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Abstract

Effects of geometric constraints on a steady flow potential are described by an elliptic-
hyperbolic generalization of the harmonic map equations. Sufficient conditions are
given for global triviality.

1 Introduction

In [12], local properties of maps which are critical points of a nonlinear Hodge energy
were investigated (see also [10]). The target of the map has a physical interpretation as
a geometric constraint on the potential of a steady flow. In this letter we illustrate these
maps by deriving elementary but explicit physical examples, clarify the relation of the
objects studied in [12] to other classes of maps which have been studied recently, and
provide global conditions under which critical points reduce to the trivial map.

1.1 A column of tap water as a mapping

A simple motivating example for placing geometric constraints on a flow potential is
provided by the steady flow of water from a faucet. If vi is the velocity of the flow
through a thin horizontal section of area Ai and if vf and Af are defined analogously, then
the conservation of mass implies that

viAi = vfAf . (1.1)

But the particles accelerate under gravity, so if the cross section Af is taken nearer to the
drain than the cross section Ai, we conclude that vf > vi. Equation (1.1) then implies that
Af < Ai, which explains why the column of water is seen to taper. In this conventional
approach the flow geometry is derived by imposing a physical law (acceleration under
gravity) on a conservation law.

An alternative approach would be to observe that the column of water tapers, so that
Af < Ai. Conservation of mass implies eq. (1.1), so we conclude that vf > vi, that is, the
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particles accelerate under gravity. In this alternative approach the physical law is derived
by imposing an observed flow geometry on a conservation law.

It is convenient to think of the geometry as a constraint applied to a flow potential u.
In this example u maps a right circular cylinder into a tapered cylinder. Recall that every
smooth curve has a dual representation as the envelope of its family of tangent lines. In
a steady flow the velocity vectors appear as tangent lines to the potential surfaces, and so
form an envelope of the cross sections represented in eq. (1.1). We see these cross sections
taper by tracing the velocity vectors of the water droplets. Thus, as is often the case
in fluid dynamics, the mathematical abstraction of a potential surface attains a visible
representation in physical space.

While this simple example involves incompressible flow, the same alternatives exist in
the more complicated case of compressible flow such as the flow of exhaust from a jet
engine.

1.2 Shallow hydrodynamic flow

Now we consider a slightly more complicated case, that of steady, inviscid, hydrodynamic
flow in a shallow channel. Write the flow velocity v in components (v1, v2, v3) , where v1
is the horizontal component in the x-direction, v2 is the horizontal component in the y-
direction, and v3 is the component in the (vertical) z-direction. Impose initial conditions
under which v3 is zero at time t = 0. Because we are assuming shallow depth, it is
reasonable to suppose that the component of acceleration of water particles in the z-
direction has negligible effect on pressure. The result of applying this hydrostatic law
is that v3 remains zero for all subsequent times and the horizontal velocity components
v1 and v2 are independent of the z-coordinate. Because the flow is steady, the velocity
components are also independent of t.

Generalizing eq. (1.1) to express the vanishing of an appropriate surface integral and
applying the Divergence Theorem, we write the law of mass conservation in the form of a
continuity equation (see, e.g., [7], Sec. 1.1.1)

∂

∂x
[h (x, y) v1 (x, y)] +

∂

∂y
[h (x, y) v2 (x, y)] = 0, (1.2)

where h(x, y) represents the depth of the channel at the point (x, y). Bernoulli’s formula
expresses h as a function of Q ≡ |v|2 , that is, h (Q) = (C −Q) /2g, where C is a constant
and g is the magnitude of gravitational acceleration. Substituting this relation into (1.2)
and using the chain rule, we find that prior to the imposition of any geometric constraint
the flow will satisfy

[
C −Q

2
− v2

1

]
v1x − v1v2 (v1y + v2x) +

[
C −Q

2
− v2

2

]
v2y = 0. (1.3)

(In eq. (1.3) numerical subscripts denote vector components, whereas variable subscripts
denote partial differentiation in the direction of the variable.) While Bernoulli’s formula is
valid in a broader context [4], when we applied it in deriving eq. (1.3) we tacitly assumed
the flow to be irrotational. Thus its velocity vector has vanishing curl, which allows us
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to equate mixed partial derivatives and assume the local existence of a potential function
u(x, y) such that ∇u = v.

Writing c2 = gh = (C −Q) /2, we obtain (c.f. (10.12.5) of [19]) a second-order quasi-
linear elliptic-hyperbolic equation for the potential function:

[
c2 − u2

x

]
uxx − 2uxuyuxy +

[
c2 − u2

y

]
uyy = 0. (1.4)

The type of eq. (1.4) depends on whether or not the flow speed
√
Q exceeds the propagation

speed c. For subcritical flow speeds in which the Froude number F =
√
Q/c is exceeded by

1, the continuity equation is of elliptic type and the flow is tranquil. For supercritical flow
speeds in which F exceeds 1, eq. (1.4) is of hyperbolic type, which characterizes shooting
flow.

We can prescribe flow geometry for this problem by means analogous to the simpler
example of water flowing from a faucet. In this case the potential function can be con-
sidered as a map from the flow domain to a target manifold. In order for the map to
have non-trivial geometry, we must assume that the potential function u is multi-valued.
Its components can be imagined as local coordinates on the target manifold. However,
unlike the usual representations of the flow potential in the complex plane (e.g., Sec. 1.6
of [8]), our mappings are defined over the real field. A geometric variational problem for
this model will be formulated in the next section. Note that multi-valued potentials arise
naturally on flow domains having non-trivial topology.

Conjectures on the observable effects of geometric constraints on the flow of shallow
water go back at least 400 years. Geometric arguments, to one degree or another, have
been applied to explain tidal bores on the English rivers Severn and Trent, the French
river Seine near Caudebec-en-Caux, and the Chinese river Tsien-Tang, as well non-tidal
anomalies such as those involving the Agulhas Current. See [14] for a review. As our
last physical example, we recall a model for those effects which has particularly simple
geometry; the model is given in greater detail in [20].

Consider a steady current flowing in the positive-x direction. Suppose that an incline
of magnitude δ occurring between the points x0 and x1 of an otherwise horizontal channel
floor produces a surface elevation of height ε at x = x1. Suppose that x0 < x1, that the
velocity of the flow to the left of x0 is v1 and that the velocity of the flow to the right
of x1 is ṽ1. An inviscid flow is a conservative system. Equating the kinetic and potential
energies of the flow for an arbitrary surface particle of mass m, we have

mv2
1

2
− mṽ1

2

2
= mgε. (1.5)

Write the continuity equation for this one-dimensional system in the form

(H + δ) v1 = (H + ε) ṽ1. (1.6)

Equations (1.5) and (1.6) can be combined into the single expression

(
H2 + 2Hε+ ε2

)
2gε = v2

1 (2H + ε+ δ) (ε− δ) .
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Approximating this expression to first order in ε and δ, we obtain

ε =
δ

1 − gH/v2
1

=
δ

1 − (c/v1)
2 .

Again we find that the character of the flow is determined by whether the Froude number
F exceeds, equals, or is exceeded by the number 1, where in this case

√
Q = |v1| . The

blow-up singularity that develops as F tends to 1 is avoided by hypothesis, as ε is assumed
to be small. In the case of tranquil flow, a positive elevation |ε| occurs when δ is exceeded
by zero and a negative elevation − |ε| occurs when δ exceeds zero. The opposite relations
hold for shooting flow. Of course the effects of turbulence are ignored.

2 A geometric variational problem

Equation (1.4) can be derived by a variational principle from an energy functional having
the form

Eρ (u; Σ,Rn) =

∫

Σ

∫ Q

0
ρ(s)dsdΣ, (2.1)

where Σ is a surface and ρ(Q) = c2. In generalizing this problem we consider an energy
functional of the form

Eρ (u;M,N) =

∫

M

∫ Q(du)

0
ρ (s) dsdM, (2.2)

where M is a Riemannian manifold of dimension n; N is a Riemannian manifold of di-
mension m; u : M → N is a bounded map;

Q (du) = 〈du, du〉|T ∗M⊗u−1TN ; (2.3)

ρ : R
+ ∪ {0} → R

+ is a C1,α function of Q satisfying the differential inequality

0 <

d
dQ

[
Qρ2(Q)

]

ρ (Q)
<∞ (2.4)

for Q ∈ [0, Qcrit); Qcrit is the square of the sonic flow speed. Inequality (2.4) is a condition
for tranquil channel flow.

We are interested in maps u which are stationary with respect to Eρ (u;M,N) in the
sense that

δE =
d

dt
E(ut;M,N)|t=0 = 0, (2.5)

where ut : M × (−ǫ < t < ǫ) → N, u0 = u, is a smooth, compactly supported one-
parameter family of variations (to be further specified below).
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The variational equations of Eρ (u;M,N) are satisfied by maps which are extremal
within a competing homotopy class of finite-energy maps from M to N. However, there
are solutions of (2.5) which are not extremal with respect to any class of maps.

Condition (2.4) is a condition for ellipticity of the variational equation for E,

trace∇cov (ρ(Q)du) = 0, (2.6)

where ∇cov denotes the covariant derivative in the bundle T ∗M ⊗ u−1TN. Note that this
equation introduces geometry into both the domain and range of eq. (1.4).

As an alternative to the hydrodynamic interpretation, the manifold N may be chosen
to represent a geometric constraint placed on the flow potential of a steady, irrotational,
polytropic, perfect, compressible fluid, which is adiabatic and isentropic and for which the
closed 1-form du ∈ Γ (T ∗M) is dual to the flow velocity. In that case we choose

ρ (Q) =

(
1 − γ − 1

2
Q

)1/(γ−1)

, (2.7)

where γ > 1 is the adiabatic constant of the medium [3]. Those choices transform (2.4)
into a condition for subsonic compressible flow of mass density ρ. The sonic transition
as Q tends to Qcrit is a gas-dynamic analogy for the change in the aspect of tap water
from clear to white at a sufficiently high velocity or for the transition from tranquil to
shooting channel flow in hydraulics. We recover harmonic maps as the incompressible
limit ρ(Q) ≡ 1.

Note that two distinct terms are both referred to as density in the mathematical/fluid
dynamics literature. The physical, or mass density of the flow is ρ(Q), but the density of
the variational integral Eρ is given by

e(u) =

∫ Q

0
ρ(s)ds.

In particular, the physical density given by (2.7) is a decreasing function of Q, whereas
the corresponding variational density is an increasing function of Q provided Q < 2/(γ −
1). The variational density e(u) corresponding to the physical density (2.7) vanishes (or
cavitates) at the flow speed Q = 0, but the physical density itself does not. The physical
density (2.7) cavitates at the flow speed Q = 2/(γ − 1), but the variational density does
not.

Although in realistic physical contexts the ratio γ of specific heats must be taken to
exceed 1, many of the analytic properties of formula (2.7) extend to the limiting case in
which γ tends to unity. In this limiting case the variational density is given by the function

1

2
e(u) = 1 − exp [−Q/2] .

(We can easily see this by writing y = log ρ and applying L’Hôpital’s rule to (2.7).) Regu-
larity arguments for weak subsonic solutions of (2.5) presented for the unconstrained case
in, e.g., [17] can be extended to the limiting value of γ by the Arzelá-Ascoli Theorem. One
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thus obtains the existence of continuous subsonic solutions in that limit by semicontinuity,
using the convexity of the limiting energy on the subsonic range (c.f. Proposition 1 of
[10]). Some comments on the geometry of the limiting case are given in Sec. 2.1 of [11].

Reference [12] reviews the isometric embedding of the target manifold for critical points
of (2.2), (2.3) into a higher-dimensional Euclidean space R

k and the use of nearest-point
projection to obtain a form of the geometric constraint which is convenient for variational
analysis in a Sobolev space. This is a familiar trick in the theory of harmonic maps [16].
We obtain variations of the form ut = πN ◦ (u+ tψ) , where ψ is a smooth map from
M into R

k and πN is the nearest-point projection, assigning to every y in a Euclidean
neighborhood of N the point on N that minimizes the distance to y. The embedding of
the flow geometry in Euclidean space does not necessarily embed the corresponding physics
in an ambient Euclidean space. To illustrate the distinction, compare water poured over
a small sphere on the surface of Earth with water flowing on the surface of a spherical
planet. In the former case we would take the gravitational acceleration vector to point in
the vertical direction of the Euclidean coordinate system in which the sphere sits; in the
latter case we would take the gravitational acceleration to point in the radial direction of
the sphere itself. In the former case the gravitational potential comes from the Euclidean
space in which the sphere is embedded, whereas in the latter case the intrinsic geometry
of the surface affects the gravitational potential.

A brief review of the literature relevant to eq. (2.6) − in particular, its relation to the
nonlinear Hodge theory introduced in [18] − is given in Sec. 1 of [12]. To those remarks
we add that the extension of geometric variational problems for the Dirichlet energy to
more general classes of energies was already outlined in [6], with a suggested application
of the harmonic map energy to the theory of elasticity and that, whereas nonlinear Hodge
theory generally considers the elliptic case of the variational equations, eq. (2.6) will be
allowed to change from elliptic to hyperbolic type as Qcrit is exceeded. While the present
letter addresses the case of irrotational flow, it is possible that similar considerations might
apply to flows with vorticity; see, for example, the recent paper [5].

3 Conditions for trivial flow

We will say that a flow is trivial if its flow potential u is a constant function. Equivalently,
the velocity field of a trivial flow associates the zero vector to every point of the flow
domain.

We expect that a relative minimum for a smooth function of a single variable will
occur at a point for which the second derivative is non-negative. The analogue of the
second derivative for variational integrals is the second variation. Let us,t : M → N,
−ǫ < s, T < ǫ, be a compactly supported two-parameter variation such that u0,0 = u.
Define

V =
∂us,t

∂t
|s,t=0

and

W =
∂us,t

∂s
|s,t=0.
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The second variation is the quantity

I(V,W ) =
∂2

∂s∂t
E(us,t)|s,t=0.

A map is said to be stable if I(V, V ) is non-negative for any compactly supported vector
field V along u.

This definition implies the triviality of a certain class of flows:

Theorem 1. Let the domain of a shallow, steady, irrotational hydrodynamic flow satisfy-
ing the hydrostatic law be represented by a compact Riemannian manifold M and let the
flow potential u take M into the m-sphere S

m for m ≥ 2. Let the flow speed Q be given
by (2.3) for 0 ≤ Q < 2. Then any stable flow potential takes every point of M to a single
point on S

m.

Proof. We impose a geometric constraint on the variational problem (1.4), (2.1), declaring
that the image of the flow potential umust lie on a smooth, compact, Riemannian manifold
N, where N is a submanifold of R

k for some sufficiently large number k. This transforms
(2.1) into (2.2) and the Euler-Lagrange equation (1.4) into the equation

δg

[(
1 − Q

2

)
du

]
=

(
1 − Q

2

)
A (du, du) , (3.1)

where δg is the formal adjoint of the exterior derivative; g is the Riemannian metric on
M ; Q satisfies (2.3); A is the second fundamental form of N, where N is expressed as
a submanifold of some higher-dimensional Euclidean space as noted earlier. The system
(3.1) is identical to the variational equations for Eρ (u;M,N) with ρ given by (2.7) in the
special case C = n = γ = 2, where C is the constant of Bernoulli’s formula.

Computing the second variation of Eρ (u;M,Sm) , we obtain

I(V, V ) =

∫

M
|du|2

{
|du|2 d2

dQ2

∫ Q

0
ρ(s) ds + (2 −m)

d

dQ

∫ Q

0
ρ(s) ds

}
dM. (3.2)

Because ρ(s) = 1 − s/2, the right-hand side of (3.2) is negative under the hypotheses of
the theorem unless u is trivial almost everywhere. But u is continuous because |du| is
bounded, so the conclusion holds everywhere on M. This completes the proof. �

Remarks. i) The conditions on the domain M will only correspond locally to the
physical model of Sec. 1.2.

ii) Computing (2.4) for ρ given by (2.7) with C = n = γ = 2, we find that Theorem 1
holds for flow speeds that extend well into the range of shooting flow. Moreover, solving
Q = c2 = 1 − Q/2 for Q, we verify that the Froude number attains the value 1 at
Q = 2/3 = 2/(γ + 1) = Qcrit.

iii) A map u : M → N is said to be F -harmonic if it is a critical point of the F -energy
functional
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EF (u;M,N) =

∫

M
F

( |du|2
2

)
dM,

where F : [0,∞) → [0,∞) is a strictly increasing, twice-differentiable function of its
argument. F -harmonic maps were introduced in [1] as a unification of p-harmonic and
exponentially harmonic maps. A version of inequality (3.2) holds for any map which is
F -harmonic; c.f. Theorem 7.1 of [1], taking

F

( |du|2
2

)
= e(u) =

∫ 2(|du|2/2)

0
ρ(s) ds.

In fact, the extension of Theorem 1 to a larger class of target manifolds is easily obtained
by adapting the ideas of [2]. However, Theorem 1 is false for the best known special cases
of F -harmonic maps: p-harmonic, exponentially harmonic, and α-harmonic maps; c.f. the
remark following Corollary 7.2 of [1]. Moreover, critical points of (2.2), (2.3) will not
be F -harmonic whenever the variational density e(u) is a decreasing function of Q. That
possibility is allowed by condition (2.4) and by our initial definition of ρ.

iv) Theorem 1 recalls the famous statement that the wind can never be blowing simul-
taneously in the same direction everywhere on Earth. But of course the two assertions are
mathematically different and have completely different proofs. They each result from the
combination of a harsh global hypothesis − maximal symmetry in the range of a map −
with the global imposition of what would be a reasonable local hypothesis − in one case,
continuity and in the other, stability.

v) Adding to the mass density ρ(s) a generalized “surface tension” of the form

τ(s) = µ (1 + s)−1/2 ,

where µ is a positive constant, does not affect the result of Theorem 1. But this extension
is dependent on the sign of µ.

vi) Because the proof of Theorem 1 relies on applying a compressible model to shallow
hydrodynamic flow, it can be viewed as a corollary of a theorem about compressible flow:

Theorem 2. Let the compact Riemannian manifold M be the domain of a steady, poly-
tropic, irrotational, perfect flow and let the flow potential u take M into the m-sphere S

m

for m ≥ 2. Let the flow speed Q be given by (2.3) for 0 < Q < 2/(γ − 1), where γ is the
adiabatic constant of the fluid. Then any stable flow takes every point of M into a single
point of S

m.

Proof. Follow the proof of Theorem 1 based on eq. (1.4) (c.f. (2.14) of [3]), defining ρ as
in (2.7) for any γ > 1 and any n ≥ 2. �

The correspondence between gas dynamics and shallow hydrodynamic flow, illustrated
in (1.4) and leading to the similarity of Theorems 1 and 2, was apparently first reported
in [15] for time-dependent compressible flow in 1 space dimension. Elliptic-hyperbolic
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systems similar − or dual − to (1.3) with a side condition of vanishing curl arise in
projective geometry and optics, as well as in hydrodynamics and gas dynamics; c.f. [13].

This discussion provides a context for reinterpreting an earlier result. The variational
arguments in [9] were given in terms of a function w (|du|p) . That function can be inter-
preted as the variational density of the map u, taking p = 2 and

w(t) =

∫ t

0
ρ(s)ds.

Thus the results of [9] can be applied to hydrodynamic and compressible flow, which gives
another set of conditions for triviality of the flow potential.

Acknowledgments. I am grateful to an anonymous referee for comments on flow with
vorticity.

References

[1] Ara M, Geometry of F -harmonic maps, Kodai Math. J. 22 (1999), 243–263.

[2] Ara M, Stability of F -harmonic maps into pinched manifolds, Hiroshima Math. J. 31(2000),
171–181.

[3] Bers L, Mathematical Aspects of Transonic Gas Dynamics, Wiley, New York, 1958.

[4] Constantin A and Strauss W, Exact steady periodic water waves with vorticity, Comm.
Pure Appl. Math. 57 (2004), 481–527.

[5] Constantin A, Sattinger D and Strauss W, Variational formulations of steady water
waves with vorticity, J. Fluid Mech. 548 (2006), 151–163.

[6] Eells J and Sampson J H, Harmonic mappings of Riemannian manifolds, Amer. J. Math.
86 (1964), 109–160.

[7] Johnson R S, A Modern Introduction to the Mathematical Theory of Water Waves, Cam-
bridge, 1997.

[8] Meyer R E, Introduction to Mathematical Fluid Dynamics, Dover, New York, 1971.

[9] Otway T H, An asymptotic condition for variational points of nonquadratic functionals,
Annales Fac. Sci. Toulouse 11, No. 2 (1990), 187–195.

[10] Otway T H, Nonlinear Hodge maps, J. Math. Phys. 41, No. 8 (2000), 5745–5766.

[11] Otway T H, Hodge equations with change of type, Annali di Matematica, pura ed applicata
181 (2002), 437–452.

[12] Otway T H, Maps and fields with compressible density, Rendiconti del Seminario Matem-
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