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Abstract

In the framework of a multidimensional superposition principle involving an analytical
approach to nonlinear PDEs; a numerical technique for the analysis of soliton invari-
ant manifolds is developed. This experimental methodology is based on the use of
computer simulation data of soliton—perturbation interactions in a system under in-
vestigation, and it allows the determination of the dimensionality of similar manifolds
and partially (in the small amplitude perturbation limit) to restore the related super-
position formulae. Its application for cases of infinite dimensionality, and the question
of approximation by lower dimensional manifolds and, respectively, by superposition
formulae of a lower order are considered as well. The ideas and implementation details
are illustrated and verified by using examples with the integrable, MKdV and KdV
equations, and also nonintegrable, Kawahara and Regularized Long Waves equation,

soliton models.

1 Introduction

A Multidimensional Superposition Principle [3, 4, 6] was proposed as an approach for ob-
taining Superposition Formulae of solutions of nonlinear PDEs, which for solitonic equa-
tions are general solutions describing an interaction of a soliton with another wave. In the
framework of this method the most critical moment is finding invariant manifolds leading
to such formulae. A direct technique for this in the case of Invariant Manifolds of the
Soliton type [4] involves solving a system of determining equations, that requires consid-
erable computer resources and time. Naturally, the following question arises: Whether
one could use a numerical simulation either for finding IMSs and SFs, or at least for the
verification of their existence and for determining their parameters, because the cost of a
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numerical experiment and all the accompanying requirements of computer resources are
incomparably lower than those involved when using symbolic computations?

The present work is devoted to the development of such a methodology for the experi-
mental (from data of soliton interaction numerical modelling) investigation of IMSs. Two
experimental schemes are considered. One of them is based on studying local deformations
of a soliton, while another takes into consideration a soliton envelope in the whole. The
first technique allows us to observe and control excitation of soliton parameters in every
point of the space, that may be important for some tasks and applications (e.g., in the
theory of elasticity or particles physics, where they can be associated with internal degrees
of freedom), and respectively determine IMS dimensionality for finite dimensional cases.
In the last cases (presumably these are so-called integrable equations) a priori knowledge
of this dimensionality allows us to get rid of useless and highly wasteful computational
work when finding analytical expressions for the IMSs, because the direct technique sup-
poses consequent consideration of the above-mentioned determining equations for each
concrete dimensionality. However, this technique does not give the exact quantitative
characteristics of the modulation. In this connection the next obvious question is: How
to obtain such characteristics and how to work with infinitely dimensional or approximate
IMSs? One more important question is whether this methodology can be used not only
purely for the analysis but also for direct reconstruction of an SF for an equation under
investigation. The answers to these questions can partially be obtained already using the
global analysis.

The plan of the remaining part of the paper is as follows: In Section 2 the definitions
associated with the MSP are given, and some indications of its applications are given.
The technique of local analysis is presented in Section 3, where firstly the theoretical
background is given in Section 3.1, and the scheme for computer simulation is given in
Section 3.2, and then the approach is demonstrated in the experiments with the soliton
solutions of the well-known MKdV and KdV equations, which are two integrable equa-
tions for which the related analytical results are known. In the next section, Section 4,
the technique of global analysis is developed for determining the IMSs dimensionality,
with Section 4.1 and 4.2 devoted to finding SFs of solitons with low amplitude waves.
As an example, the investigation of the IMS for the kink of the same MKdV equation
is carried out; the above type SF is restored and then compared with the known analyt-
ical expression. The global analysis is developed further in Section 5, where the issues
of approximate IMSs and SFs are addressed. Two nonintegrable models, the Kawahara
and Regularized Long Wave equations, are considered as examples. Some remarks and
comments about the numerical methods used and the results obtained are made in Sec-
tion 6. In the same section some questions important for the practical application of the
technique are elucidated. Finally, a conclusion is given in the last section.

2 The main definitions of the multidimensional superposi-
tion principle

Here, we will recall the main definitions and ideas of the MSP.



190 A A Alexeyev

Definition [3, 4]. Let there to be some PDE in the simplest case of the form

0 3}
ik E (&r’ u> , u=u(z,t) (2.1)

and another PDE

0 0 0

Zu=E| 21—+ =_. = t 2.2

ETa (am + a$2,u>, u = u(zry,z2,t) (2.2)
obtained from the former by the formal change of the differential operator % = ng + 372,
so that solutions u(x,t) for (2.1) are the projections of solutions u(z1,x2,t) for (2.2)

u(z,t) = u(z1, 22,t)| 1, —py—s (2.3)

(we will call equation (2.2) the d-adjoint to (2.1)). If this last equation has an invariant
manifold [20] being described by differential relations of the following forms

Q (UyUgyy - vy Ungy) = 0, n €N (2.4)

and respectively

0

G] <a$2;uaux17""u(n—1)xl) = 07 ] = 1,...,71/; TL/ € N (25)

on the strength of the elimination of terms with % and % in view of (2.2) and (2.4), then
equation (2.4) will be called a soliton envelope equation, equations (2.5) are linkage equa-
tions, and the above invariant manifold itself is an invariant manifold of the soliton type.

As a consequence, functions u(z1,x2,t) in (2.4) and (2.5) will have the structure
U(Jfl, T2, t) = F('Tla 61(562, t)a sy On(xQ) t))v (26)

with the form of F' is determined by the ODE (2.4), while the remaining equations, equa-
tions (2.5), determine the linkages between the 6;. In doing so, the solution u(z,t) in (2.3)
can be interpreted as a soliton with the parameters 6; modulated by some perturbation
and respectively describes their mutual superposition.

Note 1. In the cases with static solitons, i.e. when a soliton is possibly moving with some
speed but does not change its form, ¢; can be recalibrated so as to explicitly display the
obvious combination x — vst in (2.6), see the examples in [4].

On the level of the invariant manifolds, the MSP at least intersects with, if not advances,
the Lie-symmetry analysis [4]. And in contrast to many other approaches, it allows one to
solve a problem ‘in reverse’ and find equations admitting solutions with soliton properties
rather then solutions of a known soliton equation, [4] again. Such a task is characteris-
tic of reaction—diffusion models, where general structure is fixed, while the nonlinearity
and source belong to some classes. In some cases it is necessary to distinguish equations
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possessing soliton solutions knowing nothing of their form. Up to date, using classical anal-
ysis, it was possible only to indicate models with localized waves without diagnostication
of their properties (see, e.g., [31], Section 5.5.2, [29] and references therein).

At the same time, on the level of superposition formulae (2.6), the MSP is in essence the
generalization of the well-known collective-variable approach (see, e.g., [30] for references),
and similar problems on weak modulation of solitons are traditional for nonlinear physics.
The soliton variable 1 and the variable xo associated with a perturbation here play a
role of the fast and slow variables. The central point of this method involves choosing the
form of an envelope and its parameters that are being modulated. While there exists no
theory for this in the framework of this method itself, an unperturbed soliton profile with
a suitable number of obvious physical parameters like a wave number and an amplitude
are used usually, this can effectively be solved in the MSP.

In principle, the superposition formulaes can be used for constructing new solutions
from known ones. Obviously, however, that direct derivation is limited to more or less
simple expressions or equations, which for well-studied models could frequently be obtained
via other techniques. The idea to obtain from the MSP a rigorous theory of the Hirota
substitutions and their generalization to nonintegrable cases seems to be very attractive
(in this connection we mention the works [19, 13, 7] and [26, 27]) but this demands a
deeper understanding of the structures of soliton invariant manifolds.

At present, the most essential impact of the superposition formulas is a transparent
description of the interaction mechanism. Up to now, it has not received proper attention
in the soliton science. Partially, on the one hand, such situation are explained by simple
enough dynamics in so-called integrable systems, the main object of the study, and the
absence of a general approach for other equations on the other hand. However, integrable
models are very rare among physical models. Moreover, the purposeful use of solitons in
and for various applications leads us to the other types of problem. First of all, this is the
description of various secondary effects arising under interactions of solitonic structures
with other waves. The dominant effect for most known solitonic equations, both integrable
and nonintegrable ones, is reduced to a phase shift. But secondary effects frequently result
in consequences more serious from the physical viewpoint, e.g., generation of parasitic
radiation, formation of boundary states, etc. One more issue is interactions of weak,
linear, waves with solitons. From a technical standpoint, these may be both the usual
noise and pumping impulses or continuous waves. Last but not least, a very perspective
direction for further development of the soliton science is the use of soliton interactions
for technological applications such as information processing and computer CPUs. — One
will note respectively [22, 1, 25] as the review works for the subjects touched upon here
and [24] together with the related references therein as one perturbation theory for similar
problems.

The common feature of all the above issues is that they deal with either low amplitude
waves or asymptotical properties, say, the influence of a tail of one soliton on another. In
these cases various linearizations or limit cases of the related SFs can be effectively used
either for a full description of interactions in the former case or for a description of asymp-
totical states of solitons in the latter one. The very general point was expressed in [3].
As was shown there, both switching solitons from one state to another and the inelastic
effects of interactions can be associated with the properties of . In the simplest statement
the problem is reduced to an investigation of the asymptotic form 6(z,t) — const + o(1)
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in SFs like, e.g., (3.9). In the more general statement the analysis can be performed
purely numerically in view of the ODE nature of degenerations of superposition formulas
corresponding to asymptotical states of a perturbation (see (3.11) below as such an ex-
ample). In this connection in [5] a number of the computer experiments are fulfilled with
the purpose of comparing solitonic interactions in integrable and nonintegrable models in
respect of the properties peculiar to the above SFs. The main feature of them is that they
used a technique that allows one to avoid distortion of the picture by most of inelastic
effects describable in the framework of the MSP. The results obtained indicate that the
superposition is of universal character, and the derivations from the ideal picture is small
enough and could, in principle, be explained by the natural limitations of the computer
simulation.

3 The local analysis of soliton deformation and IMS dimen-
sionality

3.1 The theoretical background

Our goal now is to indicate a way for determining the order of equation (2.4), i.e. the
dimensionality of an IMS, knowing only the original equation (2.2). For this purpose
consider some solution ug of equation (2.2) together with other equations u; close to the
first one

ui(xl,acg,t) = ’U,()(xl,xg,t) + 51}1'(.%'1,.%2,@, ’(5‘ < 1. (3.1)

Linearization of (2.4) for v; on the background of ug gives us

Uivml + T + Qunzl {

u=ug u=1ug

5<Qu|quUi + Quﬂ”l ‘ vi,nm) = 0(62) (32)
The order of the linearized ODE to v; identical to the dimensionality sought equals to the
maximal number of its linearly independent solutions. The following proposition takes

place as a direct consequence of the well-known theorem on a Wronskian, see e.g. [15].

Proposition 1. The number of linearly independent functions in {yi(x), ..., ym(z)} is equal
to a rank of the matrix

ORI ORI

1

W= | %2 Y s
gyl yih
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in all points (x1,x2,t) we have

lim max rank W[07] < n.

6—0 all sets {v1,...,um }

Where the sign ‘<’ in particular takes into account the circumstance that in some points
not all solution parameters may be modulated or modulated adequately.

We now offer some comments on the implementation aspects of this approach.

The best way for finding the rank of some matrix, say M of my x mg, is to use its
Singular Values Decomposition

m
Mij =Y UysiVy,  m=min{mi, ms}, (3.4)
=1

see [28] as a good introduction. Here U and V are matrixes, mq X msy and my X my
respectively, with the orthonormal columns

Z UjhUJh = Oty Z lelvjll = Oty (3.5)
J J

and s;, the so-called singular numbers, are ordered in the following manner

5128222 Sm.
The number of nonzero singular numbers is equal to the rank (in the framework of a
simulation accuracy, certainly). Next, obviously, instead of ‘all sets’ of v; their finite
number generated from random initial data can be taken.
Further an experimental technique based on these facts is presented in detail.

3.2 The scheme of an experiment. The examples with the MKdV and
KdV soliton solutions

Although the values of u; j,, needed for W67 (3.3) cannot be calculated directly from
u;(x,t), but for points (x,z,t) they can be obtained together with w; numerically.
Really, since their evolutions are described by the obvious consequences of (2.2)

0 o 0 0
ot (Wijz,) = @E <(9I‘1 + a@ﬂ%) ) u; = u;i(wy, 2, 1)

then to find their magnitudes it is enough to solve a system of the form

_ o _ _
ugr = E [(%;uo] . Up = Tg(z,t)

a1y = En [;710,711] , U =g (z,t)

Ox (3.6)

e = By [%;ﬂo,ﬂh---,ﬁl} ;U =y, t)
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(here @j(x,t) = wjz, (21, x2,1)] and the index of an experiment has been omitted)

with the related initial data

ﬂo(l‘,O) = '(,b()(l’) = ¢(x17x2)|x1:x2:x

iy (2,0) = Pi(x) = Yiay (21, 22)| 1) —py—s

and suitable boundary conditions (usually ty(+00,t) = const and @j(fo0,t) = 0 for j > 0).

The next question is how to construct the necessary initial data, i.e. 1;(z), for each of
the experiments. If one assumes that at an initial moment a soliton and a perturbation
are not overlapping, it is trivial

= Usoliton (ZL‘) + Uperturbation (:E)
T1=T2=x

7110(1»‘) = (usoliton ($1) + Uperturbation (1'2))
and, as a consequence

i(2) = ul)ion (@), J > 0.

According to (3.3) and (3.1) it is necessary to have the results of several experiments
with close @; = (tg, ..., u;); and respectively close initial data. From the technical view-
point the simplest way to realize this is to add to a localized perturbation chosen (we will
call this common for all experiments part a carrier) an analogously localized and randomly
generated noise, so that for each case

Uperturbation; (%) = Ucarrier (T) + Unoisei ().

Also, it is convenient to have one experiment without such noise for To. By this means
the expression for the elements of W[d4] is as follows

~

Wij = U1 — Ujt1,0-

Here the first subscript is associated with the order of the derivative, and the second is
with the number of an experiment. The rank of W[(W] is equal to the quantity of soliton
parameters being modulated by a perturbation. It is maximal in an interaction zone and
minimal (the unit) out of it, or if an interaction is absent.

Further the methodology being proposed is illustrated by its application for determining
the dimensionalities of the IMSs associated with the solitons of the MKdV (both the
kink and bell-shape solution) and KdV equations. The accuracy in the experiments was
€~ 1071310716 at 6 = 107°,5 - 1078 respectively for uneise(z) normalized to the unit,
i.e. max |unoise(z)| = 1. This relation, ¢ ~ §2, turns out to be optimal from the practical
viewpoint when taking into account the structure of (3.2). In order to achieve such an
accuracy, the spectral (Fourier expansion) technique [9] was applied on the spatial variable
together with the Runge-Kutta exponential time differencing method of the fourth order
[11] for time integration of coefficients in these expansions. The former implies periodical
boundary conditions natural in the case with bell-shape solitons but demanding some
specific carriers for experiments with the kink solutions. In all points of the space the
singular numbers s; of W [64] were calculated, and in all the figures with plots of s, log s;
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versus x, the singular numbers are normalized in such manner that s; = 1. After the
collapse of an initial disturbance s; ~ ¢ everywhere, that reflects the presence of the
perturbation. To be precise, s; will be as much as the amplitude of a steady-state noise
in a system, where the last one also depends essentially on L. In particular, because of
this the use of W[07] rather than W] is more convenient. The normalization makes
the picture clearer and robust smoothing fluctuations from the changing amplitude of
a perturbation, while the non-normalized values of s; can, in principle, be used for its
estimation.

Example 1 (modulation of the MKdV kink). In [4] it was shown that the adjoint
equation to the MKdV

U — 6uug + Upge = 0, u=u(z,t) (3.7)
has the following IMS

2Ugy g2y Uy — 3u§1381 + k:guil =0, u = u(xy,z2,t), ks = const (3.8)
Ug gy + Upizs T 2UUg, =0

2 2 2 2
Uy Uy gy + UG, 4y — k3 Uy, F dug, (um1 + uuwlxl) =0.

The related SF after the projection (2.3) gives

3
ks + 0 kst + 5t 4+ 0 0

t) = + s T ) tanh 2 — T 3.9
u(z, t) ( 5 >an < 5 ) 10| (3.9)

ks = const, 0 = 0(x,1)

corresponding to the superposition of the MKdV kink
ks ks + %st +

ukink/anti—kink(x7 t) = i? tanh f ’ kSa ¢ = const (310)

with an arbitrary perturbation associated with the function 6 (¢ is included into 6). In
doing so, # itself satisfies the equation

2
030 _ o 9= (1)

20; + 20,00 — 0> — 3ks02 — 3k20, — =
¢ + T sVg S 9&: + ks

such that the limit cases of (3.9) at ksx + %gt — =+00, namely

UperturbationJroo == 2 N 2 (k‘s + 91)

u ) . ks + 0, . Oz
perturbation _ o, — 2 2 (ks n 9:5)

again satisfy (3.7). Moreover, in particular for § with the asymptotes

(3.11)

lim 6O(z,t) = 04 = const

T— 00
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it will be the localized perturbation, and the expressions (3.11) will describe its states be-
fore and after the interaction with the kink (respectively, the difference 6_ — 6 determines
the phase shift of the latter).

For the above simulation the following system (3.6) was used

Goe + Mioe — 2 (G) 4 Gogea =0,  Tig = fig(, t)
Gy + g — 6 (G3a1) + 1 g0e =0, @1 = G (z,1) (3.12)

.., A =const
with the periodical boundary conditions
;(0,t) = uj(L,t), j=0.

Here we have introduced the terms At ;, At1 , and so on; A is chosen so that the soliton
itself was immovable, which simplifies carrying out the experiments. Two experimental
series with both weak and strong modulation of the kink were performed.

Experimental series 1 (weak modulation of the kink (3.10), ¢ ~ 10713 § = 1077, ks = 2)
— Figures 1(a)-1(d).

The first of the figures, Figure 1(a), shows the initial configuration (@9 and @; only,
the thick solid and dashed lines respectively) needed for the experiments. As seen, here
the carrier was chosen in the form of an anti-kink (also immovable) to satisfy the periodic
boundary conditions and does not itself interact with the main kink under investigation.
The thin line here indicates the noise position and its form in one of the experiments.

The next figure, Figure 1(b), demonstrates the difference @;; — @0 (j = 0,...,3) in
the interaction zone at one of the interaction moments for the same experiment, while
the profiles for @1 ; — @19 (¢ = 1,...,4) are depicted for an example in Figure 1(c). The
last figure, Figure 1(d), most clearly illustrates the approach. The plots for the singular
numbers (the solid lines, the hatched one indicates the solution profile at the same moment)
show how they change versus the coordinate.

The first singular number, s1, is always excited because it is associated with the presence
of the noise everywhere. The values of others two, s and s3, dramatically (by the factor
about 107) rise in the interaction area, while the remaining ones are practically at the
errors level (which for the singular numbers is as order as 10~7 here). This means that, as
expected in view of (3.8) or (3.9), there are only three soliton parameters being modulated,
and respectively the IMS dimensionality is equal to three as well.

Experimental series 2 (strong modulation of the kink, £ ~ 1073, § = 1075, ks, = 2) —
Figures 2(a)—2(c).

The whole the experiments are analogous to the previous series, however there is one
difference. Here, to minimize accumulation of errors and various secondary effects, it is
reasonable to break an experiment into two stages. The purpose of the first of them is to
collide the carrier with the kink under investigation, and the second one consists of the
injection of a noise into the system that is obtained. Such a two step technique appears
to be justified in view of essential differences in the spreading speeds for large and small
amplitude perturbations.
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Figure 1. The local analysis, weak modulation of the MKdV kink: (a) The solid and dashed thick
lines — the initial profiles of 4y and w1, respectively. The thin line — the noise position and form
in one of the experiments. (b) The differences ;1 — @, o for the above experiment at one moment
of the interaction. (¢) The profiles of the differences @y ; — @1 o in doing so. (d) The dependence of
the singular numbers versus the coordinate (the solid lines) and the solution profile (the hatched
line, schematically) at one of the moments of the interaction.
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Figure 2. The local analysis, strong modulation of the MKdV kink: (a) The initial profile for g

in the first stage. (b) The initial profiles for g in the second stage: the thick line — the initial

configuration, the thin line — the noise position and typical form. (¢) The dependence of the

singular numbers versus the coordinate (the solid lines) and the solution profile (the hatched line,

schematically) at the moment of the strongest kink—carrier interaction.
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In Figure 2(a) the initial profile of 4 for the first stage is shown. Here the carrier was
chosen in the form of the bell-shape soliton—anti-kink configuration

kq 0 <1—|—E1+E2—|—CL%QE1E2> a <k‘1—k‘2>
) 12 =

. )= —— + —1
ucarrler(xa ) 2 + ox n 14 ajaEs k1 + ko

k3 3
Ei = exp |:k‘1$ + ;t} , By =exp [/@x + <2k%k2 — k§> t} ., ki, ke = const.

The former will further take part in the interaction, while the latter is necessary to satisfy
the boundary conditions. In the second stage the resulting profile at the suitable moment of
that interaction, plus the noise, in turn is chosen as the initial data, Figure 2(b). Figure 2(c)
corresponds to the moment of the strongest interaction. As in the previous case with the
weak modulation, it is seen that three soliton parameters are being modulated in doing so.

Example 2 (modulation of the KdV soliton). The SF associated with the soliton of
the KdV equation

Up + Uy + Ugge = 0, u=u(z,t) (3.13)

is of the form [4]

_ 13 1.3
() = =3 (ke + 6,)? tanh? <W> + 60, tanh (W) (3.14)

3 2 3 % Ozow 3.2
— (ks + 05 = — —k3, ks= t, 0 =0(x,t
Ty (ks 1 02) +2<ks+ex) 3<ks+ex>+2 : o (1)

with the function € in its turn satisfying the equation

(92
Waw ). 0 =0(z,1t)

20; + 20400 — 02 — 3ky62 — —
o G

so that for the unperturbed soliton we has the familiar expression

ksx — k:g’t—HO

uSOlitOl’l(x7 t) = 3k52 |:1 — tanh? < 5

)} , ks, = const. (3.15)
As seen from (3.14), there are four parameters being modulated, and the related soliton
envelope equation (2.4) will be the fourth order ODE (in [4] the explicit expressions for
the IMS were obtained only for the potential version of (3.13)).

The system (3.6) for our simulation differs from one used for the MKdV (3.12) just
by the obvious form of the nonlinear terms, while the periodical boundary conditions are
natural here.

Experimental series 1 (weak modulation of the soliton (3.15), ¢ ~ 10716, § = 5. 1078,
ks = 0.5) — Figures 3(a), 3(b).

Here, Figure 3(a), there is no need in any carrier for the boundary conditions, because
the soliton asymptotes are identical. From Figure 3(b) we see that so, s3 and s4 dra-
matically increase from the errors level about 1078 up to 1072-1 in the interaction zone.
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Figure 3. The local analysis, weak modulation of the KdV soliton: (a) The initial configuration
(the noise is presented schematically). (b) The dependence of the singular numbers versus the
coordinate (the solid lines) and the solution profile (the hatched line, schematically) at one of the
moments of the interaction.

Together with s; this involves about four modulated parameters, and it is in agreement
with the SF (3.14).

Ezxperimental series 2 (a non-zero carrier — strong modulation of the soliton, ¢ ~ 10716,
§=5-10"8 ks = 0.5) — Figures 4(a)-4(e).

Figures 4(a), 4(b) are fully analogous to Figures 2(a), 2(b) and demonstrate the initial
profiles of 4 for both stages. Again, we mention (Figures 4(c¢), the moment of the strongest
interaction) that four singular numbers appear in the range 10~2-1, while the errors level
is about 107Y. Figures 4(d) and 4(e) correspond to the moments when the carrier is
already far from the soliton center and basically perturbs only its tail. As expected (ug in
the coefficients of (3.2) includes both the soliton and carrier), the singular numbers s, s3
and s4 appear to be dependent on both of them, but in such a manner that the excitation
decays together with the soliton tail amplitude and disappears quite far from it.
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Figure 4. The local analysis, strong modulation of the KdV soliton: (a) The initial profile of

U in the first stage. (b) The initial profiles in the second stage with the schematically presented

noise. (¢) The dependence of the singular numbers versus the coordinate (the solid lines) and the

solution profiles (the hatched line, schematically) at the moment of the strongest carrier—soliton

interaction. (d), (e¢) The same picture at several following moments.
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Example 3 (modulation of the MKdV bell-shape soliton). Although, to the best
of our knowledge, neither an IMS itself associated with the MKdV bell-shape soliton
nor the related SF are known yet, the latter can be easily obtained using a formalism
from [3, 4, 6] based on the so-called truncated singular expansions. As was pointed out
by several authors [16, 23], to construct the above soliton solution the expansions with
two singular manifold functions are necessary. Applying a technique, say, from [2], we
immediately have that the MKdV equation written in the form

g + 6uug + Upge = 0, u=u(z,t) (3.16)
possesses the expansion for u(z,t) of the following kind

u(z,t) = —z’[Vl(as,t) — Va(a, t) + Op(z, 1) (3.17)
Where Vi o are those singular functions satisfying the system

Vj,a: = _Vj2 - Sj/2 (3 18)
Vig = ijjz —CjaVj+ (Cij + Cjﬂwﬁ)/2’ =12, V12 ="Via(z,1) .

with S7 2 and C 2 are subject of the compatability conditions
Sj,t—I_C"I{L‘x+2Sj0jyl‘+0jsjyl‘ =0, 57=12, SLQ = 5172(1',25), 01,2 = 01,2(£U,t). (3.19)

The relations (3.18), (3.19) are common for the singular manifold approach. For (3.16)
we have also to add the constraint

VAVa = (Vi — Va)fo + 02 + /6, = const (3.20)
to V1,2, the relations between Si 2 and Cj 2

Ci2 =512+, (3.21)
and the governing equations to 6

0o+ — 602600 4 + 00 s2z = 0, 6 = Op(z, 1) (3.22)
as well as its linkage with S; and S

3512 F 600, + 605+~ =0 (3.23)

(minus for S and plus for Ss).
The expression (3.17) can be transformed to the SF sought for the bell-shape soliton

with the usual asymptotes upen(0o,t) = 0 if v = 3k2/2 and w = —k2 taking into account
the following formulae [3, 4, 6]
ks 9:1: - ksr4wt+60 1 0:)327
V= (BT @ - (3.24)
2 ZekaJFWtJre + 1 2 (ks + emx)
ks + 0.7 3 ( 0 \? . Ouuw
Sl — _Q _ _ +
2 2 ks + ea:x ks + ea:x

w+9t
Cl_<ks+0x>’ ks,w = const; ks # 0.
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The constraint (3.20) will in its turn give the expression for V5. The final formula for the
SF is obtained in a straightforward manner, but is cumbersome. Here only its structure
obvious from (3.17), (3.20) and (3.24) will be important

u(z,t) = F(kx — K3+ 0,04, 00a, eo), (3.25)
the relation between 6y and 6 (3.23)

20, + ks)30p 4+ (0 + ke)* (400, — 02 — 402) — 204 + ks)Bpae + 362, = 0, (3.26)
and in addition to the equation for 6y (3.22) the equation to 6 (3.21)

362,

20; + 2040y — 02 — 3ks02 — =
t + T 3 x 033 + ks )

0 =0(z,1). (3.27)

The solution (3.25) degenerates to the pure soliton
upen(, t) = ks sech (ksz — k3t + ©), ks, = const (3.28)

in the absence of a perturbation corresponding to the case 6y = 0,60 = .
The system for the simulation is identical to (3.12) with the same periodical boundary
conditions, but with a positive sign in front of the nonlinear terms.

Experimental series 1 (weak modulation of the soliton (3.28), ¢ ~ 10716, § = 5. 1078,
ks = 1.5) — Figures 5(a), 5(b).

Figure 5(a) gives the initial view. In Figure 5(b), as usually, we see the growth of some
singular numbers from the errors level 1077 up to 10~'-1 in the interaction zone. Contrary
to our expectations, see (3.25), the analysis shows perceptible modulation of only three
parameters!

Ezxperimental series 2 (strong modulation of the soliton, € ~ 10716, § = 51078, k, = 1.5)
— Figures 6(a)-6(c).

Again, Figures 6(a) and 6(b) demonstrate the initial profiles of g for both stages. The
last one, Figure 5(c), is most interesting. As seen from it, now the singular number s, also
increases up to the maximum about 1072 in the interaction zone, i.e. all of the soliton
parameters are modulated in an equal measure.

At the first glance the results obtained seem to be paradoxical, because the SF (3.25)
indicates the presence of fore modulated parameters in the soliton envelope. However,
a rigorous analysis shows that our experiments reflect the specific associated with the
complicated linkage (3.26) between 6 and 6. Such a specific is absent in the previous SFs,
because their modulated parameters are linked with each other in a trivial manner. Here,
in the general case, 6 cannot be algebraically expressed in terms of 6, 8, and 6,,. But for
the case of weak modulation, formally setting |6],]6p| < 1 (the resulting expressions are
valid for any suitable 6, 6y corresponding to the smallness of the correction to (3.28)), we
have from (3.26) and (3.22), (3.27) in the first order approximation

0o = (0uz — k20) /(2ks)
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Figure 5. The local analysis, weak modulation of the MKdV bell-shape soliton: (a) The initial
configuration (the noise is presented schematically). (b) The dependence of the singular numbers
versus the coordinate (the solid lines) and the solution profile (the hatched line, schematically) at
one of the moments of the interactions.

without loss of generality including the integration constant to 6. As a result, our SF takes
the form

(i, t) ~ F(kzx —k3,6,6,, am), (3.29)

where there are only three modulated parameters, that the experiments reveal. For equa-
tion (3.2) this means that the coefficient of the leading derivative becomes equal to zero,
which leads to the degeneration of the last one.
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Figure 6. The local analysis, strong modulation of the MKdV bell-shape soliton: (a) The initial
profile for g in the first stage. (b) The initial profiles in the second stage with the schematically

presented noise.

(¢) The dependence of the singular numbers versus the coordinate (the solid

lines) and the solution profile (the hatched line, schematically) at the moment of the strongest

carrier—soliton interaction.
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4 The global analysis of dimensionality of IMSs and super-
position formulae. The examples with the MKdV kink

4.1 The IMSs dimensionality

Consider now another experimental scheme addressed to the global analysis of IMSs.
For an equation of interest (2.1) take a series of the same kind of experiments with the
initial conditions

u(x7 0; QO) = usoliton(x — Y, O) + uperturbation(x)y Y= const (41>

differing only by the soliton position (the perturbation and soliton do not overlap each
other) and with suitable boundary conditions (in particular in our examples these are
periodic boundary conditions. If the superposition takes place, at any moment for these
experiments we will have

u(z, t;p) = F(m — ;01 (z, ), ..., Hn(ar,t)>,

with 6;(x,t) are the same for different ¢, because in the framework of the MSP their
evaluation does not dependent on the presence of the soliton, and the initial values are
determined by the same perturbation. It is easy to see that in such manner, having
u(x,t; ), we can restore the two dimensional function u(zq,z2,t) itself. — After the
change of the variables {x —¢ = z1,2 = z2} one again has (2.6). Fixing here some moment
of the interaction and the spacial coordinate, say ¢’ and x’, we will have a particular solution
of the ODE (2.4)

u(xy) = F(:cl; cly..., cn), cj = 0;(«',t). (4.2)

In principle, all such sample solutions can be chosen independently and arbitrarily, that
can be used for determining the order of the last one. To be more precise, it is not hard
to determine the order of any of its linearized versions and consequently its own order.
We now consider this matter separately. Assume that there is some set of samples
uj(z1) (7 =1,...,m;m > n) (4.2) close to each other and to another sample ug(x1), i.e.

up(z1) = F<$1;CO,1, . 7CO,n>

uj(xl) = F(xl; co,1 + 50]‘71, ey COm Tt (56]'7”), ’(5‘ <1, Cjy ,jo = const.

(Obviously, for the same ¢’ and 2’ such samples can be obtained from close functions
u(z,t; p). The last ones in their turn can be obtained as the solutions of the above initial-
boundary value problems with close uperturbation(7).) Expending u;(x1) into the Taylor
series

oF
Cigt ot o Cj,n) +0(d)
) L

acn c=cp

c=(c1,¢2,...,¢n),C0 = (€0,1,€0,25---+Con),

uj(ﬂf]_) = F‘—»ﬁ—' +5<T

-
=
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one has for the differences u; — ug in the leading order approximation
Auj'(l‘l) = Uj(IL‘l) — UO(SL'l) ~ 5(Cj71\1/1($1) + -+ Cj’n\I/n(fL‘l)>, (4.3)

where {Uy,..., ¥, } are some set of linear independent functions. This means that in our
approximation the maximum n of the differences Au; may be linearly independent

max dim{Au,...,Aup} =n.

all sets
In practice, since under a computer simulation we usually deal with mesh functions, and
the u;(x1) should tend to constants far from the soliton centre, the problem is reduced to
the calculation of the rank of the matrix

Aul (hll) Aug(th) e Aum(hll)
A _ Aul (hZQ) AUQ(hi2> e Aum(hm) (4.4)
Aul(him/) AUQ(him/) ce Aum(hzm/)

for a large enough number of mesh points m’ and some step h, so that

max rank A = n.
all sets
As before, instead of ‘all sets’, a large enough number of Au;(x;) associated with ran-
domly generated functions uperturbation can be taken. Technically the procedure becomes
especially simple in the case when ug(z1) corresponds to an unperturbed soliton envelope,
and Awu; by this means correspond to its weak deformations. Similar experiments with
weak modulation of a soliton by small perturbations is described in detail in Section 3.2.

Example 4 (determining a number of modulated parameters of the MKdV
kink). Consider the above approach applied to the case with the kink (3.10) of the
MKdV equation (3.7)

By virtue of the periodic boundary conditions the specific perturbation was again chosen
in (4.1)

U(IL‘, 0) = ukink(l' — ¥, 0) + uanti—kink(ﬂj - 80,) + 0Ulocalized noise(w - 90,) > (45)

|5‘ < 1, @, SO/ = const, max |Ulocalized noise| = 17

where ¢ and ¢ set the initial positions of the kink and perturbation, and the function
Ulocalized noise(Z) corresponds to some signal in the form of a noise localized near the point
xz = 0. In contrast to the last one, the anti-kink does not interact with the kink under
investigation at all because it moves with the same velocity, but its presence allows one to
satisfy the boundary conditions.

In order to obtain a sample u;(x;) it is necessary to carry out a whole series of ex-
periments with different ¢ in (4.1), (4.5). In view of this it is convenient to present all
data and results for them at once, as two dimensional functions of x and ¢. In Figure 7
the initial profiles (4.5) are depicted in such a manner. In the simulations e ~ 10717 and
§ = 107® respectively at ks = 2. In the figure the component wiocalized noise is scaled
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Figure 7. (The global analysis, the experiments with the MKdV kink). The two-dimensional
function u(z,0;¢) (4.5) corresponding to the initial data profiles (the component jocalized noise
was scaled for the visuality).
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Figure 8. (The global analysis, the experiments with the MKdV kink). The two-dimensional
function Au(x,t; ) at t = 25.

Figure 9. (The global analysis, the experiments with the MKdV kink). The picture of the profiles
Au(zq) versus xo obtained at ¢ = 25 and 2’ = xs.
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Figure 10. (The global analysis, the experiments with the MKdV kink). The diagram of the first
singular numbers s; of the matrix A constructed from the samples depicted in Figure 9.

by the factor 1/6 for clarity of vision, i.e. in fact we see the image of the function
Ukink 1 Uanti—kink T Ulocalized noise-

The next step is, of course, the use of a coordinate system in which a soliton is unmov-
able, which essentially simplifies further result processing. One more useful idea is to take
as samples also sections corresponding to various z’ and, if needed, t’. The former however
is possible only when wug(z,t) corresponds to an unperturbed soliton solution, while the
latter implies that ¥; in (4.3) does not depend on choosing ¢’ (such an assumption seems
to be natural for the usual static solitons taken in the above coordinate system, but it is
obviously invalid, say, for breathers).

The next figure, Figure 8, demonstrates the profiles of the related differences Au(z,t) =
u(x,t) — ug(x,t) (here ug(x,t) is the solution with the undeformed kink corresponding to
the initial data (4.5) with Ujpcalized noise = 0) at one of the moments of interaction, when
the initially localized perturbation has spread to all the space and modulated the kink.
The sections Au(z;) at the same moment of time versus the variable xo (instead of the
index ‘j’ in (4.3) as proposed) are depicted in Figure 9.

Figure 10 shows the first twenty singular numbers obtained by processing the matrix
A (4.4) with 120 samples on 37 points, m = 120 and m’ = 37 in our notations. As
the samples, the above sections for # = 25 and 2/ (¢ = z3) uniformly distributed from
25.74 to 57.87 are generated from the only series of the initial data (Figure 7). As seen
from the plot, three singular numbers sharply dominate, with the values of the remaining
ones standing at the calculation error level, so that with high reliability one can conclude
that the kink—perturbation interactions can be described by an SF with three modulated
parameters, which is in agreement with SF (3.9). Moreover, the results mean that for
small perturbations u(z1,x2,t) should have the form

3
u(wy, w2,t) = tanh(zy +2t) + 6 0;(w2, )V (21 + 2t) + o(6), (4.6)
Jj=1

although the linkages between 6;(z2,t), the equations governing their evolution, and the
functions ¥; remain unknown yet.
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4.2 Superposition formulae for a soliton and low amplitude waves

The natural question that arises now is: Whether it is possible also to restore a full
expression for SFs similar to (4.6)7

Assume again that for a nonlinear PDE of interest (2.1) we deal with a static soliton
moving with the speed vg, so that the SF sought takes the simplest form already indicated
above

u(xy, xe, t) = Usoliton (T1 — vst) + 52 0;(x2,t)W;(x1 —vst) +0(6), wvs = const. (4.7)
j=1

Concerning the functions ¥;, the solution is trivial. Really, from the properties of SVD,
we know that their mesh versions are identical to the columns of the matrix U in the SVD
presentation (3.4) of A (4.4). More precisely, these are the first n, of its columns associated
with dominant singular numbers.

Next, substituting (4.7) into the adjoint equation (2.2) and omitting terms of the second
and higher order in 0, one will have the linearization of (2.2) on the background of the
solution usgoliton, Which turns into an identity under appropriately chosen relations for the
functions 6;. How to find these relations? The naive point of view is to fix some values of
x1, because the dependence on it is known, and to investigate the overdetermined PDEs
systems to ¢; being obtained after this. This is not the best idea because, in particular,
all available data are obviously corrupted by computational errors, and we do not even
know what it means to find an approximately compatible system of PDEs from their
overdetermined set. One more serious reason against this choice is that for our further
purposes we want to work out an approach just for similar incompatible systems.

Let the functions ¢; be representable by the Fourier integrals

+o0
0;(x2,t) = / b;(k)eltkeztw®D gy, (4.8)

—0o0
Then the above-mentioned linearized equation is converted into the relation

“+o00

/ Z bj(k)Pj (k’ w(k:), [usoliton]7 [\IJJD e(ikm—i_w(k)t)dk =0, (49)
j=1

—0o0

where P; are some polynomials with respect to k with the coefficients depending on deriva-
tives of Usoliton and V. Instead of reducing of the left-hand side to zero, one will demand
its minimization for every ¢ according to the norm | ||2, i.e. the minimization of the
following functional

Jlw(k); bi(k),. .., bu(k)] =
+00 +oo| +o0 ( 9

/ / / Z b; P (k, W, [Usoliton] s [‘I’]D elikzatet) g dzdzs.

—00 —00 oo \JT
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After some transformations, changing the order of the integration and taking into account
the orthogonality of the Fourier modes, the functional can be written down as

+oo
J [w(k); bi(K), ..., by(K)] = / J[bi(K), ... by(k)] e2Rew®iqy, (4.10)

where J is another functional

+oo| 2

J[w(k);bl(k),...,bn(k)]:/ ijpj(k,wj[usohton],[xpj]) dar. (4.11)

Ayt
In order that the last integral converges, it is necessary at least that its positively defined
integrand tends to zero for x; — oco. Under the assumptions

lim  ugoliton (21 — vst), lim W;(x1 — vst) = const
T1—00 x1—00

this gives us

n

n

xﬁg@i}%%ﬁﬂﬁw%%Wmm$Nﬂ>=Q%wﬁ§¥%@¢ﬂrw%=& (4.12)
Jj= Jj=

Where Q(k,w) is a common coefficient at ¥; in P;, which always exists simply because of

the strength of the homogeneous structure of (4.7). The obvious requirement

Qk,w) =0 (4.13)

determines the dispersion relation for the Fourier modes in (4.8).

Since both multipliers in the integrand of (4.11) are positive, and w(k) is fixed by (4.13),
one needs to minimize the functional J (4.11) in its turn (this is obviously identical to
minimization of a Fourier-mode amplitude in (4.9)). The necessary condition for this is

Y
_ VI, =0 4.14
oby, 122 hh .
Y-
ob¥ = thIlQll =0, h=1,...n, (415)
I lo=1
where
—+oco
I%w=mum=/%mwb bh=1...,mn (4.16)

The conditions (4.14) and (4.15) are obviously equivalent. The following properties of I
and the coefficients b; take place:

Proposition 2. If all data are correct, the matrix I (4.16) has to be singular in the related
approximation.
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Proof. The opposite would mean b; = 0 for all j, which is impossible.

Note 2. As a rule, for IMSs we deal with a situation when all function-parameters 6; in
(2.6) can in one way or another be expressed through the only function (# in our examples)
that corresponds to a single degeneracy of I. But more general types of superposition are
possible in principle. The trivial example is obviously the superposition of n solutions
in linear or nonlinear but linearizable equations. Consideration of such marginal cases,
however, is beyond of the scope of the present work.

Proposition 3. (a) For evolution equations (2.1), and a single degenerated matrix I, it is
enough to seek the solutions for b;(k) in the class of polynomials of no more than order
2(n—1)N, where N is the order of an equation (2.1) under investigation. (b) The solutions
for b;(k) are not uniquely defined.
Proof. (a) For evolution equations an order of P; in (4.9) with respect to k cannot be
of higher order then N. Respectively, the maximal order of the elements in [ (4.16) will
be 2N.

Since I is singular, we can choose one of the functions b; being sought, say b, for
definiteness, as free and instead of (4.14) or (4.15) consider the following system

I11 s ... ©Iipa b1 I
I9; Io ... Ipp, by | _ b, I, (4.17)
Invg Inc1p -0 Incipaa bn—1 In_1pn
In accordance with the Cramer rule one has for the remaining b;
k) = B ALL ) (4.18)
det I(k)

where I is the above truncated version of I in (4.17) with det I # 0, and fj are its related
modifications. Their determinants are the 2(n — 1)N or less order polynomials on k.

Choosing by, (k) = det I, from (4.18) one will have the proposition being to be proved.
(b) This is the obvious consequence of the arbitrariness in choosing b, (k) above. For

instance, we could also take by, (k) = p(k) det I, when p(k) is any polynomial.

Note 3. Proposition 3 can be easily generalized both to cases of other types of PDEs,
and to cases with a matrix I of another degree of degeneracy. This, however, demands
separate consideration of each case.

Proposition 4. For equation (2.1) with u,z,t € R and real-value coefficients polynomials
b;(k) have to possess the following property

bi(k) = by(—k). (4.19)

Proof. Since u, and as a consequence ¥;, are real, 6; in their turn have also to be real.
This implies that in (4.8)

(bj (k)e“(k)t> = bi(—k)e =Rt
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or (4.19) after taking into account the structure of the dispersion relations.

All these propositions are important for the implementation of the technique being
developed. The first of them gives a simple procedure for data verification and determining
the band of perturbations wave-numbers where an SF sought is correct (see Section 5). The
second allows us to reduce the problem of finding b;(k) to standard algebra, so that both
symbolic computations systems and usual numerical packages can be effectively applied
to this purpose. In doing so, we have to take into account the last proposition and
consider (4.19) as the additional constraint reducing the exact problem to an approximate
one. The matter is that, due to computational errors and a limited simulation accuracy,
‘exact’ solutions for b; themselves appears to be approximate, so that relation (4.19) is
violated. In our research we used the solutions of the systems to b; analogous to (4.17)
with this constraint in the least-square approximation sense, that is a natural approach
for overdetermined or inconsistent system, because of errors in the systems.

In connection with all the aforesaid conditions, the most convenient approach to control
the accuracy of SFs being obtained is to use the following estimate, which in principle
depends on a wave number,

+oo n 2 400 n 2
Eresidual(lf) - / Z bij dxl/ / Z bj‘IJj dxl
00 |7=1 o |9=1

i.e. the ration between the || ||2 norms of a residual for each Fourier mode and its own
|| |2 norm, see (4.8) and (4.9).

Finally, knowing b;(k) and a dispersion relation Q(w, k), we can easily express 6; in an
SF like (4.7), in terms of the only function, say 6(x2,t),

.0
ej(l'g,t) = bj (—Zam> 9($2,t) (420)
satisfying a linear PDE

g .0
Q (8757 _ZaxQ> 0(.’172,t) =0.

As a result, (4.7) takes the habitual form similar to, e.g., (3.9) or with the use of the scalar
product

u(-fla x2, t) = Usoliton(xl - Ust) +90 Z (6]'7 56(332, t)) \Ijj(xl - Ust) + O(é)a (421)

j=1

a; = ( ), D= (1 0 & o t
a; = (a0,a51,---,05n = 55> 7 m | »Us = cons
¥l 7,05 Yg,15 s Wyng /s ’al'Q,a.%'%’ 78:1;1211, ) )

np = max order b;j(k),
J

where d; is the vector of the real in view of (4.19) constants as defined by (4.20) associated
with the coefficients in b; (k).
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Figure 11. (The experiments with the MKdV kink, finding the SF). The profiles of first six basis
functions in the SVD presentation of the matrix A. First three of them are the true basis function
W;(x1), the presence of the remaining ones are coursed by computational errors.
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Figure 12. (The experiments with the MKdV kink, finding the SF). The dependencies of the
singular numbers of the matrix /(k) on a wave number.

Example 5 (finding the SF for the MKdV kink). In Figure 11 the plots of the
functions corresponding to the columns of the matrix U in the SVD (3.4) for A associated
with the first six singular numbers from Figure 10 are depicted. Three of them are the
functions ¥, in the SF sought, see (4.6), the remaining ones are caused by computational
errors, and are of another character. The related expressions for P; are as follows

2

, k
Pj = \I’j,z1w1x1 + 3’5]6“1’]',11361 + <2S - 6uiink - 3k2> \Ijjvxl

+ (W — 12wk ikink 2y — ikufyy — k) U;.

This immediately gives us, see (4.12), (4.13) and (3.10), the dispersion relation

w(k) = ;szk + k3.
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These expressions together with the above ¥; determine the matrix I(k) (4.16). As
was indicating in Proposition 2, it has be singular, if our supposition about the existence
of an SF and experiments are correct. Figure 12 shows the dependence of its singular
numbers on k. As seen from this picture, Iis really singular in our approximation at least
for the band indicated.

Next, looking for bj(k), according to Proposition 3 we can restrict ourselves to consid-
eration of the 12th order polynomials. However, a polynomial of second order provide the
same accuracy. The final result for the SF is

u(x1, 2, t)experimental & tanh(zy + 2t) (4.22)
+0 [(—0.40841958860364 0 + 0.00255422119386 0., + 0.33125364905952 0., ) V1
+(0.00211348463161 6 + 0, + 0.03649662066592 0, ,,) Y2
+(0.02170812942621 6 — 0.04955736892346 0, + 0.44975507103819 0,4,) V3

0 =0(xa,t), Vi3 =T123(x1 +2t)

with €residual|p_q ~ 3.48 - 1077, where @ is governed by the obvious PDE

3

b~

k204, 4 Opywoy = 0, 0 = 0(x,1)

By comparison, for the case of the weakly modulated parameters, the exact full SF (3.9)
gives the following values in (4.21)

(—0.408419598213,0.00255424932619, 0.331253665152)
2 = (0.00211349465275, 1, 0.0364965945078)
ds = (0.0217081254769, —0.0495573527312, 0.449755076328)

ap
a

taking into account the decompositions on the segment [0, L]

1 = —3.59959139139289 ¥; — 0.39659282666401 Wy — 4.88729536091781 U3

+r1 (xl)’ ”Tl”Q,normahzed ~3.41-107"7

tanh(z1) = 0.01387796551896 W, + 5.43328537925927 Wy — 0.26925924002940 V3
+72 ($1)7 HTQHQ,normalized ~ 2.05 - 1077

tanh? (.1‘1) = —1.38053115981650 &1 — 0.40807604625995 ¥y — 5.00524180168261 W3

+T3($1)’ ”T3”2,normalized ~ 3.56 - 10_7
L

Hf(SU)HQ,normalized - i/fZ(l‘)dx

0

and the renormalization 8 — 0.368101408337 6 there. By this means the SF constructed

(4.22) is in full agreement with the theory in the framework of the simulation accuracy.
Note that as a consequence of the structure of similar SFs for small amplitude pertur-

bations we have a transparent enough mechanism of their transformation in the process
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of an interaction. The coefficients in their Fourier expansions

+oo
uperturbationbefore/after(x27 t) = 'LL(:I:OO, L2, t) = / g:too(k)e[ikngrw(kmdk

—o
before and after such an interaction are linked by the transferring function

bj k \I/j o0

goolk) — T T ST (k)W5(—00)
J

In particular, for the above SF with the MKdV kink the last one has the form
Ti—gg)(k) — 62 arctan(%)i7

which is only the inhomogeneous phase shift.

5 Approximation by superposition formulae of a lower or-
der. The Kawahara and RLW equations

For cases of infinitely dimensional IMSs or simply when the use of exact IMSs becomes
impossible, the questions set out above take another form: Modulation of how many
parameters in a soliton envelope have to be taken into account for the description of
soliton—perturbation interactions to attain a certain accuracy? And in reality we already
have an answer to it in hand.

Proposition 5. Let there to be some set of my vectors /Tj = (A1, Aoy, ... ,Amzj)T with
the SVD representation (3.4) of the matrix A;;, then their truncated expansions in terms
of the basis {Uy,Us,...,Un}

m/

- - ,
Aj,approximate = E Slvlelv m <m
=1

approximate the above systems of /f] as a whole with the following accuracy

m
Z ( i zg approx1mate Z

HA - Aapproximate”F . l=m’+1

Esamples = =
KE pra & o
=1

Proof. An SVD can be interpreted as an expansion of the vectors corresponding to the
columns of a matrix under consideration in terms of the specific basis formed by the
columns of the matrix U

m
A] = Z Sl‘GlUl
=1

(5.1)
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This is specific, in the sense that the columns of the matrixes U and V are orthonormal
(3.5). Taking into account the last situation, one directly has

m 2 m
HA - Aapproximate”% = Z < Z Uilsl‘%'l> = Z Z Uih Sllffjll

1,5 I=m/+1 1,5 li=m/+1

m m
X Z Uilzslzvjlz = Z Z Uill Uilz Z lel leQ 51181,
J

lo=m/+1 l1,la=m/+1 %
m m
_ 2 _ 2
= E Oly 1,511 51, = E Siy
l1,lo=m/+1 li=m/+1

and respectively (for instance, setting m’ = 0)

m
1AIE = 5.
=1

This gives (5.1).

Although egamples is not identical to €residual (See the next section), there is obviously
a direct connection between them, and the sense of this proposition for us is very simple.
We can construct an acceptable order SF if we sacrifice accuracy. Another aspect of
this matter is that we can obtain an arbitrary accuracy remaining in the class of finite
order SFs.

The following examples with the Kawahara and Regularized Long Waves equations
demonstrate the aforesaid. Both equations are assigned to so-called nonintegrable non-
linear PDEs, and basically they are the generalizations of the usual KdV equation. An
interested reader can find more about them, e.g., in [21, 12]. From more recent years we
note here the research papers [10, 14, 17].

As a whole, the research scheme does not differ from the examples with the MKdV
kink, and we will just present its results. Again, a coordinate system moving with the
solitons was used in the simulation.

Example 6 (the Kawahara equation). In a number of works it was shown that the
Kawahara equation

Ut + UUy — Uggr + Uggzar = 0, u = u(m, t) (5'2)

has the exact soliton solution

105 x4+ 254 —
Usoliton (T — @, 1) = ——— cosh™ ( 169 <p> , = const.

169 213

Figure 13 schematically, i.e. with scaling Ujocalized noise by @ factor 1/5 at § = 1078 (e =
10~17), depicts the typical profiles for the initial data used in the experiments

u(:E» 0; QD) = usoliton(x — ¥, O) + dUlocalized noise(x - 90,)’ |6| <1, (5~3)

/
p,p = const, max |Ulocalized noise| =1
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Figure 13. (The experiments with the Kawahara equation soliton). The two-dimensional function

u(zx,0; ) (5.3) corresponding to the initial data profiles in one of the series of the experiments (the

component Uocalized noise Was scaled for the visuality).

The picture of the profiles

(The experiments with the Kawahara equation soliton).

Figure 14.

from the initial data depicted in Figure 13.

:Z‘Z

25 and z’

Au(zy) versus zo obtained at ¢/

while the form of the profiles for Au(x;) arising in doing so is shown in Figure 14. In

their turn Figures 15 and 16 show the diagram for the first singular numbers together

with the related values of egamples and the plots of several first basis functions W;(xz).
The last ones are associated with the matrix A constructed from the data obtained in 7

series of experiments with various Ugcalized noise for ' = 25 and z’

on the segment [114.75,

uniformly distributed

= 0.51. In other words the matrix with

with the step h

]

205.02

1246 samples on 137 points was processed. As seen from the diagram, six basis functions

provide the accuracy with egamples of the order 107 7.

The accuracy quickly increases

with the number of basis functions being taken into account, up to the computational

errors level.

(4.7)

The second part of the scheme gives the related coefficients in the SF sought in
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log €

samples

Figure 15. (The experiments with the Kawahara equation soliton). The diagrams of the first
singular numbers of the matrix A and the related magnitudes esamples-

0085 W, |o2 W,
0.1
0.086 0
0.087 01
0.2
0.2 W, Jo02 Wy
0.1 0.1
OI 0
0.1 0.1
0.2 0.2
0.2 Y, J02 W
0.1 0.1
0 0
0.1 0.1
0.2 0.2
-30 20 -10 0 x, 10 20 30 -30 -20 -10 0 x, 10 20 30

Figure 16. (The experiments with the Kawahara equation soliton). The profiles of first six basis
functions ¥;(z1).

and (4.21). From the original equation (5.2) we have for P; the following expression
P =V, 0mmma + 5kY 0101000 — (1067 + 1)U 400, — ik(10k° + 3) U 4 4,

36 . . .
+ <usoliton + 5k + 3k? + 169> ‘ljj,xl + (Usoliton,zl + ikusoliton + ik + ik + W)‘I’j

that in particular immediately gives
w = —ik — ik®
or respectively the evolution equation

9t - exgle‘z + ecchzle’zxz - ()7 0 = 9(.’132, t)
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Table 1. (The experiments with the Kawahara equation soliton). The values of the coefficients in

(4.21) corresponding to the SF found with n = 6 and n, = 9.

a1

a2

ds

aq

as

ds

0.0000488795
0.0318686939
0.0005167683
0.2031157406
0.0015777880
-0.7702349915
-0.0046379157
1.0000000000
0.0034316121
-0.6026014259

0.0052437003
0.0003438036
0.1865890381
0.0010473728
-0.3511531760
-0.0014665747
0.3363143160
-0.0005510736
-0.0000026442
0.0003305423

0.0000445108
0.0184599829
0.0003756256
-0.0127553917
-0.0002008941
-0.0220753107
0.0002976764
0.0068048253
0.0000213071
-0.0035732559

0.0019740397
-0.0000567442
0.0077635624
-0.0001072476
0.0024437336
-0.0000357058
-0.0037542391
0.0000416618
-0.0000833229
-0.0000273894

0.0000510678
0.0031057781
0.0002294238
0.0044964892
0.0000492868
0.0008269880
-0.0000841735
-0.0001086343
-0.0000037744
0.0003262403

-0.0006057694
-0.0000363413
-0.0004684984
-0.0000209475

0.0007200868
-0.0000049525

0.0005617704
-0.0000074914

0.0000087976
-0.0000003251

for the function € in (4.21). Next, for the SF with six basis functions Figure 17 shows the
degree of singularity of the matrix I (k) or, more precisely, the dependence of its singular
values on the wave number, and Table 1 gives the values @; in (4.21), respectively, with
n = 6 at n, = 9 (further growth of n; cannot be accompanied by increasing the accuracy).
These coeflicients were obtained by minimizing ||€residuallls in the wave numbers band
[0.8,1.5], i.e. in the band where the above analysis of I(k) predicts a suitable validity
of the SF (notice that in the perturbations k € [0,1.5] at least, see the comments). —
The dependence &pesiqual(k) is plotted in Figure 18. Finally, Figure 19 demonstrates the
transferring function 77 (k) for the SF that is found.

Example 7 (the RLW equation). The soliton solution for the RLW equation

U + Uy + Uppr — Utge = 0, u=u(z,t) (5.4)

is well known and has the following form

2k2 4k2
Usoliton (T, 1) = ﬁ cosh™2 <k‘sx + 4]{:2%125 — cp) , ks, ¢ = const.
S S

As well as in the previous case with the Kawahara equation, the initial data for the
experiments with the soliton under ks = 0.4 are given by the expression like (5.3), and
the related typical profiles, here with scaling uiocalized noise Dy factor 5/6 for 6 = 10~% at
e = 10717, are depicted in Figure 20. Figure 21 is analogous to Figure 14 and demonstrates
Au(z1) for the above initial data. Processing the matrix A (147 by 1652) constructed
from the samples obtained in 7 series of the similar experiments and corresponding to
t' = 740,800 and z’ chosen on the segment [84.87,132.84] with the step h = 0.41 brings
us to the basis functions needed for deriving the SF. Figure 22 shows the diagrams for
the singular numbers and the related egamples, While the functions ¥; themselves for j =
1,...,6 are depicted in Figure 23. Again, the basis from six first ¥-modes describes the
totality of all of these samples with egumples Of order 107°.

Our next step is the determination of the coefficients in the SF (4.21) with the basis
function that is found. Taking into account the form of the expressions for P;

P = (1+0)9; 410021 + (3ik + 2ikvs — )V, 210y + (Usoliton — 2ikw — k*vs — 3k?
42

_vs)\pj,m1 + (usoliton,xl + 1Kk Usoliton — Zkg + kQW + w)\Iljy Vs = 1—74%2
s



A multidimensional superposition principle... 221

logs

i i i i i i i i i
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 k 2

Figure 17. (The experiments with the Kawahara equation soliton). The singular numbers of the
matrix I (k).

2\x10°

8residual

0 i i i i i i
0.8 0.9 1 1.1 1.2 1.3 1.4 k 1.5

Figure 18. (The experiments with the Kawahara equation soliton). The plot of €yesiqual (k) reached
for the SF with n = 6 and n, = 9.

1.2 T T T T T T

0.8 - ~ o o - . . -

0.6 R
: : : _argTs : :
0.4F T

0.2 i i i i i i
0.8 0.9 1 1.1 1.2 1.3 1.4 k L5

Figure 19. (The experiments with the Kawahara equation soliton). The module and argument of
the transferring function T1T2°(k) associated with the SF founded.
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Figure 20. (The experiments with the RLW equation soliton). The two-dimensional function
u(z, 0; p) analogous to (5.3) corresponding to the initial data profiles in one of the series of the
experiments (the component Ujocalized noise Was scaled for the visuality).

30

Figure 21. (The experiments with the RLW equation soliton). The picture of the profiles Au(xq)
versus T obtained at ¢ = 800 and 2’ = x5 from the initial data depicted in Figure 20.

one first of all has the dispersion relation
ik?
W= -5
k2 +1

and, as a result, the governing equation to the function 6
915 + exzmzxz - gtmzxz == 07 9 == 9(562, t)7

obviously representing just the linearization of the initial equation (5.4). As seen from
Figures 24, the matrix I (k) for the SF with six basis function has a sufficient degree of
singularity in the band k € [0,1.1], that almost coincides with the range of wave numbers
presented in the perturbations. The least-square minimization of €esiqual (k) for this band
leads to the values of @; presented in Table 2 (again already n, = 9 provides the maximal
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Figure 22. (The experiments with the RLW equation soliton). The diagrams of the first singular

numbers of the matrix A the related magnitudes egamples-
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Figure 23.

functions ¥;(z1).

(The experiments with the RLW equation soliton). The profiles of first six basis
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Figure 24. (The experiments with the RLW equation soliton). The singular numbers of the matrix
I(k).

10|, 10*

Sresidual

2 i i i i i
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Figure 25. (The experiments with the RLW equation soliton). The plot of &,esidual (k) reached for
the SF with n = 6 and np, = 9.

Figure 26. (The experiments with the RLW equation soliton). The module and argument of the
transferring function 772° (k) associated with the SF founded.
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Table 2. (The experiments with the RLW equation soliton). The values of the coefficients in
(4.21) corresponding to the SF found with n = 6 and n, = 9.

51 (iz 53 aq 65 66
0.0042876332  -0.0000478405 -0.0000033259 -0.0000017142 -0.0000010544 -0.0000001054
0.0003355579 0.0410447128 0.0007515110 0.0015011611 0.0000127152  -0.0000723397

-0.0453420679 -0.0036589309 0.0548630477  0.0000267593  -0.0005451342 -0.0000701499
-0.0013806016  -0.2472903276 -0.0060783973 -0.0018120629 0.0002044520 -0.0012434812
0.1907630693 0.0235406030  -0.3300824220 -0.0003578931 0.0015068325 0.0002112072
0.0040839882  0.7227282620 0.0238897827  -0.0225111123  -0.0004207060 0.0028466930
-0.3640683822  -0.0538102083 1.0000000000  0.0023505747 -0.0004591877  0.0000093219
-0.0011478866  -0.2417971986 -0.0103012815 0.1073398885  -0.0001926084 0.0004092835
0.1103363199  0.0193558992  -0.3969180587 -0.0008547960 -0.0061183991 -0.0009556559
-0.0008634079  -0.0824338115 -0.0013630094 -0.0374398554 0.0006651002  -0.0042288864

possible accuracy here). The magnitudes and distribution of eyesiqual (k) reached in doing
so are plotted in Figure 25. Figure 26 shows the transferring function associated with the
SF that has been constructed.

6 Some remarks and comments

Now all the results are available, and we can offer some comments and clear up some
questions associated with the application of the technique that has been being developed.

First of all, it is not exaggerating if we underline the fact that although the idea to
use computer simulation for deriving analytical expressions by itself is not very usual for
the theory of PDEs, nevertheless all the methods applied are well known. Really, when
performing a computer experiment to obtain the samples that are needed, we are in fact
using Monte Carlo simulation, while the procedure for restoring SFs is close to that of the
Kantorovich variational approach.

The results obtained in the experiments with the integrable equations (the finite dimen-
sional IMSs) demonstrate practically ideal agreement, both quantitative and qualitative,
with the theoretical data. Moreover, in the case with the MKdV bell-shape soliton they
predict the degeneration of the SF that is confirmed by deeper analysis. In the global
analysis the dimensionality of the IMSs and SFs are calculated directly, and this approach
appears to be the most robust, while in the local analysis we can observe the dramatic
growth of the related singular numbers in every point of the interaction zones (from the
errors level 10791077 up to the magnitudes 1072-1), that indicates to excitation of the
same amount of the soliton envelope parameters. In doing so, the remaining singular
numbers increase insufficiently by virtue of numerical effects.

There are several reasons for the enhancement of these remaining singular numbers.
First, to balance a simulation accuracy and the contribution from the second order terms in
(3.2) is practically impossible. Second, we cannot in principle digitalize a soliton envelope
without involving roundoff errors. Moreover, as a consequence of the periodic boundary
conditions, we in reality deal with some cnoidal waves close to a soliton under investigation
in the domain under consideration, rather than the soliton itself. In particular, due to a
similar distortion, noise there may appear as some excitation of singular numbers even far
from a soliton, analogous to the effects on the soliton tail in Figures 4(d), 4(e). In addition
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modulation may possess a cumulative effect and, with time, depending on a perturbation,
the situation may become complicated. In particular, the initial assumption about the
smallness of the perturbation influence may be violated.

Next, it is necessary to note separately that even in the simplest integrable cases, in
order that all existing parameters should be excited in the appropriate measure, pertur-
bations with a suitable spectrum are necessary. In the local analysis experiments we used
noise with the wavenumbers k € [0, 7], that well provides such modulation.

In the cases with nonintegrable equations, where we have set another problem of ap-
proximation by a lower order IMSs, finding the correct basis functions is critical. There
is no problem with this when exact SFs of a finite order are involved, but for infinite
order SF's

o0 o0
u(w1, 72, t) = Usoliton(T1 — Vst) + 6 Y > 005,V (x1 — vst) + 0(0) (6.1)
j=11=0

0 = 0(x2,t), vs = const

it is necessary to take into account the following circumstance: Depending on a pertur-
bation spectrum, one or other of the basis functions will be dominant in (6.1). Strictly
speaking, their set for, say, long wave perturbations, may appear to dramatically differ
from an analogous set for short wave ones due to the difference in contributions from the
low and high derivatives 6;,,. By this means the question on uniform approximation by
lower order SF's or approximation in a given wave numbers band arises in such cases. In
principle, in similar experiments we must chose perturbations with the spectrum adequate
for further use of an SF being found in this way. These are demonstrated by examples
with the Kawahara and RLW equations (see Figures 17, 18 and respectively 24, 25). For-
tunately, it is not a very strong limitation for work with nonlinear PDEs that present
real physical models, because of the original assumptions for their validity. Usually they
are derived for certain circumstances, e.g., in the long wave limit, or for wave numbers
around unity. In the case with the Kawahara equation it is necessary to pay attention to
one more factor. The analysis of I (k) indicates that there is an issue with approximation
in the band k € [0, 0.8], although these wave numbers are presented in the perturbations
spectra. We can conclude from Table 1 (the first line, compare with Table 2 for the RLW
equation) that most of the dependency on 6 essential near zero remained in the basis
functions unfound under this spectrum distribution. Perhaps the best solution in such
cases would be the use of perturbations with narrow, delta function type spectra with a
further combination of the resulting formulae.

We now offer some remarks about the sense of egamples and €residual being used in the
estimations. In contrast to the latter, esamples is a direct accuracy estimate. However, this
is an accuracy just for a concrete set of samples. While &yegidual 1S just a residual estimate,
i.e. an indirect estimate of a solutions accuracy, but really reached for an SF with a
given set of basis functions. For fully correct experiments, a real accuracy of an SF being
sought has to tend to £samples by probability. Here, notice that in our experiments we used
more than mediocre statistics and the simplest technique in the Monte Carlo simulation.
However, the approach justified itself quite clearly. Comparison of results based on the
data obtained at various t’, n, np, wave numbers bands and so on show that the dispersion
is at least comparable with the accuracy being expected. For instance, for the transferring
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functions, which accumulate in themselves all possible errors arising in each stage and
step, the situation is as follows: Figure 19, the experiments with the Kawahara soliton,
for |[T*2°(k)| the dispersion and deviations from zero are about 3-10~7 for the most part
of the band rising up to about 2 - 107% near its left boundary. For arg T (k) one has
the dispersion of about 1076 for the larger part and about 5-107% near the left boundary.
Analogously in the case of the RLW equation, Figure 26, the dispersion and deviations
from zero are about 5 - 107° for |T72°(k)| with the exception of the left boundary, where
they increase up to 2 - 107%. For arg T"°(k) one has 5-10~% and 2 - 1073 respectively.
Here we explain that near to k = 0 the calculations with the polynomials used to obtain
the coefficients in the SFs are sensitive to roundoff errors, and to obtain the best possible
accuracy, the use of specialized software packages would be reasonable.

The cumulative effect may manifest itself in the global analysis as well. For instance,
a phase shift is accumulated in passing perturbations through a soliton. As a result, with
time, the contribution of the related W-mode grows. The experiments with the RLW
equation are a example of this. In Figure 21 the domination of the mode corresponding
to the soliton phase is clearly defined. In the experiments with this equation a phase shift
really dominates during soliton—perturbation interactions, in contrast to the experiments
with the Kawahara equation soliton, where a phase shift is negligible in comparisons with
the other types of deformation. The negative side of such accumulation and domination is
that the related W-modes, with time, force out other junior modes towards or beyond an
error level excluding them from consideration, that in its turn leads to lost of an accuracy.

Finally, it is worth noticing that the perturbative nature of the methodology demands
very high accuracy of a simulation in view of the relation & ~ §2. Say, to reach the accuracy
of the data about 107°-1077 in the experiments, we had to carry out the computations
themselves with the accuracy e ~ 1076 using all the capacity of 32-bit CPUs. In a
number of cases, to realize a similar possibility, it is necessary additionally to take into
account such specific numerical effects as aliasing errors and spectral blocking [28, 9] and
to apply a special techniques to reduce their influence, e.g. via filtering or introducing
so-called spectral viscosity [9, 8]. Also, at this accuracy level, the use of modern methods
for stiff ODEs systems, e.g. [11], is essential from the viewpoint of time and stability of
the calculations.

7 Conclusion

In this paper we develop the simplest techniques for an experimental investigation of invari-
ant manifolds of the soliton type and for the partial restoring of the related superposition
formulae, and demonstrate the principle possibility of the similar approach for researches
of realistic models of mathematical physics (here we did not take as our purpose the ob-
taining of maximum accurate superposition formulae for further applications in various
calculations). Both the integrable and nonintegrable systems, MKdV, KdV, Kawahara and
RLW equations, are used as examples. Along with these examples, the future tasks for
which a solution is necessary for effective implementation of the technique are indicated.
More detailed study of these questions touched upon in the previous section is beyond
the scope of this work because of its complexity, volume and mathematical speciality. We
plan later to devote a separate paper to the above aspects, with special emphasis on the



228 A A Alexeyev

theory for the above type of Monte Carlo simulation, because its effectiveness determines
the accuracy of all further procedures.

Finally, it must be stressed that although here we have dealt only with SF's for solitons
and low amplitude perturbations, such a class of problems is of no lesser interest for phys-
ical applications than strong soliton interactions. Among them are such problems as the
propagation of optical pulses in real wave-guides, with various types of noise, pumping of
nonlinear localized waves by linear waves, and the weak interactions of solitons, etc. One
further field of application is the purely linear problems of diffraction and scattering in me-
dia with nonuniformities, e.g., in hydrodynamics and acoustics. Moreover, at the present
moment, similar investigations are perhaps even more important from the viewpoint of
engineering to take account the existing industrial technologies.
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