A note on Bernoulli polynomials and solitons

Khristo N BOYADZHIEV

Department of Mathematics, Ohio Northern University, Ada, Ohio 45810, USA
E-mail: k-boyadzhiev@onu.edu
Received October 27, 2006; Accepted in Revised Form December 17, 2006

Abstract

The dependence on time of the moments of the one-soliton KdV solutions is given by Bernoulli polynomials. Namely, we prove the formula $$
\int_{\mathbb{R}} x^{n} \operatorname{sech}^{2}(x-t) d x=2 \pi^{n}(-i)^{n} B_{n}\left(\frac{1}{2}+\frac{t}{\pi} i\right)
$$ expressing the moments of the one-soliton function $\operatorname{sech}^{2}(x-t)$ in terms of the Bernoulli polynomials $B_{n}(x)$. We also provide an alternative short proof to the Grosset-Veselov formula connecting the one-soliton to the Bernoulli numbers $$
\int_{\mathbb{R}}\left(D^{m-1} \operatorname{sech}^{2} x\right)^{2} d x=(-1)^{m-1} 2^{2 m+1} B_{2 m}
$$ ($D=d / d x$) published recently in this journal.

1 Introduction

The Bernoulli polynomials $B_{n}(t)$ are defined by the generating function

$$
\begin{equation*}
\frac{z e^{z t}}{e^{z}-1}=\sum_{n=0}^{\infty} B_{n}(t) \frac{z^{n}}{n!} \tag{1.1}
\end{equation*}
$$

$(|z|<2 \pi)$ and the Bernoulli numbers are their values at zero, $B_{n}=B_{n}(0)$. In two recent papers Fairlie and Veselov [2] and Grosset and Veselov [4] revealed an interesting connection between Bernoulli polynomials and the theory of the Korteweg-deVries equation

$$
\begin{equation*}
u_{t}-6 u u_{x}+u_{x x x}=0, \tag{1.2}
\end{equation*}
$$

and in particular, with its remarkable single soliton solution [5]

$$
\begin{equation*}
u(x, t)=-2 \operatorname{sech}^{2}(x-4 t) \tag{1.3}
\end{equation*}
$$

In their letter [4] Grosset and Veselov established the formula

$$
\begin{equation*}
B_{2 m}=\frac{(-1)^{m-1}}{2^{2 m+1}} \int_{\mathbb{R}}\left(D^{m-1} \operatorname{sech}^{2} x\right)^{2} d x \tag{1.4}
\end{equation*}
$$

which connects the Bernoulli numbers and the derivatives of the single soliton. In section 3 we give a short proof of this formula based on Fourier theory. First of all, we point out another interesting connection between the single soliton and the Bernoulli polynomials.

2 Main result

Writing $\operatorname{sech}(x)=1 / \cosh (x)$, we have the following proposition.
Proposition 1. For all t and $n=0,1,2, \ldots$,

$$
\begin{equation*}
\int_{\mathbb{R}} \frac{x^{n}}{\cosh ^{2}(x-t)} d x=2(-i \pi)^{n} B_{n}\left(\frac{1}{2}+\frac{t}{\pi} i\right) . \tag{2.1}
\end{equation*}
$$

Remark 1. The Bernoulli polynomials have the addition property [7, p. 4]

$$
\begin{equation*}
B_{n}(x+y)=\sum_{k=0}^{n}\binom{n}{k} B_{k}(x) y^{n-k} \tag{2.2}
\end{equation*}
$$

and also the property

$$
\begin{equation*}
B_{k}\left(\frac{1}{2}\right)=\left(2^{1-k}-1\right) B_{k} \tag{2.3}
\end{equation*}
$$

Therefore, we can put (2.1) in the form

$$
\begin{equation*}
\int_{\mathbb{R}} \frac{x^{n}}{\cosh ^{2}(x-t)} d x=2 \sum_{k=0}^{n}\binom{n}{k}(-\pi i)^{k}\left(2^{1-k}-1\right) t^{n-k} B_{k} \tag{2.4}
\end{equation*}
$$

where on the right hand side all terms with odd indices are zeros, as $B_{k}=0$ when $k>1$ is odd, and for $k=1$ the factor $2^{1-k}-1$ is zero.

Remark 2. If

$$
\begin{equation*}
f(x)=\sum_{n=0}^{m} a_{n} x^{n} \tag{2.5}
\end{equation*}
$$

is a polynomial, we can multiply equation (2.1) by a_{n} and sum for $n=0,1, \ldots, m$ to obtain the superposition formula

$$
\begin{equation*}
\int_{\mathbb{R}} \frac{f(x)}{\cosh ^{2}(x-t)} d x=2 \sum_{n=0}^{m} a_{n}(-i \pi)^{n} B_{n}\left(\frac{1}{2}+\frac{t}{\pi} i\right) \tag{2.6}
\end{equation*}
$$

Proof of the Proposition. We use the Fourier transform formula [3, 3.982.1, p. 505] or [6, 1.7.2, p. 33]

$$
\begin{equation*}
\int_{\mathbb{R}} \frac{e^{i x y}}{\cosh ^{2} x} d x=\frac{\pi y}{\sinh \frac{\pi y}{2}} \tag{2.7}
\end{equation*}
$$

and change the variable $x \rightarrow x-t$ to obtain

$$
\begin{equation*}
\int_{\mathbb{R}} \frac{e^{i x y}}{\cosh ^{2}(x-t)} d x=\frac{\pi y e^{i t y}}{\sinh \frac{\pi y}{2}}=\frac{2 \pi y e^{\pi y\left(\frac{1}{2}+\frac{i t}{\pi}\right)}}{e^{\pi y}-1} \tag{2.8}
\end{equation*}
$$

This is explicitly the Fourier transform of the single soliton solution. Next, we expand the right hand side of (2.8) in a power series on the powers of πy for $|y|<2$. In view of (1.1) this provides the representation

$$
\begin{equation*}
\int_{\mathbb{R}} \frac{e^{i x y}}{\cosh ^{2}(x-t)} d x=2 \sum_{n=0}^{\infty} B_{n}\left(\frac{1}{2}+\frac{t}{\pi} i\right) \frac{\pi^{n} y^{n}}{n!} \tag{2.9}
\end{equation*}
$$

Expanding now in power series the exponential function inside the integral, changing the order of summation and integration, and comparing the coefficients for y^{n} we arrive at (2.1). The proof is complete.

3 The Grosset-Veselov Formula

We show here that Grosset-Veselov's formula (1.4) is equivalent to the representation

$$
\begin{equation*}
B_{2 m}=\frac{(-1)^{m-1}}{\pi^{2 m}} \int_{0}^{+\infty} \frac{x^{2 m}}{\sinh ^{2} x} d x \tag{3.1}
\end{equation*}
$$

via Fourier transform theory. Formula (3.1) is known and can be found in $[1,1.13(27)]$ or [3, 3.527.2, p. 352]. To understand the nature of (3.1) better, we give a short derivation in the Appendix.

Proof. We use the notation

$$
\begin{equation*}
F(t)=\int_{\mathbb{R}} f(x) e^{-2 \pi i x t} d x \tag{3.2}
\end{equation*}
$$

for the Fourier transform and write (2.7) as

$$
\begin{equation*}
\int_{\mathbb{R}} \frac{e^{-2 \pi i x t}}{\cosh ^{2} x} d x=\frac{2 \pi^{2} t}{\sinh \left(\pi^{2} t\right)} \tag{3.3}
\end{equation*}
$$

According to the derivative property we find

$$
\begin{equation*}
\int_{\mathbb{R}}\left(D^{m-1} \frac{1}{\cosh ^{2} x}\right) e^{-2 \pi i x t} d x=(2 \pi i t)^{m-1} \frac{2 \pi^{2} t}{\sinh \left(\pi^{2} t\right)}=\frac{-\pi i(2 \pi i t)^{m}}{\sinh \left(\pi^{2} t\right)} \tag{3.4}
\end{equation*}
$$

Applying now Plancherel's theorem, i.e.

$$
\begin{equation*}
\int_{\mathbb{R}}|F(t)|^{2} d t=\int_{\mathbb{R}}|f(x)|^{2} d x \tag{3.5}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
\int_{\mathbb{R}}\left(D^{m-1} \frac{1}{\cosh ^{2} x}\right)^{2} d x=\int_{\mathbb{R}}\left|\frac{\pi i(2 \pi i t)^{m}}{\sinh \left(\pi^{2} t\right)}\right|^{2} d t=2^{2 m+1} \pi^{2 m+2} \int_{0}^{+\infty} \frac{t^{2 m}}{\sinh ^{2}\left(\pi^{2} t\right)} d t \tag{3.6}
\end{equation*}
$$

Therefore, according to (3.1),

$$
\begin{equation*}
\int_{\mathbb{R}}\left(D^{m-1} \frac{1}{\cosh ^{2} x}\right)^{2} d x=(-1)^{m-1} 2^{2 m+1} B_{2 m} \tag{3.7}
\end{equation*}
$$

which is Grosset-Veselov's formula.

We want to point out that this proof was independently suggested by Professor A. Staruszkiewicz (see Note added in Proofs at the end of [4]). For the convenience of the reader it is appropriate to have it recorded here together with the derivation of (3.1) below.

Acknowledgments. The author is grateful to the referee for his very helpful advice.

Appendix

A

We deduce (3.1) from the well-known Fourier sine transform formula [3, 3.911.2, p. 481] or [6, 2.3.12, p. 125]

$$
\begin{equation*}
\int_{0}^{+\infty} \frac{\sin (t y)}{e^{t}-1} d t=\frac{\pi}{2} \operatorname{coth}(\pi y)-\frac{1}{2 y} \tag{A.1}
\end{equation*}
$$

After integration by parts the left hand side takes the form

$$
\begin{equation*}
\frac{1}{y} \int_{0}^{+\infty} \frac{(1-\cos (t y)) e^{t}}{\left(e^{t}-1\right)^{2}} d t=\frac{1}{2 y} \int_{0}^{+\infty} \frac{1-\cos (2 x y)}{\sinh ^{2} x} d x \quad(\text { setting } \quad t=2 x) \tag{A.2}
\end{equation*}
$$

Equation (A.1) can now be written as

$$
\begin{equation*}
\int_{0}^{+\infty} \frac{1-\cos (2 x y)}{\sinh ^{2} x} d x=\pi y-1+\frac{2 \pi y}{e^{2 \pi y}-1} \tag{A.3}
\end{equation*}
$$

Expanding both sides on powers of y by using the two series

$$
\begin{align*}
& 1-\cos (2 x y)=\sum_{n=1}^{+\infty} \frac{(-1)^{n-1} 2^{2 n} x^{2 n} y^{2 n}}{(2 n)!} \tag{A.4}\\
& \pi y-1+\frac{2 \pi y}{e^{2 \pi y}-1}=\sum_{n=1}^{+\infty} B_{2 n} \frac{(2 \pi)^{2 n} y^{2 n}}{(2 n)!} \tag{A.5}
\end{align*}
$$

and comparing coefficients we arrive at (3.1).

References

[1] Erdélyi A (editor), Higher Transcendental Functions, vol. 1, McGraw-Hill, New York, 1955.
[2] Fairlie D B and Veselov A P, Faulhaber and Bernoulli polynomials and solitons, Physica D 152-153 (2001), 47-50.
[3] Gradshteyn I S and Ryzhik I M, Tables of Integrals, Series and Products, Academic Press, London, 1980.
[4] Grosset M-P and Veselov A P, Bernoulli polynomials and solitons, J. Nonlinear Math. Phys. 12 (4) (2005), 469-474.
[5] Lamb G L Jr, Elements of Soliton Theory, John Wiley, New York, 1980.
[6] Oberhettinger O, Tables of Fourier Transforms, Springer Verlag, Berlin, 1990.
[7] Temme N M, Special Functions, John Wiley, New York, 1996.

