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Abstract 

Human vision is a highly complex system 
that has evolved to enable interactions 
within and on our environment in an ex-
pedient and resource efficient way. Ap-
plying black box testing principles gives 
us insight to functional parameterizations 
within the brain. Neuroscience further 
helps us understand the localization of 
functions within the brain. By modeling 
these specializations we gain a taxonomy 
for interactions between focused and per-
sistent attention modes. Using this taxon-
omy we break down the interactions 
within evolutionary heuristic showing 
possibilities for granular hybrid behav-
iors. Finally we correlate this approach in 
a byplay between strategic and tactical 
concerns in military simulation.  

Keywords: vision, attention, artificial in-
telligence, evolution, satisficing, particle 
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1. Modeling human vision 

Human vision acts like an accessible 
real-time processing system with modes 
of operation that have evolved [1] by a 
process of natural selection over millions 
of years. The modes of operation such as 
perception and identification allow us to 
understand, interact with and react to our 
environment. 

 

Black box testing can help give us an 
understanding of the operating modes of 
a system without needing to know the 
detail of the implementation. Boundary 
testing helps us understand the acceptable 
ranges for inputs when correlated against 
outputs. Observation allows us to identify 
the operating modes. We can separately 
verify and validate these modes as though 
we were unit testing. 

 
By careful performance testing we can 

introspect the functional modes of the 
brain. For example, we could separately 
test the performance for vision being able 
to differentiate the apparent motion of 
dots against a field of noise [2]. We could 
then separately test for the performance 
for the same person being able to 
similarly differentiate the apparent 
movement of a simulated sound. Then we 
can similarly test for both at the same 
time where the movement is 
synchronized between visual and audio 
prompts. If there were few shared 
components then the expected 
performance of the combined test would 
most likely be in the range of the first two 
tests. However if responses were quicker 
in the combined test then this may 
indicate a shared component that was 
correlating the signals into an aggregated 
result improving efficiency. In this case 
the signals and their apparent motion may 
be codified into a taxonomy that is shared 
between the visual and audio modes, and 
it is the combined inputs from the two 
modes that is leading to a faster response. 
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Therefore these approaches 

approximate black box testing and suit 
our need to parameterize visual inputs as 
we rarely have reason to open up a 
healthy brain. We are able to perform 
imaging and detect electrical impulses 
within the brain [3]. However there can 
be limitations with these approaches. 
Some methods lack clear resolution. Note 
too that the better we learn a task, we 
need less effort to perform it. This 
impacts methods that can measure blood 
flow within the brain, as we are less 
likely to resolve areas that have learnt a 
task well. 

 
Much of the information we have is 

taken from patients who present with 
localized damage then re-present with 
reduced function. In this way we can 
extrapolate the same localization of 
function in a healthy brain. For example 
there are remarkable differences between 
the abilities of patients with right or left 
hemisphere damage to recall faces, or 
even recognize themselves [4][5].  

 
Our aim is to produce a picture of 

shared subsystems, which have evolved 
in response to challenges and tasks in our 
environments. The possibilities for shared 
taxonomies, boundary interfaces and 
holistic approaches are intriguing. We 
will show that these behaviors and 
taxonomies are already significant for 
evolutionary software and related 
systems.  

2. Anatomical Visual Pathways 

Within each eye we find the macula at 
the center has the highest concentration 
of color sensing cones, while further from 
the center we find more rods, which are 
balanced towards black/white and motion 
detection [6][7]. So effective is the by-
play between the detailed solution in the 

macula, and awareness in the rest of the 
eye, that the macula may only occupy 10 
degrees of the curvature [8]. Below our 
level of awareness we maintain a detailed 
focus in three dimensional space, while 
our awareness notifies us of external 
changes so that we can adapt our focus to 
a new item of interest if needed [9]. 

 

 
Fig. 1: Vision Processing Path 

 
The Lateral Geniculate Nucleus (LGN) 

takes signaling from the eye, differentiat-
ing the left field of vision from both eyes 
towards the right hemisphere and the 
right field towards the left hemisphere 
[10]. In general terms the LGN continues 
the allocation of resources seen in the 
eyes. Of particular interest we find that 
there are differentiated cells in the LGN 
matching the breakdown of cones (EA) 
and rods (SB) in the eye [9][11]. Each 
LGN is broken down into layers [12]. 
The first two layers interface with the 
rods, one per eye. These are biased to-
wards movement, depth perception and 
small variations in brightness. The next 
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four layers are also split between the 
cones in each eye. These are biased to-
wards color, form and fine detail. 

 
The Visual Cortex (VC) sits in one of 

the oldest areas of the brain, at the back 
near the brain stem [13][14]. Signals ar-
rive at the V1 area, which are then or-
chestrated with neighboring dorsal and 
ventral regions. The ventral region assists 
with recognizing objects and surround-
ings. The dorsal region assists with the 
location of objects, having a role in feed-
back loops for the body interacting with 
its surroundings in three-dimensional 
space. Once again, we find discrete re-
sources are differentiated between cen-
tral/peripheral, and even upper and lower 
fields. 

3. Vertical symmetry 

When we look at the components along 
the visual pathways we find functionali-
ties that are consistently replicated for 
each hemisphere and each eye along a 
vertical symmetry. In general terms this 
allows us to separately test a hemisphere 
by signaling into the visual field managed 
by the corresponding eye. As discussed, 
the signaling from both eyes is reconciled 
in the LGN into left and right fields of 
vision. If we hope to isolate the hemi-
sphere we need to both obscure the other 
eye and ensure that the visual queue does 
not represent in both fields. This is 
achieved by asking the subject to watch a 
focal point while the item of interest is 
shown off to the side being tested. 

 
The greater subset of functionality is 

duplicated on both sides of the visual 
pathway as we would expect, given the 
life experiences of people who have 
completely lost vision in one eye or the 
other. For example elementary abilities to 
detect motion in two dimensions relative 
to the subject, and the ability to detect 

changes in light intensity, have been 
demonstrated in the symmetrical visual 
pathways of fruit flies [15]. Different 
neural pathways fire when movement is 
perceived in the up, down, left or right 
directions. These studies also show dif-
ferentiation between detecting edges via 
intensity changes and detecting move-
ment of the edges. For expediency we 
would not expect to require a correlation 
between the hemispheres at this stage of 
processing, and so these functions are 
completely duplicated on each side. 

 
This duplication of function continues 

to the visual cortex where the ability to 
recognize objects, and the ability to place 
them in our visual field represent equally 
on both sides. For example if we are driv-
ing a car our attention is largely forward 
and outside the car. However each hand 
is largely interacting with our environ-
ment in separate visual fields. Each cor-
tex is assisting the actions within its visu-
al field as the motion of a hand to a sur-
face or object occurs. 

4. Functional modeling 

4.1. Qualitative vs quantitative 

The usual experience of a person is that 
they have an awareness of their environ-
ment or the room that they are sitting in. 
However we know that only a small frac-
tion of the surface of the back of the eye 
has the receptors capable of high defini-
tion or strong color recognition. The rec-
onciliation of this impoverished view is 
achieved through orchestrated efforts to 
approximate detail and passively shift fo-
cus. Your visual system will focus on an 
object of attention while passive systems 
watch your surroundings for signs of 
change. As well when we are not focus-
ing on a task our gaze passively moves 
about sampling our environment such that 
the remembered detail of an object is still 

40



available once it moves into our peripher-
al vision or out of sight. 

 
These paired ideas that we can see 

within the eye and represented back into 
our perception are very like qualitative 
and quantitative modes. When we hold 
focus on an object we are attempting to 
quantify it as accurately as possible. We 
register the relative movement and inten-
sity of objects in our peripheral view, 
supplementing these with memories of 
detail acquired earlier. We can argue that 
we have a qualitative view on these ob-
jects before they become of interest 
again. 

 
The optic nerve head is a good exam-

ple of how the visual system compensates 
for lack of fine detail [16]. The area 
where the optic nerve connects to the 
back of the eye has no photoreceptor 
cones or rods, and yet we hardly ever no-
tice. Our eyes seem constantly in motion 
sampling our environment and so the re-
gion obscured by the optic nerve has re-
cently been seen. With an absolute lack 
of current detail a qualitative impression 
persists such that most people are not 
aware there is any deficiency. 

 
4.2. Handedness 

There are differences in the mix of fo-
cused and peripheral processing given the 
handedness of an individual [3]. A right-
handed person spends more time per-
forming tool manipulation with their right 
hand, which implies that the left hemi-
sphere spends more time doing granular 
and detailed tasks. The right hemisphere 
therefore complements this activity by 
maintaining more of a perceptual view of 
the environment. When not performing a 
task, both hemispheres participate to help 
create the awareness of the environment 
and so both hemispheres have qualitative 
perception modes. However the right eye 
and left hemisphere are preferred for de-

tailed work, and so solution mode quanti-
tative processing is preferentially per-
formed on that side. These statements 
lead us to a view that quantitative solu-
tion based processing is a mode that 
largely appears on in the left hemisphere 
above qualitative processing modes in 
both hemispheres. 

 
Split-brain theory correlates this idea 

by attributing specific mono-procedural 
solution modes to the left hemisphere [3]. 
Similarly the right hemisphere is better at 
qualitative broadly aware correlated 
tasks. The left hemisphere concentrates 
on tasks while the right hemisphere is 
more aware of other tasks and the passage 
of time.  

5. Functional aspects 

5.1. Satisficing vs. optimizing 

What we have appearing therefore is a 
satisficing behavior [17], where our pas-
sive awareness is maintained until a 
threshold is reached and we then apply 
focused attention on the subject. 'Satisfic-
ing' is the idea of combining the concepts 
of satisfying and sufficing rather than op-
timality. A person will often need to 
make choices on partial information, 
which is termed a 'bounded reality' 
[18][19]. People intentionally make sub-
optimal choices, which they have ration-
alized to themselves as preferential. As 
flawed optimizers people are sometimes 
seen to choose an option from a range of 
solutions, which meet a fitness threshold. 
A satisficing behavior is a way of reach-
ing a good enough solution without 
spending the resources to find the best 
possible. Satisficing behaviors suit quali-
tative processing mechanisms. 

 
The quantitative solution processing of 

the left hemisphere is working for an op-
timal level of accuracy for the task at 
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hand. When a person moves to improve 
their view of a task or their surroundings 
they are repurposing their focus, and the 
focus can almost entirely be devoted to a 
task with the preferred hand. 

 
However, optimality comes with a cost 

and it is the perception of the environ-
ment and the passing of time that some-
times lead us to change an approach to a 
task or stop it altogether. Therefore we 
balance the optimizing behaviors of the 
left hemisphere with the awareness and 
satisficing behaviors of the right.  

 
There are indications that our ability to 

differentiate these abilities has grown as 
the ratio of the size of the corpus callo-
sum to the rest of the brain has fallen. 
Our abilities to concentrate and devote 
ourselves to left hemisphere processing 
may also be related to neurons in the cor-
pus callosum which inhibit rather than 
enable signaling from the right hemi-
sphere to the left [20].  

 
5.2. Heuristics 

We can differentiate these functions if 
we look at the byplay within an evolu-
tionary algorithm (EA). EAs are artificial 
intelligence (AI) heuristics with a life-
cycle whereby they apply random muta-
tions (RMs) to a population of candidate 
solutions. They then use a fitness function 
(FF) to assess which solutions are more 
successful, and they attempt to share 
these attributes with the weaker candi-
dates [21][22][23]. 

 
Evolutionary algorithms are popular 

for producing good solutions to large and 
difficult problems such as transport net-
works, parameter optimization and opera-
tions research. Given a definition of a 
problem and related constraints the algo-
rithms improve a population of solutions, 
usually until incremental improvement 
slows. The algorithms achieve this goal 

without needing to check all possible so-
lution combinations. 

 
With vision, when we move the focus 

of our attention away from an object we 
retain a memory of it and may hold it in 
our peripheral vision in case something 
changes. If we follow the suggested EA 
lifecycle we can notice that iterative 
checks of the fitness function may be 
combined with random mutations so as to 
flag when a candidate has met a solution 
threshold. In effect for both cases we 
want to be aware of unexpected changes, 
which then lead us back to full attention. 
The satisficing threshold is the appropri-
ate level for action. 

 
The remainder of the EA is the ability 

to correlate attributes from successful so-
lutions. The process of verification and 
validation of calculated changes requires 
comparisons with higher granularity. 
Therefore the processing of the left hemi-
sphere seems ideally suited to this need. 

 

 
Fig. 2: Heuristic Lifecycle 

 
If we represent these relationships in 

the heuristic graphically, we see that the 
qualitative process can represent as a sub-
set of the quantitative process. This bears 
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direct correlation to the function we ex-
pect with vision in the left hemisphere. 

 
We have also accomplished a second-

ary consideration by localizing the solu-
tion mode of the EA into a qualitative 
process. We can now have multiple in-
stances of an EA with separate parame-
terizations sharing the same qualitative 
process. 

 
Fig. 3: Satisficer Sharing 

 
 
We can even have multiple different 

EAs sharing the same qualitative process. 
In this case the satisficing threshold could 
be set to include the best candidates so far 
and these could be represented back to-
wards each EA in turn. This would adap-
tively allow the best EA - for example 
particle swarm optimization, simulated 
annealing and genetic agorithms - to lead 
the others in response to success in their 
problem space. 

6. Strategic vs tactical byplay 

Consider a strategic simulation where a 
collection of units with varying abilities 
and operating modes require orchestra-
tion to reach an objective. 

 
It may not make sense to attempt to 

find an optimal combination of units and 
deployment tasks given the bounded real-
ity of the combat situation. We may not 
have a complete view of the battlefield 
and enemy dispositions, and even if we 
did, we may not correctly predict their 
movements or objectives. In this case it is 

far better to take a satisficing approach 
where deploying complementary units 
leads to more reliable results. The right 
hemisphere with its expansive view and 
abilities to correlate multiple inputs is 
ideally placed to react to contact with the 
enemy. 

 
In this situation however each unit is 

tasked with achieving its objectives with 
singular focus unless told otherwise. That 
task may include support of correlated 
units, but the efficiency of the unit is re-
lated to singular focus. Resources spent 
on unexpected tasks deplete the unit and 
extend their arrival times at objectives. 

 
In response to updates from the tactical 

units the satisficing behavior is in a better 
position to respond to a tactical unit that 
has stalled in pursuit of an objective. If 
progress has generally been good then the 
satisficer may have the unit hold their op-
ponent in place while other units make 
progress. If progress has been low then 
the fitness threshold for the satisficer will 
be lower, leading to a recommendation 
that the unit detach and attempt to rede-
ploy elsewhere.  

7. Conclusions 

The evolution of localized functions 
along the visual pathway gives clues to 
how expediency and resource efficiency 
has been achieved in response to and with 
our environment. Satisficing behaviors 
reappear many times as self-limiting de-
cision making abilities.  

 
We have shown that it is possible to 

model this satisficing byplay within the 
lifecycle of an evolutionary heuristic. 
Taking this view of the evolutionary heu-
ristic exposes a separation of concerns 
similar to that seen between the hemi-
spheres of the brain.  
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These concerns give a taxonomy for a 
discussion between strategic and tactical 
actors on a fictional battlefield. 

 
7.1. Future work 

It would be of great value to implement 
evolutionary heuristics within a compo-
nent framework allowing a similar sepa-
ration of concerns around a satisficing 
behavior.  

 
A component framework implementa-

tion supporting multiple evolutionary al-
gorithms would allow a highly granular 
hybrid model. Such a model holds the 
promise of unifying behaviors between 
diverse solution agents. There may also 
be new approaches for better mapping a 
namespace, which would better enable 
recognition and navigation around local 
maxima. 

 
You could argue for example that the 

fitness function has more to do with the 
representation of the namespace than the 
heuristic. In this case a component 
framework would allow the sharing of the 
same optimized fitness function between 
each heuristic. This would also reduce 
inconsistencies between heuristics 
through the satisficing cache. 
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