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Abstract

In the framework of the theory of approximate transformation groups proposed by
Baikov, Gaziziv and Ibragimov [1], the first-order approximate symmetry operator is
calculated for the Navier-Stokes equations. The symmetries of the coupled system
obtained by expanding the dependent variables of the Navier-Stokes equations in the
perturbation series with respect to a small parameter (viscosity) are used to derive
approximate symmetries in the sense by Baikov et al.

1 Introduction

Symmetries of differential equations are pivotal to a profound understanding of the physics
of the underlying the problems under investigations. Symmetry group analysis of differ-
ential equations on the basis of Lie (Lie-Bäcklund) groups unify a wide variety of ad
hoc methods to analyze and exactly solve differential equations. Detailed description of
the methods and their applications to various problems of mathematical physics, fluid
dynamics and others may be found e.g. in [8], [9].

In the context of Symmetry Group Methods an approach to derive certain turbulent
scaling laws arising in the statistical theory of turbulence was given in [10]. In particular, it
unifies a large set of scaling laws for the mean velocity of stationary parallel turbulent shear
flows. The approach is derived from the Reynolds averaged Navier-Stokes equations, the
fluctuations equations, and the velocity product equations, which are the dyad product
of the velocity fluctuations with the equations for the velocity fluctuations. From the
knowledge of the symmetries a broad variety of invariant solutions (scaling laws) were
derived. Since the symmetries of fluid motion are admitted by all statistical quantities of
turbulent flow, the necessary conditions on turbulent models such that they ”capture” the
proper physics (the symmetries and their corresponding invariant solutions) were presented
in [11]. For the plane case the results include the logarithmic law of the wall, the algebraic
law, the viscous sublayer, the linear region in the center of a Couette flow and in the center
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of a rotating channel flow, and a new exponential mean velocity profile that is found in the
mid-wake region of high Reynolds number flat-plate boundary layers. Therefore, it was
shown that in the case of Re → ∞, respectively ν → 0, the knowledge of symmetries make
it possibly to derive a family of turbulent scaling laws (invariant solutions). Still, we have
to note that these invariant solutions we were derived using the symmetries of the Euler
equations only. From a physical point of view as the viscosity tends to zero turbulence
becomes highly intermittent, and vorticity is concentrated on sets of a small measure.

Reconsidering the derivation of the different scaling laws in [11] we note that the use
of symmetries of the Navier-Stokes equations do not enable us to introduce the Reynolds
number dependence into scaling laws explicitly. In fact, viscosity is symmetry breaking of
one scaling symmetry and as a consequence the entire scaling law theory will brake down.
The crucial point for understanding of Reynolds number dependence is that viscosity is
primarily significant for small scale turbulence at the order of the Kolmogorov length
scale and, if wall bounded flows are considered, in the inner region (viscous sublayer)
of a turbulent motion. The so-called outer region of this motion is mainly determined
by the Euler equations. According to Kolmogorov’s sub-range theory there is a region
in correlation space obeying the limits ηK ≪ r ≪ lt where viscosity is negligible and
large-scale influence are also asymptotically small. lt is the integral length-scale and
ηK = (ν3/ε)1/4 is the Kolmogorov length scale with ε is the energy of dissipation. The
eddies of size ηK have a negligible amount of energy but provide the necessary dissipation
for the energy balance equation. In contrast the energy containing large scale eddies of
size lt determine the mean velocity, the Reynolds stress tensor and similar variables. It is
this distinction and the corresponding difference in symmetries which is the basis for the
understanding of the invariant solutions of turbulent flows [11]. The disentangling of these
regions leads to a singular asymptotic expansion of the multi-point correlation equations
in correlation space r [12].

Barenblatt and Chorin in a series of papers [13]–[15] investigate of the influence of the
intermittency phenomenon on certain scaling laws presented by the von Kármán-Prandtl
universal logarithmic law of the wall (in the intermediate region of wall-bounded turbu-
lence), and the Kolmogorov-Obukhov scaling for the local structure of turbulence. It was
shown that when the viscosity is small the universal logarithmic law for the intermediate
region of wall-bounded shear flow must be replaced by a power law. The concept of the so-
called incomplete similarity and intermediate asymptotics was used to make a correction
of the classical scaling laws when the Reynolds number is finite but large. The analysis
extended the classical form of dependency between the velocity gradient and the spatial
coordinate y, the shear stress at the wall τ , the pipe diameter d, the kinematic viscosity
ν and density ρ without using the Navier-Stokes equations directly.

Our aim is to find symmetries which to leading order correspond to the Euler equations
but to higher order allows for the Reynolds number dependence of a turbulent motion.
As the first step we apply the theory of approximate symmetries developed by Fushchich
and Shtelen [5], Euler et al. [3], [4], Ibragimov, Bykov and Gazizov [1], [2] for studying
differential equations with a small parameter and consider the Navier-Stokes equations as
a perturbation of the Euler equations. In this note we calculate the so-called approximate
Lie symmetry tangent vector field to the manifold defined by the Navier-Stokes equations
which is motivated by their application to the theory of turbulence. In particular, we
show that the Lie symmetries of the Euler equations are inherited by the Navier-Stokes
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equations in the form of approximate symmetries.
We also mention the paper [16] where the comparison of the above-mentioned ap-

proaches are given in details. Moreover, therein the authors give another method for
the construction of approximate symmetries which is consistent with perturbation the-
ory. Higher symmetries including a small parameters are studied in [17] to construct
approximate solutions of perturbed equations. The reccurent relations for an expansion
of symmetry by a small parameter are found for evolution equations with one spatial vari-
able. An illustrative example for the Burgers equation is given and the use of approximate
conservation laws for perturbed equations are discussed.

2 Approximate Lie symmetry of the Navier-Stokes equa-

tions

Let us consider the Navier- Stokes equation

~ut + (~u · ∇)~u + ∇p = ν∆~u, div ~u = 0 (2.1)

and the perturbation series for ~u and p in this small viscosity ν limit

uα(~x, t) = uα
0 (~x, t) +

s
∑

i=1

νiuα
i (~x, t) + o(νs), s = 1, . . . , n (2.2)

p(~x, t) = p0(~x, t) +

s
∑

i=1

νipi(~x, t) + o(νs).

Inserting these series into the Navier-Stokes equations, we obtain the s-order approximate
system for the Navier-Stokes equations in the following denoted by coupled system. In a
first step we compute the exact Lie symmetry for the coupled system. This symmetry is
called s-order approximate symmetries of the Navier-Stokes equations. The infinitesimal
operator for this system of any order approximation can be written in the following form

Xs = ξ0 ∂

∂t
+ ξi ∂

∂xi
+ η0,α ∂

∂uα
0

+ ηl,α ∂

∂uα
l

+ ζ0 ∂

∂p0
+ ζ l ∂

∂pl
. (2.3)

Remark 1. We note that symmetries of a coupled system obtained in the framework of
the reduction of differential equations with a small parameter using the expansion of the
depending variables asymptotically in terms of a small parameter (such as the one in (2.2))
have been considered by Fushchich, Shtelen and Euler et al. in [3]–[5] as approximate
symmetries of the corresponding differential equations with the small parameter.

In the present section we are primarily interested in the calculation of the exact symme-
tries of the coupled system for the Navier-Stokes equations. However, that this is in view
of finding the first-order approximate symmetry to be derived in the next subsection. We
expand a solution (~u, p) in a perturbation series according to (2.2) to obtain the coupled
system of equations for (~u0, ~u1), and (p0, p1)

~u0t + (~u0 · ∇)~u0 + ∇p0 = 0,

~u1t + (~u0 · ∇)~u1 + (~u1 · ∇)~u0 + ∇p1 = ∆~u0 (2.4)

div ~u0 = 0, div ~u1 = 0.
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The corresponding infinitesimal operator is due to (2.3), here denoted by X1, and the
corresponding prolongation of this operator X̃1 can be written in the form

X̃1 = X1+η0,α
m

∂

∂uα
0,m

+η1,α
m

∂

∂uα
1,m

+ζ0
m

∂

∂p0,m
+ζ1

m

∂

∂p1,m
+η0,α

mn

∂

∂uα
0,mn

+η1,α
mn

∂

∂uα
1,mn

, (2.5)

where ηiα
m = Dm(ηiα) − uα

i,jDm(ξj), ζi
m = Dm(ζi) − pi,jDm(ξj), ηiα

mn = Dn(ηiα
m ) − uα

i,mr

Dn(ξr), i = 0, 1. Here Dm denotes the total derivative operator

Dm =
∂

∂xm
+ uα

i,m

∂

∂uα
i

+ uβ
i,mn

∂

∂uβ
i,n

+ pi,m
∂

∂pi
+ pi,mn

∂

∂pi,n
+ · · · .

Applying the operator X̃1 to the coupled system (2.4), we find that the smooth coefficients
ξ0, ξ1, η0,i, η1,i, ζ0 and ζ1 are given by

ξ0 = (2a0 + b0)t + c0,

ξi = (a0 + b0)x
i + aijx

j + hj(t),

η0,i = −a0u
i
0 + aiju

j
0 + h′

j(t), (2.6)

η1,i = −a0u
i
1 + aiju

j
1 − b0u

i
1,

ζ0 = −2a0p0 − xih′′

i (t) + g0(t),

ζ1 = −2a0p1 + g1(t) − b0p1,

where a0, b0, c0 are arbitrary constants, the numbers aij are connected by the relationships
aii = 0, aij +aji = 0 for i 6= j and hj , g0, g1 are arbitrary smooth functions of the variable
t. We note that the functions ξ0, ξi, η0,i, ζ0 coincide with the coefficient functions of the
infinitesimal operator for the Euler equations.

To adopt the symmetry operator (2.3), (2.6) for their application in turbulence, we need
to rewrite (approximately) this operator (or the Lie symmetry vector field) in the original
variables (∂/∂t, ∂/∂xi, ∂/∂uα, ∂/∂p). For this aim we use the concept of Approximate
Group Transformations by Ibragimov, Baikov and Gazizov [1], [2] wherein the infinitesimal
operator is expanded in a perturbation series with the small parameter ν.

3 Approximate Lie symmetry vector field defined by the

Navier-Stokes equations

Following central idea in paper [6], we consider a family G of invertible transformations

x̄i ≈ ωi(t, ~x, ~u, p, a; ν) ≡ ωi
0(t, ~x, ~u, p, a) + νωi

1(t, ~x, ~u, p, a) + o(ν),

t̄ ≈ λ(t, ~x, ~u, p, a; ν) ≡ λ0(t, ~x, ~u, p, a) + νλ1(t, ~x, ~u, p, a) + o(ν),

ūα ≈ τα(t, ~x, ~u, p, a; ν) ≡ τα
0 (t, ~x, ~u, p, a) + ντα

1 (t, ~x, ~u, p, a) + o(ν),

p̄ ≈ µ(t, ~x, ~u, p, a; ν) ≡ µ0(t, ~x, ~u, p, a) + νµ1(t, ~x, ~u, p, a) + o(ν),

ν̄ ≈ νθ(a; ν) ≡ νθ0(a) + o(ν),

where f ≈ g means that f − g = o(ν), |o(ν)| ≤ Cν2. According to the theory of ap-
proximate Lie symmetries (see, for example [6]), the first-order approximate infinitesimal
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operator can be written in the form

Xappr
1 = [ξ0

(0)(t, ~x, ~u, p) + νξ0
(1)(t, ~x, ~u, p)]

∂

∂t

+ [ξi
(0)(t, ~x, ~u, p) + νξi

(1)(t, ~x, ~u, p)]
∂

∂xi

+ [ηα
(0)(t, ~x, ~u, p) + νηα

(1)(t, ~x, ~u, p)]
∂

∂uα

+ [ζ(0)(t, ~x, ~u, p) + νζ(1)(t, ~x, ~u, p)]
∂

∂p
+ νκ

∂

∂ν
,

where

ξ0
(l) =

∂λ(l)

∂a

∣

∣

∣

∣

a=0

, ξi
(l) =

∂ωi
(l)

∂a

∣

∣

∣

∣

∣

a=0

,

ηα
(l) =

∂τα
(l)

∂a

∣

∣

∣

∣

∣

a=0

, ζ(l) =
∂µ(l)

∂a

∣

∣

∣

∣

a=0

, κ =
∂θ0

∂a

∣

∣

∣

∣

a=0

.

An algorithm for the direct calculation of the coefficients of Xappr
1 can be taken from [6].

The following assertion establishes a relationship between the operators X1 and Xappr
1 :

The operator X1 of an exact symmetry of the coupled system (2.4) can be rewritten in
the form of an approximate infinitesimal operator Xappr

1 if and only if it has the form

X1 = ξ0
(0)

∂

∂t
+ ξi

(0)

∂

∂xi
+ ηα

(0)

∂

∂uα
0

+ ζ(0)
∂

∂p0

+ [ηα
(1) − ξj

(1)u
α
0,j +

∂ηα
(0)

∂uβ
0

uβ
1 −

∂ξj
(0)

∂uβ
0

uα
0,ju

β
1 − κuα

1 ]
∂

∂uα
1

(3.1)

+ [ζ(1) − ξj
(1)p0,j +

∂ζ0

∂p0
p1 −

∂ξj
(0)

∂p0
p0,jp1 − κp1]

∂

∂p1

which is obtained by substituting (2.2) into the operator Xappr
1 and expanding the coef-

ficient functions into Taylor series (for details see Theorem 1 [6]). The nice form of the
coefficient functions obtained in (2.6) of the operator X1 enables us to apply (3.1) for
calculating Xappr

1 . Indeed, comparing (2.6) and (3.1) we obtain that

ξi
(1) ≡ 0, ηα

(1) ≡ 0, ζ(1) = g1(t), κ = b0. (3.2)

taking into account that (see (2.6))

∂ξj
(0)

∂uβ
0

= 0,
∂ξj

(0)

∂p0
= 0,

∂ηα
(0)

∂uβ
0

= aαβ (β 6= α),
∂ηα

(0)

∂uα
0

= −a0,
∂ζ0

∂p0
= −2a0.

As a result, we obtain that the operator X1 is transformed to

Xappr
1 = ξ0 ∂

∂t
+ ξi ∂

∂xi
+ η0,α ∂

∂uα
+ [ζ0 + νg1(t)]

∂

∂p
+ νb0

∂

∂ν
. (3.3)
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Moreover, this operator is admitted by the Navier-Stokes equations in the sense of the
first-order approximation of the theory of approximate transformation groups and the
operator X0 (unperturbed term of Xappr

1 )

X0 = ξ0 ∂

∂t
+ ξi ∂

∂xi
+ η0,α ∂

∂uα
+ ζ0 ∂

∂p

coincides with the infinitesimal operator for the Euler equations. Therefore we showed that
the operator X0 is inherited [7] by the Navier-Stokes equations in the form of approximate
symmetry (3.3).

Remark 2. In general, symmetry operators obtained in the framework as developed by
Fushchich, Shtelen [5] and Euler et al. [3], [4] and approximate symmetry operators in the
sense by Baikov et al. (based on the theory of approximate transformation groups [2])
are not equivalent to each other. Some corresponding examples are given by Gazizov
in [6]. Also we note that an infinitesimal operator admitted by an unperturbed equation
cannot always be extended in the form of approximate symmetry operator of the perturbed
equation under consideration, see [2].
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