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Abstract

The q-discrete two-dimensional Toda lattice equation with self-consistent sources is
presented through the source generalization procedure. In addition, the Gramm-
type determinant solutions of the system are obtained. Besides, a bilinear Bäcklund
transformation (BT) for the system is given.

1 Introduction

Soliton equations with self-consistent sources (SESCSs) have important physical applica-
tions, e.g., the areas of hydrodynamics, plasma physics, solid-state physics, among others
[13]-[17]. There are several ways to study SECSs, such as the inverse scattering method,
the Daboux transformation, and the bilinear method (see Refs [18]-[22]). Recently, a
valid algebraic method called ’source generalization procedure’ [7] has been proposed to
construct and solve SESCSs, starting from Hirota’s bilinear form of the original equations
without sources. We describe the process of the source generalization procedure as follows:

1. to express N-soliton solutions of a soliton equation without sources in the form of
determinant or pfaffian with some arbitrary constants, say ci,j.

2. to introduce the corresponding determinant or pfaffian using arbitrary functions of
an independent variable, e.g. ci,j(t).

3. to seek coupled bilinear equations whose solutions are the above generalized deter-
minants or pfaffians. The coupled bilinear equations that we derive are the equations with
self-consistent sources.

The procedure has been successfully applied to the KP equation, the 2D Toda lattice
equation, the BKP-type equation, the discrete KP equation and so on[7, 23, 24]. We
will take the KP equation as an example to explain the process of source generalization
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procedure in the next section. Meanwhile, the so-called q-discrete integrable systems have
attracted some attention (see [8]–[2]) recently. In Ref. [8], the authors proposed the q-
discrete version of the two-dimensional Toda lattice equation and gave its determinantal
solution. The q-discrete two-dimensional Toda lattice equation is given by
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1

,xδq
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where the q-difference operators δqα
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β
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Then equation (1.1) can be written in the equivalent form

(1 + a(x)b(y))τn(qα
1 x, q

β
2 y)τn(x, y) − τn(qα

1 x, y)τn(x, q
β
2 y)

= a(x)b(y)τn+1(x, q
β
2 y)τn−1(q

α
1 x, y), (1.2)

where a(x) = (1 − q1)x and b(y) = (1 − q2)y. Equation (1.2) is in quadratic form which
is similar to the discrete KP equation (or Hirota-Miwa equation)[20, 3]. However, we
can find an obvious distinction between the equation (1.2) and the discrete KP equation.
That is, the latter can be expressed as the following form using Hirota’s bilinear difference
operators,

[z1e
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) + z2e
1

2
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−Dk2
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) + z3e
1
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(−Dk1
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)]f · f = 0, (1.3)

where k1, k2, k3 are discrete variables, and z1, z2, z3 are constants satisfying z1+z2+z3 = 0.
Here Hirota’s bilinear difference operator is defined by

exp(δDz)fz · gz = fz+δgz−δ.

but as for the equation (1.2), we can not express it as the form

F (Dx,Dy,Dn)τn · τn = 0,

where F denotes the combinations of Hirota’s difference operators Dx, Dy and Dn. There-
fore it would be interesting to study the q-discrete two-dimensional Toda lattice equation
with self-consistent sources. The purpose of this paper is to construct and solve the q-
discrete two-dimensional Toda lattice equation with self-consistent sources utilizing the
source generalization procedure.

2 Source generalization procedure to the KP equation

In this section, we will take the KP equation as an example to briefly review the process of
source generalization procedure. The KP equation is a 2+1-dimensional nonlinear partial
differential equation which can be transformed into the bilinear equation [5]

(D4
x − 4DxDt + 3D2

y)τ · τ = 0, (2.1)
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where D is the Hirota’s differential operator

Dl
xDn

t f · g = (∂x − ∂x
′ )l(∂t − ∂t

′ )nf(x, t)g(x′, t′)|x=x
′
,t=t

′ .

Firstly, we give the Grammian determinant solution the equation (2.1):

τ = det(βij +

∫ x

fif̃jdx)16i,j6N , βij = constant,

with each functions fi and f̃j satisfying

∂fi

∂xn

=
∂nfi

∂xn
,

∂f̃i

∂xn

= (−1)n−1 ∂nf̃i

∂xn
, (x1 = x, x2 = y, x3 = t). (2.2)

Secondly we generalize τ to the form

f = det(aij)16i,j6N = pf(1, 2, · · · ,N,N∗, · · · , 1∗), (2.3)

where pfaffian elements are defined by

aij = pf(i, j∗) = βij(t) +

∫ x

fif̃jdx, pf(i, j) = pf(i∗, j∗) = 0, i, j = 1, 2, · · · ,N,

with βij(t) satisfying

βij(t) =

{

βi(t), i = j and 1 6 i 6 K 6 N, K,N ∈ Z+,

βij , otherwise.

Following the source generalization procedure, we introduce other new functions gj and
hj expressed by

gj = 2

√

2β̇j(t)pf(d∗0, 1, · · · , N,N∗, · · · , ĵ∗, · · · , 1∗), j = 1, 2, · · · ,K, (2.4)

hj = 2

√

2β̇j(t)pf(d0, 1, · · · , ĵ, · · · ,N,N∗, · · · , 1∗), j = 1, 2, · · · ,K (2.5)

where the dot denotes the derivative of the function βj(t) with respect to t, and new
pfaffian entries are defined as

pf(d∗m, i) =
∂m

∂xm
fi, pf(dn, j∗) =

∂n

∂xn
f̃j,

pf(d∗m, dn) = pf(d∗m, d∗n) = pf(dm, dn) = pf(d∗m, j∗) = pf(dm, i) = 0.

Then we can show that the f , gj and hj so defined satisfy the bilinear equations:

(D4
x − 4DxDt + 3D2

y)f · f =

K
∑

j=1

gjhj , (2.6)

(Dy + D2
x)f · gj = 0, j = 1, 2, · · · ,K, (2.7)

(Dy + D2
x)hj · f = 0, j = 1, 2, · · · ,K. (2.8)

Equations (2.6)-(2.8) are just the KP ESCS in the bilinear form. They can be proved
through pfaffian identities, and here we omit the process of proof. In Ref. [24], we
have also given the nonlinear forms of the bilinear system (2.6)-(2.8). These results are
consistent with the results in Ref. [25].
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3 Gramm-type determinant solution of equation (1.2)

In [8], the Casorati determinant solution of equation (1.2) has been given. Now we will
give the Gramm-type determinant solution of this equation. The Gramm-type determinant
solution can be expressed in the form
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= |cij +

∞
∑

s=0

ϕ
(s+n)
i (x, y)ϕ̄

(−s−n−1)
j (x, y)|16i,j6N , (3.1)
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In the following, we prove that τn(x, y) actually satisfy equation (1.2). In fact, we get the
following relations from (3.1) and (3.2):

δqα
1

,xm
(n)
ij (x, y) = ϕ

(n)
i (x, y)ϕ̄

(−n)
j (qα

1 x, y), (3.3a)

δ
q

β
2
,y

m
(n)
ij (x, y) = ϕ

(n−1)
i (x, y)ϕ̄

(−n−1)
j (x, q

β
2 y), (3.3b)

m
(n+1)
ij (x, y) − m

(n)
ij (x, y) = −ϕ

(n)
i (x, y)ϕ̄

(−n−1)
j (x, y), (3.3c)

m
(n−1)
ij (x, y) − m

(n)
ij (x, y) = ϕ

(n−1)
i (x, y)ϕ̄

(−n)
j (x, y). (3.3d)

Then we have the difference formulas
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where φ(n)(x, y) and φ̄(−n)(x, y) denote the following 1 × N matrices, respectively:
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Substituting the above results into equation (1.2) yields the determinant identity
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which is just a Jacobi identity of determinants [5]. This indicates that τn(x, y) in (3.1) is
a Gramm-type determinant solution of equation (1.2).

4 Construction of q-discrete two-dimensional Toda equation
with self-consistent sources

In this section, we will apply the source generalization procedure to the q-discrete two-
dimensional Toda equation. We first change the function τn(x, y) in (3.1) to form
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Here we have assumed that each function cj(y) satisfies △cj(y) = △cj(q
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where the N × N matrix M1 = (m̄
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ij (x, y))16i,j6N , and C(y) is a 1 × N matrix defined

by

(c1(y), · · · , cK(y), 0, · · · , 0).
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Then we have the formulas
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(4.2d)

Following the source generalization procedure, we introduce new functions defined by
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∣ M̂j φ(n)(x, y)T
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∣ , j = 1, 2, · · · ,K, (4.3b)

where M̂j denotes the N × (N − 1) matrix eliminating the j−th column from the matrix
M . We can show that functions in (4.1) and (4.3) satisfy the bilinear equations

(1 + a(x)b(y))fn(qα
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β
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β
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Now we verify that the functions fn(x, y), gj,n(x, y), and hj,n(x, y) so defined are really
solutions of equations (4.4)-(4.6). In fact, if we set
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we have the following difference formulas:
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where ˆ̄φ
(−n)
j (x, y) is a 1 × (N − 1) matrix eliminating the j−th column from φ̄(−n)(x, y).

Substituting (4.2)-(4.3) into equation (4.4) yields the determinant identity
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∣

∣
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∣

∣

∣

∣

∣

∣

∣

∣

∣
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∣

∣

∣

∣
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∣
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∣

∣

∣

∣

∣
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∣
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∣
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∣

∣

∣

∣

∣

∣
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∣
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∣
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∣

∣

∣

∣

∣

∣
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∣
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∣

∣

∣

∣
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∣

∣
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∣

∣
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∣

∣

∣

∣

∣

∣

∣

∣

∣
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∣

∣

∣

∣

∣

∣

∣

∣

∣

].

The determinant identity above can be proved through the Laplace expansion of a 2(N +
2) × 2(N + 2) matrix that is equal to zero. Hence equation (4.4) holds. Similarly, substi-
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tution of (4.7)-(4.8) into equation (4.5) gives the Jacobi determinant identity

a(x)[|M |

∣

∣

∣

∣

∣

∣

M −1 φ(n)(x, y)T

φ̄(−n)(qα
1 x, y) 0 a(x)−1

φ̄(−n−1)(x, y) 0 1

∣

∣

∣

∣

∣

∣

−

∣

∣

∣

∣

M −1

φ̄(−n)(qα
1 x, y) 0

∣

∣

∣

∣

∣

∣

∣

∣

M φ(n)(x, y)T

φ̄(−n−1)(x, y) 1

∣

∣

∣

∣

+

∣

∣

∣

∣

M −1

φ̄(−n−1)(x, y) 0

∣

∣

∣

∣

∣

∣

∣

∣

M φ(n)(x, y)T

φ̄(−n)(qα
1 x, y) a(x)−1

∣

∣

∣

∣

] = 0.

Substituting (4.7) and (4.9) into equation (4.6), we get the determinant identity

a2(x)[

∣

∣

∣

∣

M φ(n)(x, y)T

φ̄(−n−1)(x, y) 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

M̂j φ(n+1)(x, y)T φ(n)(x, y)T

ˆ̄φ
(−n)
j (qα

1 x, y) −a(x)−2 a(x)−1

∣

∣

∣

∣

∣

−

∣

∣

∣

∣

M φ(n)(x, y)T

φ̄(−n)(qα
1 x, y) a(x)−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

M̂j φ(n+1)(x, y)T φ(n)(x, y)T

ˆ̄φ
(−n−1)
j (x, y) 0 1

∣

∣

∣

∣

∣

+
∣

∣ M̂j φ(n)(x, y)T
∣

∣

∣

∣

∣

∣

∣

∣

M φ(n+1)(x, y)T φ(n)(x, y)T

φ̄(−n−1)(x, y) 0 1

φ̄(−n)(qα
1 x, y) −a(x)−2 a(x)−1

∣

∣

∣

∣

∣

∣

] = 0,

which can also be verified through the Laplace expansion of a 2(N + 2)× 2(N + 2) matrix
that is equal to zero. Therefore functions in (4.1) and (4.3) are Gramm-type determinant
solutions of equations (4.4)-(4.6), and equations (4.4)-(4.6) construct the q-discrete two-
dimensional Toda lattice equation with self-consistent sources.

5 Bilinear Bäcklund transformation of equations (4.4)-(4.6)

In this section, we will give the bilinear Bäcklund transformation for equations (4.4)-(4.6).

Proposition 1. The system (4.4)-(4.6) has the bilinear Bäcklund transformation

λfn(qα
1 x, y)f

′

n+1(x, y) − afn+1(x, y)f
′

n(qα
1 x, y) − µfn(x, y)f

′

n+1(q
α
1 x, y) = 0, (5.1)

λgj,n(qα
1 x, y)g

′

j,n+1(x, y) − agj,n+1(x, y)g
′

j,n(qα
1 x, y)

−µgj,n(x, y)g
′

j,n+1(q
α
1 x, y) = 0, (5.2)

λhj,n(qα
1 x, y)h

′

j,n+1(x, y) − ahj,n+1(x, y)h
′

j,n(qα
1 x, y)

−µhj,n(x, y)h
′

j,n+1(q
α
1 x, y) = 0, (5.3)

µf
′

n+1(x, y)gj,n(x, y) − f
′

n(x, y)gj,n+1(x, y) + θjfn(x, y)g
′

j,n+1(x, y) = 0, (5.4)

µfn(x, y)h
′

j,n+1(x, y) − fn+1(x, y)h
′

j,n(x, y) + θjf
′

n+1(x, y)hj,n(x, y) = 0, (5.5)
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µ(1 + ab)fn(x, y)f
′

n+1(q
α
1 x, q

β
2 y) − fn(qα

1 x, y)f
′

n+1(x, q
β
2 y)

+νfn+1(x, q
β
2 y)f

′

n(qα
1 x, y) = −

K
∑

j=1

µ

θj

gj,n(qα
1 x, y)h

′

j,n+1(x, q
β
2 y), (5.6)

where a = a(x), b = b(y), and λ, µ, ν and θj are arbitrary constants.

Proof. Let fn(x, y), gj,n(x, y) and hj,n(x, y) be solutions of equations (4.4)-(4.6). What
we need to prove is that f

′

n(x, y), g
′

j,n(x, y) and h
′

j,n(x, y) in (5.1)-(5.6) are also solutions
of (4.4)-(4.6). In fact, according to the relations (5.1)-(5.6), we have

P = [(1 + ab)fn(qα
1 x, q

β
2 y)fn(x, y) − abfn+1(x, q

β
2 y)fn−1(q

α
1 x, y)

−fn(qα
1 x, y)fn(x, q

β
2 y) −

K
∑

j=1

gj,n(qα
1 x, y)hj,n(x, q

β
2 y)]f

′

n+1(x, q
β
2 y)f

′

n−1(q
α
1 x, y)

−fn+1(x, q
β
2 y)fn−1(q

α
1 x, y)[(1 + ab)f

′

n(qα
1 x, q

β
2 y)f

′

n(x, y) − f
′

n(qα
1 x, y)f

′

n(x, q
β
2 y)

−abf
′

n+1(x, q
β
2 y)f

′

n−1(q
α
1 x, y) −

K
∑

j=1

g
′

j,n(qα
1 x, y)h

′

j,n(x, q
β
2 y)]

= µ(1 + ab)[fn(x, y)f
′

n−1(q
α
1 x, y)fn(x, q

β
2 y)f

′

n+1(q
α
1 x, q

β
2 y)

−fn+1(x, q
β
2 y)f

′

n(qα
1 x, q

β
2 y)fn−1(x, y)f

′

n(qα
1 x, y)]

−fn(qα
1 x, y)fn(x, q

β
2 y)f

′

n+1(x, q
β
2 y)f

′

n−1(q
α
1 x, y)

+fn+1(x, q
β
2 y)fn−1(q

α
1 x, y)f

′

n(qα
1 x, y)f

′

n(x, q
β
2 y)

+

K
∑

j=1

[fn(x, q
β
2 y)f

′

n−1(q
α
1 x, y)gj,n(qα

1 x, y)h
′

j,n+1(x, q
β
2 y)

−fn+1(x, q
β
2 y)f

′

n(qα
1 x, y)gj,n−1(q

α
1 x, y)h

′

j,n(x, q
β
2 y)]

= fn(x, q
β
2 y)f

′

n−1(q
α
1 x, y)[µ(1 + ab)fn(x, y)f

′

n+1(q
α
1 x, q

β
2 y)

−fn(qα
1 x, y)f

′

n+1(x, q
β
2 y) +

K
∑

j=1

gj,n(qα
1 x, y)h

′

j,n+1(x, q
β
2 y)]

−fn+1(x, q
β
2 y)f

′

n(qα
1 x, y)[µ(1 + ab)fn−1(x, y)f

′

n(qα
1 x, q

β
2 y)

−fn−1(q
α
1 x, y)f

′

n(x, q
β
2 y) +

K
∑

j=1

gj,n−1(q
α
1 x, y)h

′

j,n(x, q
β
2 y)]

= ν[fn(x, q
β
2 y)f

′

n−1(q
α
1 x, y)fn+1(x, q

β
2 y)f

′

n(qα
1 x, y)

−fn+1(x, q
β
2 y)f

′

n(qα
1 x, y)fn(x, q

β
2 y)f

′

n−1(q
α
1 x, y)] = 0.

The above result indicates that f
′

n(x, y), g
′

j,n(x, y) and h
′

j,n(x, y) satisfy equation (4.4).

Much in the same way, equations (4.5)-(4.6) can also be satisfied for f
′

n(x, y), g
′

j,n(x, y)

and h
′

j,n(x, y). Therefore we have completed the proof of the proposition. �
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6 Conclusion and discussion

In this paper, we apply the source generalization procedure to the q-discrete two-dimensio-
nal Toda lattice equation. As a result, the q-discrete two-dimensional Toda lattice equa-
tion with self-consistent sources is presented. Besides, the bilinear Bäcklund transfor-
mation for the q-discrete Toda equation with self-consistent sources is given. When the
system has K (K > 1) pairs of sources, we can obtain the N-soliton (N > K) solu-
tions of the q-discrete two-dimensional Toda equation with self-consistent sources. When
we set each function cj(y) to be constant, the sources become zero, and the q-discrete
two-dimensional Toda equation with self-consistent sources is reduced to the original q-
discrete two-dimensional Toda latice equation. Accordingly, the N-soliton solutions of
the q-discrete two-dimensional Toda equation with self-consistent sources are reduced to
the solution of the q-discrete two-dimensional Toda equation. Hence the q-discrete Toda
equation with self-consistent sources can be viewed as a kind of coupled generalization of
the q-discrete two-dimensional Toda lattice equation.
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