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 Abstract - In this paper, a special subclass of binary generalized 

quasi-cyclic self-orthogonal codes and quantum codes constructed by 

Steane construction are discussed. Firstly, eight 16-dimensional even 

length generalized quasi-cyclic self-orthogonal codes with dual 

distance five are built based on circulant or partial circulant matrices. 

Secondly, pairs of nested self-orthogonal codes with dual distance 

five and three are designed by applying an algorithm for searching 

subcodes of a given code. Thirdly, revised pairs of codes with dual 

distance six and four are constructed by extending previous pairs of 

codes, and then eight quantum codes with distance six are obtained 

by Steane construction. These eight quantum codes are new binary 

construction by Steane construction and are best known ones. 

 Index Terms - Quantum code, Steane construction, self-

orthogonal code, generalized quasi-cyclic code, pair of nested self-

orthogonal codes. 

1.  Introduction 

 Quantum-error-correcting codes (quantum codes for 

short) play important roles in reducing both decoherence and 

inaccuracy while performing operations on quantum data. As 

an important subclass of quantum codes, the first examples of 

binary quantum stabilizer codes were discovered 

independently by Calderbank and Shor [1] and by Steane [2]. 

The systemic mathematical frameworks for designing binary 

quantum stabilizer codes were due to Shor, Steane, Gottesman 

and Calderbank et al., see [2, 3, 4, 5, 6]. At the same time, 

some construction methods for binary quantum stabilizer 

codes have been proposed, in which the problem of 

constructing binary quantum stabilizer codes can be 

transformed into the problem of constructing classical self-

orthogonal codes by CSS construction [1,2,3], Steane 

construction (see Theorem 1 below) [7] or quaternary 

construction  [6]. 

Theorem 1 Let C and C  be binary [ , , ]n k d  and 
1 1[ , , ]n k d  

codes respectively. If C C C    and 
1 2k k  , then a 

quantum code   1 13 2n,k k n,min d , d       can be 

constructed. 

 In this paper, we focus on binary construction of quantum 

stabilizer codes by Steane construction. The key problem in 

this manner is to build pairs of nested self-orthogonal codes 

with possible larger dual distance and dimension difference. 

We start with the construction of binary even length self-

orthogonal codes and their basic pairs of codes, followed by 

revised pairs of codes and quantum codes. Practically 

speaking, a special subclass of generalized quasi-cyclic codes 

constructed from circulant or partial circulant matrices is 

firstly discussed, and eight binary generalized quasi-cyclic 

self-orthogonal codes [n,16] with dual distance five for length 

n = 50, 52, 66, 68, 70, 82, 84 and 86 are built. Secondly, a 

method for finding subcodes of linear codes is presented by 

specifying special dimensionality reduction matrices, followed 

by to design basic pairs of obtained self-orthogonal codes with 

dual distance five and three. Subsequently, the revised pairs of 

codes with dual distance six and four are obtained by 

extending previous pairs of codes. Lastly, eight quantum 

stabilizer codes with distance six are constructed from revised 

pairs of codes by Steane construction. 

 The material is organized as follows. Some basic notions 

and results on codes are recalled in section 2. Details on 

binary generalized quasi-cyclic self-orthogonal codes 

constructed from circulant or partial circulant matrices are 

discussed in section 3. Section 4 devotes to designing pairs of 

nested binary self-orthogonal codes and quantum codes. We 

subsequently compare our codes with the known ones in the 

last section. 

2.  Preliminaries 

 Let 
2 {0,1}F   be binary field, a k-dimensional subspace 

C  of 2

nF  is called an [ , ]n k  linear code over
2F . The number 

( ) min{ ( ) , 0}d C wt c c C c    is the minimum distance of 

C , where ( ) #{ 0}i iwt x x x   is the weight of 

1 2( , , ) n

nx x x F  . An [ , ]n k  code with distance d  is 

denoted by[ , , ]n k d . 

 The matrix G  whose rows form a basis for a code 

[ , ]C n k  is a generator matrix for C . In this case, the code 

C  is represented as C G . Any [ , ]n k  code C  has a 

unique generator matrix in standard form  ( )k k n kG I A   , 

where 
kI  is the binary k k  identity matrix. An ( )n k n   

matrix H  defined by  2 0n TC x F Hx    is a parity 

check matrix for C . For the binary code C G , 

if  ( )k k n kG I A   , then  T

n kH A I  is a parity check 

matrix for C . 

 Two [ , ]n k  linear codes 
1C  and 

2C  are permutation 

equivalent if there exists a binary permutation matrix P  such 
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that
1 2G G P , where 

1G  and 
2G  are generator matrices for  

1C  and 
2C  respectively. The permutation equivalent codes 

are essentially the same. 

 The Euclidean inner product on 2

nF  is 
1

n

i i

i

x y x y


  , 

where 
1( , , )nx x x , 1 2( , , ) n

ny y y F  . The [ , ]n n k  

code 2{ 0, }nC x F x c c C       is known as the dual of 

an [ , ]C n k  code, and C H   if H  is a parity check 

matrix for C . If ( )d d C  , then C  is called a code with 

dual distance d 
. A code C  is self-orthogonal if C C and 

self-dual if C C . Any codeword of a binary self-

orthogonal code has even weight, and any subcode of a binary 

self-orthogonal code is self-orthogonal. 

Lemma Let [ , ]C n k  be a binary self-orthogonal code with 

dual distance d 
, G  be a generator matrix for C , and 

21 (1, ,1) n

n F  be the all-ones vector.  

 If n  is even and 1n C , then 
1n

G
G

 
   

 
  generates a 

self-orthogonal code [ 1, 1]C n k    . The dual distance of 

C  equals d 
 if d 

 is even and is greater than or equal to 

1d   if d 
 is odd. 

3.   Binary Generalized Quasi-cyclic Self-orthogonal Codes 

 As a natural generalization of cyclic codes, quasi-cyclic 

codes are known to be good codes. Many optimal or best 

known linear codes are quasi-cyclic codes [8, 9, 10, 11]. The 

algebra structure of quasi-cyclic codes has been researched for 

a long time [12, 13, 14, 15] and some feasible construction 

methods for one-generator quasi-cyclic codes have been 

proposed [9, 10, 16]. Although degenerate quasi-cyclic codes 

might reduce dependency between length and dimensionality 

of codes [9], there is little flexibility for these two parameters. 

In this section, we design binary self-orthogonal codes from 

circulant or partial circulant matrices, which can be viewed as 

a special subclass of generalized quasi-cyclic codes. For 

general notions on generalized quasi-cyclic codes, see [17, 18, 

19] please. 

 For any

1

2

0

( ) [ ] ( 1)
l

j l

j

j

f x f x F x x




   , let 

0 1 1

1 0 2

1

1 2 0

( )

( )

( )

l

l l

f

l

f f ff x

f f fxf x
M

f f fx f x



 



  
  
   
  
  

   

.           (1) 

Suppose    1, , 1, ,kT i i l   and ,f TM  is a matrix 

whose rows come from fM  indexed byT . Matrices fM  and 

,f TM  are known as circulant and partial circulant matrix over 

2F  respectively. Let
il k ,  1,2, ,iT T k   and  

 
1 , ,pk f T f TG I M M .                          (2) 

where 

1

2

0

( ) [ ] ( 1)
i

i

l
lj

i ij

j

f x f x F x x




    and ,if TM  is a 

ik l  binary circulant or partial circulant matrix for 1 i p  . 

Then (2) can generate an 
1

[ , ]
p

i

i

C k l k


   generalized quasi-

cyclic code determined by 1( , , )pf f . The dual of C  

defined by (2) is C H  , where  

1

1

,

,

p

i

i
p

f T

l

f T

M

H I

M

 
 

  
  

 

.                                       (3) 

 There are two major obstacles while applying directly (2) 

to constructing self-orthogonal codes. Firstly, the fact that the 

number of candidates for each 
if  equals to 2 il  results in huge 

computation complexity. Secondly, suppose that there are 

some same
il 's, for instance

1 2l l l  , and 2k l    . If there 

exists some integer t  such that 1 2( ) ( )mod( 1)t lx f x f x x  , 

then ( )d C
 might be smaller according to (3). It's 

unattractive for constructing quantum codes. On the other 

hand, exchanging 
1f  and 

2f  can produce equivalent codes. 

These problems can be relieved by introducing an equivalent 

relation and a total ordering relation on each 

different 2[ ] ( 1)ilF x x  . 

 A binary equivalent relation ~ on 2[ ] ( 1)ilF x x   is 

defined by ( ) ~ ( )f x g x  if and only if there exists some 

integer t  such that 1 2( ) ( )mod( 1)t lx f x f x x  . One can 

prove that the number of those equivalence classes in 

 2[ ] ( 1) ~ilF x x   equals 
1

( )2
i

i

d j

l

d l j d

M j
d

 
∣ ∣

 and 

il
M is near to 2 il

il for larger
il , where ( ) is the Möbius 

function. 

 A total ordering relation on 2[ ] ( 1)ilF x x   is defined by 

( ) ( )f x g x  if and only if ( ) ( )D f D g , where ( )D f  is 

the decimal representation for coefficient vector of ( )f x . For 

a given 2[ ] ( 1)ilf F x x  , let [ ] { ~ }f g g f ∣ and 

[ ]minf f  such that ( ) ( )minD f D g for any [ ]g f .  

 Suppose 

 ,1 ,
ˆ , ,

li
i i i MF f f .                              (4) 
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where ,i jf  is the element with minimal decimal representation 

in equivalence class ,[ ]i jf . 

 Our strategies for building generalized quasi-cyclic self-

orthogonal codes with form in (2) can be summarized as 

follows. For1 i p  , each 
if  comes from ˆ

iF  in (4), which 

can reduce the number of candidate polynomials dramatically. 

If there exist some same
il 's, for example

1
, ,

si il l , then select 

1
, ,

si if f  such that
1

( ) ( )
si iD f D f  , which can avoid 

smaller ( )d C
 and equivalent codes. If dual distance 

( )d C d   is expected, then ( )i iwt f d  , where 

0i   is a controlling parameter. Aiming at constructing 

binary self-orthogonal codes, 
1

1 ( )
p

i

i

wt f


  must be even.  

 Based on construction strategies above, some binary 

generalized quasi-cyclic self-orthogonal codes with dual 

distance five can are built, see Theorem 2. Details on these 

codes are listed in Table I. In Table I, the dimensional of 

generalized quasi-cyclic self-orthogonal codes depends on the 

subscript of the first part (1 0)k
in second column, and the 

rest 1( )
i ii i il lf f f  stands for binary circulant matrix 

if
M  

if 
il k  or partial circulant matrix ,if TM  if 

il k and 

{1, , }T k . 

Theorem 2 There exist binary generalized quasi-cyclic self-

orthogonal codes [n, 16] with dual distance five for length n = 

50, 52, 66, 68, 70, 82, 84 and 86. 

Remark. One can prove that 1 [ ,16]n C n   in Theorem 2. 

Furthermore, 1 [ ,16]n C C n   . 

TABLE I    Binary Generalized Quasi-cyclic Self-orthogonal Codes [n, 16] 

with Dual Distance Five 

n Generator polynomials 

50 
(1000000000000000)16 

(11000101011000000)17(11111101011010100)17 

52 
(1000000000000000)16 

(110010001000110000)18(101101110110111000)18 

66 
(1000000000000000)16(1001011111000000)16 

(11100111110100000)17(10111110011100000)17 

68 
(1000000000000000)16(1001011111000000)16 

(101110011010011000)18(110010101010110100)18 

70 
(1000000000000000)16(111011011100100000)18 
(100011110110000000)18(100110011011000000)18 

82 
(1000000000000000)16(1101101110110000)16 

(1111101111011100)16(11001110111110100)17 

(11011110010111100)17 

84 

(1000000000000000)16 

(11000101011000000)17(11111101011010100)17 

(11100011010100000)17(10110111111100100)17 

86 

(1000000000000000)16 

(11000101011000000)17(11111101011010100)17 

(110000100101010000)18(111101110111110000)18 

4.   Pair of Codes and Quantum Codes 

 Let G  be a generator matrix for a code [ , ]C n k  and 

k k  . The code [ , ]C n k   is a k  -dimension subcode of 

C  if and only if there exists a binary row full rank matrix 
 n

k kT 
 such that 

 n

k kG T G
   generates C . For k k  , the 

number of all row full rank binary k k  matrices equals to  

 
 

 
1 1

2

0

, 2 2 1

k k k
k i

i

N k k

  




   .                   (5) 

 The number  ,N k k is too numerous for larger k  and 

k   to mention all
 n

k kT 
. 

 In this section, a method in a stepwise manner is used to 

find subcodes with better dual distance. For a given binary 

self-orthogonal code [ , ]C n k , we design the subcode chain 

with the form in (6) such that these codes
ikC 's have better 

dual distance. 

1
[ , ]

i mk k i kC C C n k C C      .        (6) 

 Considering the efficiency for searching subcodes and the 

fact that there are many equivalent codes in these
ikC 's, we 

adopt the dimensionality deduction matrix with the form in 

(7). 

 
1 1

( )

i i i

n

k k kT I X
   .                             (7) 

where X  is a binary 
1 1( )i i ik k k    matrix for 1, ,i m . 

 Applying the idea to binary generalized quasi-cyclic self-

orthogonal codes in Table I, some subcode chains or pairs of 

codes can be obtained, see Table II below. Consider an 

example, two dimensionality deduction matrices 
(50)

14 16T   and 

(50)

7 14T   are selected for 50n  , and subcode chain [50,16,14]  

[50,14,14] [50,7,16] with dual distance 5, 5 and 3 is 

built. For simplicity, only X 's in 
(50)

14 16T   and 
(50)

7 14T   are showed 

in (8) and here the rest dimensionality deduction matrices are 

omitted. 

TABLE II    Basic Pairs of Nested Self-orthogonal Codes and Their Dual 

Counterparts  

n  
k kC C    

k kC C 

   

50 [50,16,14][50,14,14][50,7,16] [50,34,5][50,36,5][50,43,3] 

52 [52,16,16][52,15,16][52,7,18] [52,36,5][52,37,5][52,45,3] 

66 [66,16,20][66,7,26] [66,50,5][66,59,3] 

68 [68,16,20][68,8,22] [68,52,5][68,60,3] 

70 [70,16,24][70,8,24] [70,54,5][70,62,3] 

82 [82,16,24][82,8,28] [82,66,5][82,74,3] 

84 [84,16,28][84,8,32] [84,68,5][84,76,3] 

86 [86,16,28][86,8,32] [86,70,5][86,78,3] 
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14 2 7 7

1101110

0000101

1010111
00011111111101

, 1111001
00101101011001

0000000

1011100

1010001

X X 

 
 
 
 

   
    
   

 
 
 
 

.      (8) 

 Based on Lemma, revised pairs of codes with dual 

distance six and four can be constructed from pairs of codes in 

Table II. Binary quantum stabilizer codes with distance six by 

steane construction are summarized in Theorem 3. 

Theorem 3 There exist binary quantum stabilizer codes 

[[50,27,6]], [[52,28,6]], [[66,41,6]], [[68,42,6]], [[70,44,6]], 

[[82,56,6]], [[84,58,6]] and [[86,60,6]]. 

5.   Conclusions and Remarks 

 Generalized quasi-cyclic codes have advantage in 

structural characteristics although there is less progress in 

construction methods. In this paper, we investigate a subclass 

of binary generalized quasi-cyclic self-orthogonal codes 

constructed from circulant or partial circulant matrices, and 

present a feasible construction approach. Based on obtained 

generalized quasi-cyclic self-orthogonal codes and their 

revised pairs of codes, we construct eight quantum stabilizer 

codes.  Our quantum stabilizer codes are pure according to [7], 

and all of them are new ones by steane construction. 

Compared with quaternary additive construction of quantum 

codes in [20], these eight pure quantum stabilizer codes reach 

lower bound of quaternary additive construction and are best 

known ones. 
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