

log
(∫

A
f (y;θ)sdy

)
,

where s ∈ (0,∞)\{1}.
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We can obtain the Rényi entropy for the G E W distribution as

Hs
R(X) =

1
1− s

log

(
αsδ

Γ(δ )s

∫
D

H(x;ξξξ )s(δ−1) h(x;ξξξ )s exp [−sαH(x;ξξξ )]dx

)

=
1

1− s

{
sδ log(α)− s log[Γ(δ )]+ log

(∫
D

H(x;ξξξ )s(δ−1) h(x;ξξξ )s exp [−sαH(x;ξξξ )]dx

)}
.

(7.1)

8. Shannon entropy

Let Y be defined as in Section 7. Here, we derive the Shannon entropy defined by

HS(Y ) = EY{− log[ f (Y ;θ)]}=−
∫

D
log[ f (y;θ)] f (y;θ)dy.

The log-likelihood function relative to one observation follows from (2.2) as

log[ f (x;δ ,α,ξξξ ) ] = log

[
αδ

Γ(δ )

]
+(δ −1) log[H(x;ξξξ )]−αH(x;ξξξ )+ log[h(x;ξξξ )].

Thus, the Shannon entropy of X can be expressed as

HS(X) =− log

[
αδ

Γ(δ )

]
− (δ −1)EX{log[H(X ;ξξξ )]}+α EX [H(X ;ξξξ )]−EX{log[h(X ;ξξξ )]}.

Using Theorem 1, the following results hold: (i) EX{log[H(X ;ξξξ )]} = ψ(δ )− log(α), where ψ(·)
is the digamma function and (ii) EX [H(X ;ξξξ )] = δ/α . Finally, the Shannon entropy reduces to

HS(X) = log
[

Γ(δ )

α

]
− (δ −1)ψ(δ )+δ −EX{log[h(X ;ξξξ )]}. (8.1)

9. Cross entropy and Kullback-Leibler Divergence

Let X and Y be two random variables with common support R+ whose densities are fX(x;θ1) and
fY (y;θ2), respectively. Cover and Thomas [5] defined the cross entropy as

CX(Y ) = EX{− log[ fY (X ;θ2)]}=−
∫

∞

0
fX(z;θ1) log[ fY (z;θ2)]dz.

Now, consider X ∼ G E W (δx,αx,ξξξ x) and Y ∼ G E W (δy,αy,ξξξ y). After some algebraic manipula-
tions, we obtain

CX(Y ) =−
∫

D
fX(z;δx,αx,ξξξ x) log[ fY (z;δy,αy,ξξξ y)]dz

=−

{
log

[
α

δy
y

Γ(δy)

]
+δy EX

{
log[H(X ;ξξξ y)]

}
−αy EX

[
H(X ;ξξξ y)

]
+EX{log[h(X ;ξξξ y)]}

}
.

(9.1)
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An important measure in statistical information theory is the Kullback-Leibler divergence given
by

D(X ||Y ) =CX(Y )−HS(X) = EX

{
log

[
fX(X ;δx,αx,ξξξ x)

fY (X ;δy,αy,ξξξ y)

]}
. (9.2)

Applying (8.1) and (9.1) in equation (9.2) yields

D(X ||Y ) =EX

{
log

[
h(X ;ξξξ x)

h(X ;ξξξ y)

]}
+ log

[
Γ(δy)αx

α
δy
y Γ(δx)

]
−δy EX [logH(X ;ξξξ y)]+(δx−1)ψ(δx)

−δx +αy EX [H(X ;ξξξ y)].

10. Estimation and observed information matrix

The parameters of the G E W distribution can be estimated by the method of maximum likelihood.
Let x1, · · · ,xn be a random sample of size n from X ∼ G E W (δ ,α,ξξξ ). The log-likelihood function
for the vector of parameters θθθ = (δ ,α,ξξξ

>
)> can be written as

l(θθθ) = nδ log(α)−n log[Γ(δ )]+(δ −1)
n

∑
i=1

log[H(xi;ξξξ )]−α

n

∑
i=1

H(xi;ξξξ )+
n

∑
i=1

log[h(xi;ξξξ )].

The components of the score vector U(θ) are

Uδ (θθθ) =
∂ l(θ)

∂δ
=−nψ(δ )+

n

∑
i=1

log[H(xi;ξξξ )]+n logα, Uα(θθθ) =
∂ l(θ)

∂α
=

nδ

α
−

n

∑
i=1

H(xi;ξξξ )

and Uξξξ k
(θθθ) = ∂ l(θ)

∂ξξξ k
= (δ −1)∑

n
i=1

1
H(xi;ξξξ )

∂H(xi;ξξξ )
∂ξξξ k

−α ∑
n
i=1

∂H(xi;ξξξ )
∂ξξξ k

+∑
n
i=1

1
h(xi;ξξξ )

∂h(xi;ξξξ )
∂ξξξ k

.

The partitioned observed information matrix for the G E W distribution is

J(θθθ) =−


Uδδ Uδα | U>

δξξξ

Uαδ Uαα | U>
αξξξ

−− −− −− −−
Uδξξξ Uαξξξ | Uξξξ ξξξ

 ,

whose elements are Uδδ (θθθ) =−ψ(1)(δ ), Uδα(θθθ) = nα−1, Uαα(θθθ) =−nδα−2,

Uδξξξ k
(θθθ) =

n

∑
i=1

1
H(xi;ξξξ )

∂H(xi;ξξξ )

∂ξξξ k
, Uαξξξ k

(θθθ) =
n

∑
i=1

∂H(xi;ξξξ )

∂ξξξ k
, and

Uξξξ kξξξ j
(θθθ) =(δ −1)

n

∑
i=1

1
H(xi;ξξξ )

[
∂ 2H(xi;ξξξ )

∂ξξξ kξξξ j
− 1

H(xi;ξξξ )

∂H(xi;ξξξ )

∂ξξξ k

∂H(xi;ξξξ )

∂ξξξ j

]

−α

n

∑
i=1

∂ 2H(xi;ξξξ )

∂ξξξ kξξξ j
+

n

∑
i=1

1
h(xi;ξξξ )

[
∂ 2h(xi;ξξξ )

∂ξξξ kξξξ j
− 1

h(xi;ξξξ )

∂h(xi;ξξξ )

∂ξξξ k

∂h(xi;ξξξ )

∂ξξξ j

]
.
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11. Two special models

11.1. The gamma modified Weibull distribution

For H(x;γ) = xγ exp(λx) and h(x;γ) = xγ−1 exp(λx)(γ + λx), we obtain the gamma modi-
fied Weibull (G MW ) density f (x; δ ,α,γ,λ ) = αδ Γ−1(δ )xγδ−1(γ +λx)exp[δλx−αxγ exp(λx)],
where x > 0 and λ ,γ ≥ 0. If δ = 1, it gives as special case the modified Weibull (MW ) distribution
proposed by Lai et al. [11]. In addition, when λ = 0, it gives the Weibull distribution.

Fig. 1. Plots of the G MW density and Hazard rate function for some parameter values.

From equation (2.4), we can obtain f (x; δ ,α,γ,λ ) = ∑
∞
r=1 νr g(x; α(r + 1),γ,λ ), where

g(x; α(r + 1),γ,λ ) is the MW density function with parameters α(r + 1),γ and λ . The G MW
hazard function is τ(x; δ ,α,γ,λ ) = [Γ(δ )S(x;δ ,α,γ,λ )]−1 αδ (γ +λx)xγδ−1 exp(δλx−αxγeλx),

where x > 0.
The raw moment of a random variable X following the G MW distribution has closed-form

computed from (2.4) as

E(Xk) =
∞

∑
r=0

νr µ
′
k(r), (11.1)

where µ ′k(r) =
∫

∞

0 xkg(x; α(r+ 1),γ,λ )dx denotes the raw moment of the MW distribution with
parameters α(r+1),γ and λ . Carrasco et al. (2008) [3] obtained an infinite representation for this
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moment as

µ
′
k(r) =

∞

∑
i1,...,ik=1

Ai1,...,ik Γ(sk/γ +1)

[α (r+1)]sk/γ
, (11.2)

where Ai1,...,ik = ai1 , . . . ,aik and sk = i1, . . . , ik, and ai =
(−1)i+1ii−2

(i−1)!

(
λ

γ

)i−1
.

Hence, the moments of the G MW distribution can be computed directly from equations (11.1)
and (11.2).

11.2. The gamma Pareto distribution

For H(x;k) = log(x/k) and h(x;k) = 1/x, we obtain the gamma Pareto (G P) density

f (x;δ ,α,k) =
αδ kα

Γ(δ )xα+1

[
log
(

x
k

)]δ−1

, x≥ k. (11.3)

The hazard rate function is

τ(x;δ ,α,k) =
αδ kα

[
log(x/k)

]δ−1

Γ(δ )xα+1 S(x;δ ,α,k)
.

From equations (2.4) and (11.3), we obtain the sth ordinary moment of X

E(X s) = αks
∞

∑
r=0

νr(r+1)[
α(r+1)− s

] , for α > s ,

where the coefficients νr are given by (2.5).
From equation (7.1) we obtain the Rényi entropy of the G P distribution, which is valid for

s > 1, as

Hs
R(X) =

1
1− s

{
sδ log(α)− s log

[
ksα

∫
∞

k
x1−sδ logs(δ−1)(x/k)dx

]}
.

Similarly, we obtain from equation (8.1) the Shannon entropy given by HS(X) = log[Γ(δ )
α

]−
(δ −1)ψ(δ )+δ +α δ kα−δ .

12. Application

We assess the efficiency of the proposed model in an analysis of real data. We compare the fits
of some G E W distributions and those of some sub-models such as the G MW , gamma Weibull
(G W ), gamma Rayleigh (G R), G P , MW and Weibull distributions. In order to estimate the
parameters of these submodels in the class of the G E W distributions, we adopt the maximum
likelihood method (as discussed in Section 10) using the subroutine NLMixed of the software SAS.
The data for this application, consisting of the failure times of 20 mechanical components given in
Murthy et al. [13] are listed in Table 4.

Table 6 displays the MLEs of the parameters and the values of the statistics: Akaike Information
Criterion (AIC), Bayesian Information Criterion (BIC) and Consistent Akaike Information Criterion
(CAIC). From the values of these statistics, we verify that the G P model provides a better fit to
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Fig. 2. Plots of the G P density and hazard rate function for some parameter values.

Table 4. The failure times of 20 mechanical components

0.067 0.068 0.076 0.081 0.084 0.085 0.085 0.086 0.089 0.098
0.098 0.114 0.114 0.115 0.121 0.125 0.131 0.149 0.160 0.485

Table 5. The K-S statistics and −2`(θ̂) for some fitted models

Model K–S −2`(θ̂)
G MW 0.8761 −71.2
G W 0.1855 −65.4
G R 0.3001 −50.7
G P 0.2518 −80.4
MW 0.8007 −61.7
Weibull 0.2641 −52.8

these data. Additionally, the G E W and G W models are much better than the MW and Weibull
models.

Published by Atlantis Press 
Copyright: the authors 

13



Nascimento et al.

(a) (b)

Fig. 3. Estimated densities, cumulative and empirical distributions from the fitted G MW ,G M ,G R,G P,MW and
Weibull models for the failure times.

Table 6. MLEs of the model parameters and the statistics AIC, BIC and AICC

Model Estimates AIC BIC AICC
G MW (δ ,α,γ,λ ) 93.9631 223.2331 0.3563 −0.6258 −63.2 −59.2 −60.5
G W (δ ,α,γ) 72.2393 128.7642 0.2622 −59.4 −57.9 −56.4
G R (δ ,α) 0.8884 39.7374 −46.7 −44.8 −46.0
G P (δ ,α,k) 0.7490 1.5826 0.0670 −76.4 −74.4 −75.6

MW (α,γ,λ ) 828.48 2.9129 −5.4296 −55.7 −52.7 −54.2
Weibull (α,γ) 25.9723 1.6422 −48.8 −46.9 −48.1

More information is provided by a visual comparison of the fitted density functions and the his-
togram of the data. The plots of the fitted G MW ,G W ,G R,G P,MW and Weibull density func-
tions and estimated cumulative functions are given in Figure 3. Based on these plots, we conclude
that the new distributions provide adequate fits. Table 5 lists the values of the Kolmogorov-Smirnov
(K-S) statistic and of −2`(θ̂).

13. Conclusion

We propose and study the gamma extended Weibull (G E W ) family of distributions. The new den-
sity function can be expressed as a mixture of extended Weibull density functions. This result is
important to derive some mathematical properties of the new family including moments, generating
function, mean deviations, Shannon entropy, Rényi entropy, Cross entropy and Kullback-Leibler
Divergence. We also derive the density function of the order statistics and their moments. Two spe-
cial distributions are investigated in some detail. The model parameters are estimated by maximum
likelihood. An example to real data illustrates the importance and potentiality of the new family.
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Appendix A. Theoretical background

For a positive integer s, we have that (see Gradshteyn and Ryzhik [7])(
∞

∑
m=0

am xm

)s

=
∞

∑
m=0

ts,m xm, (A.1)

where the coefficients ts,m, for m = 1,2, . . . , are obtained by the recurrence equation ts,0 = as
0 and

ts,m = (ma0)
−1

m

∑
j=1

[ j(s+1)−m] a j ts,m− j.

Appendix B. Proof of Theorem 1

From equation (2.2), we have ∫
D

H(x;ξξξ )rg(x;α,ξξξ )dx =
Γ(r+1)

αr . (B.1)

The kth derivative with respect to r at both sides of equation (B.1) yields∫
D

logk[H(x;ξξξ )]H(x;ξξξ )rg(x;α,ξξξ )dx =
∂ k

∂ rk

[
Γ(r+1)

αr

]
and then E

{
logk[H(X ;ξξξ )]H(X ;ξξξ )r−δ+1

}
= αδ−1

Γ(δ )
∂ k

∂ rk

[
Γ(r+1)

αr

]
.

Using equation (B.1) with r = δ −1 and differentiating k times with respect to δ ,∫
D

logk[H(x;ξξξ )]H(x;ξξξ )δ−1g(x;α,ξξξ )dx =
∂ k

∂δ k

[
Γ(δ )

αδ−1

]
.

After multiplying both sides of this equation by αδ−1

Γ(δ ) , we can write E
{

logk[H(X ;ξξξ )]
}
=

αδ−1

Γ(δ )
∂ k

∂δ k

[
Γ(δ )

αδ−1

]
.

Appendix C. A linear combination for the quantity f (x;δ ,α,ξ )F(x;δ ,α,ξ )v

First, we derive a power series expansion for F(x;δ ,α,ξξξ )v. From equation (2.1), we have

F(x;δ ,α,ξξξ )v =

(
[αH(x;ξξξ )]δ

Γ(δ )

)v(
∞

∑
m=0

(−α)m

(δ +m)m!
H(x;ξξξ )m

)v

=

(
[αH(x;ξξξ )]δ

Γ(δ )

)v(
∞

∑
m=0

wm H(x;ξξξ )m

)v

,

where wm = (−α)m/[(δ +m)m!]. We assume that v is a positive integer, and then the Eq. A.1 implies that

F(x;δ ,α,ξξξ )v =

(
[αH(x;ξξξ )]δ

Γ(δ )

)v
∞

∑
m=0

wm,vH(x;ξξξ )m =
∞

∑
m=0

wm,v

(
αδ

Γ(δ )

)v

H(x;ξξξ )m+vδ =
∞

∑
m=0

sm,v H(x;ξξξ )m+vδ ,

(C.1)

where sm,v = wm,v

(
αδ

Γ(δ )

)v
and the coefficients wm,v for m = 1,2, . . . are obtained from the recurrence relation

in Eq. A.1. Combining this result and the expansion (C.1), we have

f (x;δ ,α,ξ )F(x;δ ,α,ξ )v
∞

∑
m=0

sm,v H(x;ξξξ )m+vδ =
αδ−1

Γ(δ )
g(x;α,ξξξ )

∞

∑
m=0

sm,v H(x;ξξξ )m+δ (v+1)−1, (C.2)

where the last equation holds because of (1.4).

Published by Atlantis Press 
Copyright: the authors 

15



Nascimento et al.

References

[1] M. Bebbington, C.D. Lai and R. Zitikis, “A flexible Weibull extension,” Reliability Engineering &
System Safety, 92, 719 – 726 (2007).

[2] A.L. Bowley, Elements of Statistics, King (1920).
[3] J.M.F. Carrasco, E.M.M. Ortega and G.M. Cordeiro, “A generalized modified Weibull distribution for

lifetime modeling,” Computational Statistics and Data Analysis, 53, 450 – 462 (2008).
[4] Z. Chen, “A new two-parameter lifetime distribution with bathtub shape or increasing failure rate func-

tion,” Statistics and Probability Letters, 49, 155 –161 (2000).
[5] T.M. Cover and J.A. Thomas, Elements of Information Theory, John Wiley & Sons (2006).
[6] B. Gompertz, “On the nature of the function expressive of the law of human mortality and on the new

model of determining the value of life contingencies,” Philosophical Transactions of the Royal Society
of London, 115, 513 – 585 (1825).

[7] I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products, Academic Press (2007).
[8] M. Gurvich, A. DiBenedetto and S. Ranade, “A new statistical distribution for characterizing the ran-

dom strength of brittle materials,” Journal of Materials Science, 32, 2559–2564 (1997).
[9] N.L. Johnson, S. Kotz and N. Balakrishnan, Continuous Univariate Distributions, New York: John

Wiley & Sons (1994).
[10] J.A. Kies, “The strength of glass,” Washington D.C., Naval Research Lab, Report 5093 (1958).
[11] C.D. Lai, M. Xie and D.N.P. Murthy, “A modified Weibull distribution,” IEEE Transactions on Relia-

bility, 52, 33 – 37 (2003).
[12] J.J.A. Moors, “A quantile alternative for kurtosis,” Journal of the Royal Statistical Society (Series D),

37, 25–32 (1988).
[13] D.N.P. Murthy, M. Xie and R. Jiang, Weibull Models, John Wiley & Sons (2004).
[14] S. Nadarajah and S. Kotz, “On some recent modifications of Weibull distribution,” IEEE Transactions

on Reliability, 54, 561 – 562 (2005).
[15] M. Nikulin and F. Haghighi, “A chi-squared test for the generalized power Weibull family for the head-

and-neck cancer censored data,” Journal of Mathematical Sciences, 133, 1333 – 1341 (2006).
[16] H. Pham, “A vtub-shaped hazard rate function with applications to system safety,” International Journal

of Reliability and Applications, 3, 1 –16 (2002).
[17] K.K. Phani, “A new modified Weibull distribution function,” Communications of the American Ceramic

Society 70, 182 – 184 (1987).
[18] J.W.S. Rayleigh, “On the resultant of a large number of vibrations of the same pitch and of arbitrary

phase,” Philosophical Magazine Series 5, 10, 73–78 (1880).
[19] R.M. Smith and L.J. Bain, “An exponential power life testing distribution,” Communications in Statis-

tics, Theory and Methods, 4, 469 – 481 (1975).
[20] G. Steinbrecher and W.T. Shaw, “Quantile mechanics,” European Journal of Applied Mathematics, 19,

87–112 (2008).
[21] J.S. White, “The moments of log-Weibull order statistics,” Technometrics, 11, 373 – 386 (1969).
[22] M.M. Xie and D. Lai, “Reliability analysis using additive Weibull model with bathtub-shaped failure

rate function,” Reliability Engineering & System Safety, 52, 87 – 93 (1995).
[23] M. Xie, Y. Tang, T.N. Goh, “A modified Weibull extension with bathtub-shaped failure rate function,”

Reliability Engineering & System Safety, 76, 279 – 285 (2002).
[24] K. Zografos and N. Balakrishnan, “On families of beta and generalized gamma-generated distributions

and associated inference,” Statistical Methodology, 6, 344–362 (2009).

Published by Atlantis Press 
Copyright: the authors 

16


	Introduction
	The GEW family of distributions
	Expansions for the distribution and density functions

	Moments, generating function and log-moment
	Moments
	Moment generating function
	Log moment
	Dependent-H moment
	Incomplete moments

	Quantile function and random number generator
	Expansion for the quantile function
	Skewness and kurtosis

	Order statistics
	Mean deviations
	Rényi entropy
	Shannon entropy
	Cross entropy and Kullback-Leibler Divergence
	Estimation and observed information matrix
	Two special models
	The gamma modified Weibull distribution
	The gamma Pareto distribution

	Application
	Conclusion
	Theoretical background
	Proof of Theorem 1
	A linear combination for the quantity f(x;,,)F(x;,,)v



