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A note on Bernoulli polynomials and solitons
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Abstract

The dependence on time of the moments of the one-soliton KdV solutions is given by
Bernoulli polynomials. Namely, we prove the formula

∫

R

xn sech2(x − t) dx = 2 πn (−i)n Bn(
1

2
+

t

π
i) ,

expressing the moments of the one-soliton function sech2(x−t) in terms of the Bernoulli
polynomials Bn(x). We also provide an alternative short proof to the Grosset-Veselov
formula connecting the one-soliton to the Bernoulli numbers

∫

R

(

Dm−1sech2x
)2

dx = (−1)m−1 22m+1 B2m ,

(D = d/dx) published recently in this journal.

1 Introduction

The Bernoulli polynomials Bn(t) are defined by the generating function

z ezt

ez − 1
=

∞
∑

n=0

Bn(t)
zn

n!
, (1.1)

(|z| < 2π) and the Bernoulli numbers are their values at zero, Bn = Bn(0). In two recent
papers Fairlie and Veselov [2] and Grosset and Veselov [4] revealed an interesting connec-
tion between Bernoulli polynomials and the theory of the Korteweg-deVries equation

ut − 6uux + uxxx = 0 , (1.2)

and in particular, with its remarkable single soliton solution [5]

u(x, t) = −2 sech2(x − 4 t) . (1.3)

In their letter [4] Grosset and Veselov established the formula

B2m =
(−1)m−1

22m+1

∫

R

(

Dm−1sech2x
)2

dx , (1.4)

which connects the Bernoulli numbers and the derivatives of the single soliton. In section
3 we give a short proof of this formula based on Fourier theory. First of all, we point out
another interesting connection between the single soliton and the Bernoulli polynomials.

Copyright c© 2007 by K N Boyadzhiev



A note on Bernoulli polynomials and solitons 175

2 Main result

Writing sech(x) = 1/ cosh(x), we have the following proposition.

Proposition 1. For all t and n = 0, 1, 2, . . . ,

∫

R

xn

cosh2(x − t)
dx = 2 (−i π)n Bn(

1

2
+

t

π
i) . (2.1)

Remark 1. The Bernoulli polynomials have the addition property [7, p. 4]

Bn(x + y) =

n
∑

k=0

(

n

k

)

Bk(x) yn−k (2.2)

and also the property

Bk(
1

2
) = (21−k − 1)Bk . (2.3)

Therefore, we can put (2.1) in the form

∫

R

xn

cosh2(x − t)
dx = 2

n
∑

k=0

(

n

k

)

(−π i)k (21−k − 1) tn−k Bk , (2.4)

where on the right hand side all terms with odd indices are zeros, as Bk = 0 when k > 1
is odd, and for k = 1 the factor 21−k − 1 is zero.

Remark 2. If

f(x) =
m

∑

n=0

an xn (2.5)

is a polynomial, we can multiply equation (2.1) by an and sum for n = 0, 1, . . . ,m to
obtain the superposition formula

∫

R

f(x)

cosh2(x − t)
dx = 2

m
∑

n=0

an (−i π)n Bn(
1

2
+

t

π
i) . (2.6)

Proof of the Proposition. We use the Fourier transform formula [3, 3.982.1, p. 505] or
[6, 1.7.2, p. 33]

∫

R

eixy

cosh2 x
dx =

π y

sinh π y
2

, (2.7)

and change the variable x → x − t to obtain

∫

R

eixy

cosh2(x − t)
dx =

π y eity

sinh π y
2

=
2π y eπy( 1

2
+

i t

π
)

eπy − 1
. (2.8)
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This is explicitly the Fourier transform of the single soliton solution. Next, we expand the
right hand side of (2.8) in a power series on the powers of π y for |y| < 2. In view of (1.1)
this provides the representation

∫

R

eixy

cosh2(x − t)
dx = 2

∞
∑

n=0

Bn(
1

2
+

t

π
i)

πn yn

n!
. (2.9)

Expanding now in power series the exponential function inside the integral, changing the
order of summation and integration, and comparing the coefficients for yn we arrive at
(2.1). The proof is complete. �

3 The Grosset-Veselov Formula

We show here that Grosset-Veselov’s formula (1.4) is equivalent to the representation

B2m =
(−1)m−1

π2 m

+∞
∫

0

x2m

sinh2 x
dx , (3.1)

via Fourier transform theory. Formula (3.1) is known and can be found in [1, 1.13 (27)] or
[3, 3.527.2, p. 352]. To understand the nature of (3.1) better, we give a short derivation
in the Appendix.

Proof. We use the notation

F (t) =

∫

R

f(x) e−2πixt dx (3.2)

for the Fourier transform and write (2.7) as
∫

R

e−2πixt

cosh2 x
dx =

2π2 t

sinh(π2 t)
. (3.3)

According to the derivative property we find
∫

R

(

Dm−1 1

cosh2 x

)

e−2πixt dx = (2π i t)m−1 2π2 t

sinh(π2 t)
=

−π i (2π i t)m

sinh(π2 t)
. (3.4)

Applying now Plancherel’s theorem, i.e.
∫

R

|F (t)|2 dt =

∫

R

|f(x)|2 dx , (3.5)

we obtain

∫

R

(

Dm−1 1

cosh2 x

)2

dx =

∫

R

∣

∣

∣

π i (2π i t)m

sinh(π2 t)

∣

∣

∣

2

dt = 22m+1 π2m+2

+∞
∫

0

t2m

sinh2(π2 t)
dt . (3.6)

Therefore, according to (3.1),

∫

R

(

Dm−1 1

cosh2 x

)2

dx = (−1)m−1 22m+1 B2m , (3.7)

which is Grosset-Veselov’s formula. �
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We want to point out that this proof was independently suggested by Professor A.
Staruszkiewicz (see Note added in Proofs at the end of [4]). For the convenience of the
reader it is appropriate to have it recorded here together with the derivation of (3.1) below.

Acknowledgments. The author is grateful to the referee for his very helpful advice.

Appendix

A

We deduce (3.1) from the well-known Fourier sine transform formula [3, 3.911.2, p. 481]
or [6, 2.3.12, p. 125]

+∞
∫

0

sin(t y)

et − 1
dt =

π

2
coth(π y) −

1

2 y
. (A.1)

After integration by parts the left hand side takes the form

1

y

+∞
∫

0

(1 − cos(t y)) et

(et − 1)2
dt =

1

2 y

+∞
∫

0

1 − cos(2x y)

sinh2 x
dx (setting t = 2x) . (A.2)

Equation (A.1) can now be written as

+∞
∫

0

1 − cos(2x y)

sinh2 x
dx = π y − 1 +

2π y

e2πy − 1
. (A.3)

Expanding both sides on powers of y by using the two series

1 − cos(2x y) =

+∞
∑

n=1

(−1)n−1 22n x2n y2n

(2n)!
; (A.4)

π y − 1 +
2π y

e2πy − 1
=

+∞
∑

n=1

B2n

(2π)2n y2n

(2n)!
, (A.5)

and comparing coefficients we arrive at (3.1).
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