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Abstract

The concept and use of recursion operators is well-established in the study of evolution, in
particular nonlinear, equations. We demonstrate the application of the idea of recursion
operators to ordinary differential equations. For the purposes of our demonstration we use
two equations, one chosen from the class of linearisable hierarchies of evolution equations
studied by Euler et al (Stud Appl Math 111 (2003) 315-337) and the other from the class
of integrable but nonlinearisible equations studied by Petersson et al (Stud Appl Math 112

(2004) 201-225). We construct the hierarchies for each equation. The symmetry properties of
the first hierarchy are considered in some detail. For both hierarchies we apply the singularity
analysis. For both we observe intersting behaviour of the resonances for the different possible
leading order behaviours. In particular we note the proliferation of subsidiary solutions as
one ascends the hierarchy.

1 Introduction

It is known that one can construct integrable partial differential equations (or system of partial
differential equations) by the use of so-called recursion operators, R[u], which generate an infinite
number of Lie-Bäcklund symmetries [20, 7, 8]. Those type of equations are usually described
as being symmetry integrable. The main problem is to find the recursion operator for a given
system or to show that an infinite number of Lie-Bäcklund symmetries exists or that it does
not exist (the latter being the more demanding task). Since the recursion operator can in
general contain nonlocal variables even for equations linearisable by a (nonlocal) coordinate
transformation (Petersson et al [22]), the procedure is not an easy one especially for higher
order equations and for systems.

In their paper Euler et al [5] report a large collection of recursion operators for second-order
evolution equations. In particular eight classes of second-order linearisable evolution equations
and their recursion operators are given one of which is Class VIII, namely

ut = uxx + λ8ux + h8u
2
x. (VIII)
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Here h8 is an arbitrary C∞-functions depending on u and λ8 an arbitrary constant. Equation
(VIII) admits the following recursion operator

R8[u] = Dx + h8ux.

In their paper Petersson et al [22] report the classification of the symmetry integrable class
of equations

ut = uαuxxx + n(u)uxuxx + m(u)u3
x + r(u)uxx + p(u)u2

x + q(u)ux + s(u). (1.1)

The equation

ut = u3uxxx + λ1u
3ux + λ2u

−1ux + λ3ux (1.2)

(λ’s are arbitrary constants) is a member of the class (1.1) [22]. Equation (1.2) is of interest to
us in the context of ordinary differential equations due to its reduction to an Ermakov-Pinney
equation. For this purpose we write (1.2) in potential form through the change of dependent
variable vx = u−2. The potential equation is

vt = v−3/2
x vxxx − 3

2
v−5/2
x v2

xx − 2λ1v
−1/2
x +

2λ2

3
v3/2
x + λ3vx + C. (1.3)

(C is an arbitrary constant) which is a slight generalisation of the Cavalcante-Tenenblat equation
[2] and admits the recursion operator

R[v] = v−1
x D2

x − 3

2
v−2
x vxxDx − 1

2
v−2
x vxxx +

3

4
v−3
x v2

xx + λ1v
−1
x +

λ2

3
vx

−1

4

(

v−3/2
x vxxx − 3

2
v−5/2
x v2

xx − 2λ1v
−1/2
x +

2λ2

3

)

D−1
x v−3/2

x vxx. (1.4)

In this paper we apply the notion of recursion operators to ordinary ordinary differential
equations in a very natural way. We take a 1 + 1 evolution equation with a recursion operator
and suppress the time dependence. This produces an ordinary differential equation with a
recursion operator provided the recursion operator in the partial differential equation is free of
t. The linearisable second-order evolution equations provide a good source of hierarchies for
our study. Our interest is primarily the connection of the integrability of the members of the
hierarchies to the symmetry and singularitity properties of the equations. Although it would
be of interest to see what happens for all the eight classes listed above, we confine our present
attentions to just one class. This class, given an extensive treatment in §2, is derived from Class
VIII since the two early memebers of the hierarchy are the Riccati [26] and the Painlevé–Ince
equation ([21][(9) p 33] and [13][p 332]), both of which find frequent mention in the literature.
We see in §2 that this hierarchy possesses some very attractive features.

In §3 we make a parallel study of the Ermakov–Pinney Equation [4, 23] and the hierarchy
generated from it. Naturally there are some differences in emphasis in large measure dictated
by the greater complexity of the members of the hierarchy as the recursion moves in steps
of two. The contrast of the properties under the singularity analysis is noted, but the most
interesting feature is the nature of the relationship between the first integrals of higher members
of the hierarchy which we find to be rather more subtle than a simple-minded expectation would
envisage. Finally in §4 we conclude with some observations.
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2 A Riccati hierarchy

We commence with the simplest of the recursion operators, videlicet that of Class VIII which is

R8[u] = Dx + h8(u)ux. (2.1)

The basic evolution equation is

ut = uxx + λ8ux + h8u
2
x (2.2)

(here and below we suppress the variable dependence in h8 unless it is necessary for contextual
clarity), where λ8 is some parameter. By the t-translation symmetry the corresponding ordinary
differential equation is

u′′ + h8u
′2 + λ8u

′ = 0 (2.3)

and successive members of the hierarchy can be obtained by the action of R8[u] + C on the left
hand side of (2.3). The prime denotes x-derivatives. The two members following are

u′′′ + 3h8u
′u′′ +

(

ḣ8 + h2
8

)

u′3 + (λ + C)
(

u′′ + h8u
′2
)

+ λCu′ = 0 (2.4)

and

u′′′′ + 4h8u
′u′′′ + 3h8u

′′2 + 6
(

ḣ8 + h2
8

)

u′2u′′ +
(

ḧ8 + 3h8ḣ8 + h3
8

)

u′4 (2.5)

+(λ + 2C)
[

u′′′ + 3h8u
′u′′ +

(

ḣ8 + h2
8

)

u′3
]

+ C(2λ + C)
(

u′′ + h8u
′2
)

+ λC2u′ = 0

in which we maintain the notation that the overdot on h8 represents differentiation with respect
to its argument. Two points are immediately apparent. The first is that the members of the
hierarchy quickly become very complicated equations. The second is that substructures in the
higher order repeat the structure of the lower order with some suggestive variations. In particular
we observe members reminescent of the Riccati and Painlevé–Ince Equations, videlicet

w′ + w2 = 0 and w′′ + 3ww′ + w3 = 0 (2.6)

in ḣ8 + h2
8 and ḧ8 + 3h8ḣ8 + h3

8. We also note that for h8 a constant (2.3) is a Riccati Equation
in the variable u′.

These observations lead us to make some adjustments to our definition. In the process we
depart from our initial point of the Class VIII equation. This departure is possible due to the
transition from an evolution partial differential equation to an ordinary differential equation. To
enable a clear discussion we set λ = 0 = C and h8 = 1. We return to the general case below.

We write the hierarchy in potential form by replacing u′ with y so that the first few members
of the hierarchy in the simplified form are

y′ + y2 = 0 (2.7)

y′′ + 3yy′ + y3 = 0 (2.8)

y′′′ + 4yy′′ + 3y′2 + 6y2y′ + y4 = 0 (2.9)

y′′′′ + 5yy′′′ + 10y′y′′ + 10y2y′′ + 15yy′2 + 10y3y′ + y5 = 0 (2.10)
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with the recursion operator

R = D + y, (2.11)

where we replace Dx with D since there is just the single independent variable.
Successive application of (2.11) to (2.7) generates the higher members of the hierarchy, which

we may as well call the Riccati hierarchy. By construction (2.8), (2.9) and (2.10) are symmetry
coefficients of (2.7); (2.9) and (2.10) are symmetry coefficients of (2.8) and (2.10) a symmetry
coefficient of (2.9).

A different origin of the hierarchy can be obtained by means of the operator adjoint to R,
videlicet

R∗ = D − y, (2.12)

by seeking the function, f , which R∗ annihilates. Then

R∗f = 0 ⇔ df

dx
− fy = 0 =⇒ f = exp

[
∫

ydx

]

. (2.13)

Then R2f , R3f , R4f etc generate the hierarchy4

y′ + 2y2 = 0 (2.14)

y′′ + 6yy′ + 4y3 = 0 (2.15)

y′′′ + 8yy′′ + 6y′2 + 24y2y′ + 8y4 = 0 (2.16)

y′′′′ + 10yy′′′ + 20y′y′′ + 40y2y′′ + 60yy′2 + 80y3y′ + 16y5 = 0. (2.17)

The resemblance to the creation and annihilation operators of the quantum mechanical simple
harmonic oscillator should not be pushed too far. Once the adjoint operator has produced
the generating function, it does not act as a lowering operator on the higher members of the
hierarchy. Rather it produces its own line of equations. For example, when R∗ acts repeatedly
on the element Rf , one obtains the hierarchy of elementary linear equations

y(n) = 0, n = 1, 2, . . . . (2.18)

In this generation of a second hierarchy we have the departure from the usual situation in
Quantum Mechanics. The failure to have the second hierarchy of solutions to exist in Quantum
Mechanics is due not to the lack of a suitable operator but to the imposition of some boundary
condition such as the vanishing of the solution at infinity. Before we leave this brief digression
we note that one could construct a parallel hierarchy using R to produce the generating function
and R∗ to develop the hierarchy. Thus

Rf = 0 ⇔ f ′ + fy = 0 =⇒ f = exp

[

−
∫

ydx

]

(2.19)

and R∗2f , R∗3f and R∗4f lead to

y′ − 2y2 = 0 (2.20)

y′′ − 6yy′ + 4y3 = 0 (2.21)

y′′′ − 8yy′′ − 6y′2 + 24y2y′ − 8y4 = 0 (2.22)

4The equation generated by Rf , videlicet y = 0, is a bit trivial.
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which mimic the elements of the other hierarchy and become identical when y is replaced by
−y.

A simplification of the members of this hierarchy, (2.20) to (2.22), can be achieved by multi-
plying each equation by two and replacing 2y with y. Thus the first few elements of the hierarchy
generated by R become identical to (2.8) to (2.10) above which were generated from (2.7). In
(2.7) and (2.8) the Riccati and Painlevé-Ince Equations are quite evident. Henceforth we confine
our attention to this representation of the hierarchy.

The linearisability of the Class VIII nonlinear evolution partial differential equations, which
was established in [5], implies integrability in the sense of an infinite number of Lie–Bäcklund
symmetries. In the case of ordinary differential equations the criteria for linearisability depend,
as always, upon the type of transformation admitted. The Riccati hierarchy treated here is
distinguished by the possession of the maximal number of Lie point symmetries possible at
that relevant order5. Thus (2.8) has eight Lie point symmetries with the algebra sl(3, R). The
third-order member, (2.9), has seven Lie point symmetries. There are ten contact symmetries
with the algebra sp(5) [1]. Thereafter the sequence becomes more orderly with the nth-order
member having n + 4 Lie point symmetries with the algebra A3,8 ⊕s {A1 ⊕s nA1}, where we use
the Mubarakzyanov classification scheme [16, 17, 18, 19]. The subalgebra A3,8 (also popularly
known as sl(2, R)) is characteristic of scalar nth-order ordinary differential equations of maximal
symmetry [15]. The interesting feature about the possession of the maximal number of Lie
point symmetries is that the most convenient linearising transformation, that based on the
Riccati Equation and the direct counterpart of the linearising transformation for the Class VIII
nonlinear evolution partial differential equation, is a nonlocal transformation. If we multiply
(2.7) by the integrating factor exp

[∫

ydx
]

, (2.7) may be written as
(

exp
[∫

ydx
])

′′

= 0 so that
the transformation

w =

(

exp

[
∫

ydx

])

′

(2.23)

immediately produces the required linear equation, w′ = 0. We note that w is just the first
member of the hierarchy obtained by action with R on the generating function.

5Although the statement is true for the Riccati Equation (2.7), it is not a useful statement. Nevertheless the
linearising transformation which works for the higher members of the hierarchy is in fact found using the selfsame
Riccati equation.
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Thus we have

Proposition I: The members of the Riccati hierarchy possess the maximal number of Lie point
symmetries for an equation of that order (≥ 2)

and

Proposition II: The members of the Riccati hierarchy are linearised by the transformation
x = x, w =

(

exp
[∫

ydx
])

′

= y exp
[∫

ydx
]

.

A consequence of Proposition II is that there exists a general formula for the solutions of the
Riccati hierarchy and we have

Proposition III: The general solution of the nth member of the Riccati hierarchy, n ≥ 3, is
given by

yn =

(

∑n−1
i=0 Aix

i
)

′

∑n−1
i=0 Aixi

, (2.24)

where the Ai, i = 1, n(1), are the constants of integration.

Corollary: The solution to the original hierarchy, ie without the introduction of the potential
form, is

un = log

[

n−1
∑

i=0

Aix
i

]

. (2.25)

The Riccati Equation is well-known [13][290ff] to be the only first-order equation of the form
y′ = f(x, y), where f is rational in y and analytic in x, to possess the Painlevé Property. The
Painlevé–Ince Equation, (2.8), not only possesses the Painlevé Property but is also distinguished
as being one of the few equations, ie a fraction of those equations of the same order possessing
the Painlevé Property, which has both a Left Painlevé series and a Right Painlevé Series [6].
One immediately wonders if this be a property generic to the hierarchy. The application of the
Painlevé Test is a routine matter and we need not dwell upon its details. Rather we summarise
the application of the Painlevé Test to the first several members of the hierarchy, (2.7) to (2.10).
For a discussion of the application of the singularity analysis to ordinary differential equations
we refer the reader to the works of Tabor [29] and Ramani et al [25] for the techniques, Conte
[3] for some deeper analysis and Feix et al [10] for a broader discussion of the philosophy. To
determine the leading order behaviour we set y = αχp, where χ = x− x0 and x0 is the location
of the putative singularity which in our case is always a simple pole, ie p = −1, since each
member of the hierarchy is invariant under the action of the similarity symmetry −x∂x + y∂y

[6]. The value of α is found from the solution of a polynomial equation. The solution is then
written as a Laurent series commencing with the leading order term and the powers at which the
remaining arbitrary coefficients enter are found by substituting y = αχ−1 + µχr−1 and equating
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the coefficient of µ to zero. Provided that all is satisfactory to this point, the consistency of the
presumed arbitrary constants needs to be checked.

With this deliberately potted version of the Painlevé Test we summarise the results of the
application of the test for the earlier members of the hierarchy in Table 1. Of particular interest
is the value of the resonances for the different roots of the polynomial equation determining α.

Table 1. Summary of the results of the Painlevé Test applied to the earlier members of the Riccati

hierarchy. We commence the numbering of the members from the Riccati equation, (2.7).

Member Characteristic equations for α and r Roots

I α2 − α = 0 α = 0, 1
r + 1 = 0 r = −1

II α3 − 3α2 + 2α = 0 α = 0, 1, 2
r2 + (3α − 3)r + 3α2 − 6α + 2 = 0 α = 1 : r = −1, 1

α = 2 : r = −1,−2

III α4 − 6α3 + 11α2 − 6α = 0 α = 0, 1, 2, 3
r3 + (4α − 6)r2 + (6α2 − 18α + 11)r α = 1 : r = −1, 1, 2
+ 4α3 − 18α2 + 22α − 6 = 0 α = 2 : r = −1, 1,−2

α = 3 : r = −1,−2,−3

IV α5 − 10α4 + 35α3 − 50α2 + 24α = 0 α = 0, 1, 2, 3, 4
r4 + 5(α − 2)r3 + 5(2α2 − 8α + 7)r2 α = 1 : r = −1, 1, 2, 3
+ 5(2α3 − 12α2 + 21α − 10)r α = 2 : r = −1, 1, 2,−2
+ 5α4 − 40α3 + 105α2 − 100α + 24 = 0 α = 3 : r = −1, 1,−2,−3

α = 4 : r = −1,−2,−3,−4.

From Table 1 we can discern the pattern for the higher order equations. For the nth-order
member of the Riccati hierarchy the nontrivial values of the coefficient of the leading order term
can be 1, 2, . . . , n. In the case of the Riccati Equation itself we have only the generic resonance.
For the Painlevé–Ince Equation the nongeneric resonance corresponding to each of the two
possible values of α indicates the existence of a Left Painlevé Series and a Right Painlevé Series,
as is well-known [6]. For the higher order equations the different principal branches indicate
quite diverse behaviours. A Right Painlevé Series exists for the smallest value of α and a Left
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Table 2. Summary of the values of α for the values of r obtained using the Painlevé Test on the fourth

member of the Riccati hierarchy. The shifted symmetry about the nonpossible value r = 0 is even more

obvious if one sets r = 4 which is not a value found in the analysis.

Value of the resonance Corresponding values for α

r = 3 α = 0, 1, (1 ± i
√

7)/2
r = 2 α = 0, 1(2), 2
r = 1 α = 0, 1, 2, 3
r = −1 α = 1, 2, 3, 4
r = −2 α = 2, 3(2), 4

r = −3 α = 3, 4, (7 ± i
√

7)/2

r = −4 α = 4(2), 4 ± i
√

5.

Painlevé Series for the largest value of α. For the intermediate values mixed behaviour occurs.
One can have both Left Painlevé Series and Right Painlevé Series. However, each series does
not have the requisite number of arbitrary constants to represent a general solution and the
equation formally fails the Painlevé Test as it has usually been presented [25, 29]. Yet we have
demonstrated the explicit analytic solution in (2.23). This is not the first occasion that solutions
with an incomplete quota of constants of integration have been reported [14, 24]. These partial
solutions are analytic by construction. Moreover they are embedded in the parameter space of
the general solution and so the argument that the solution ceases to be analytic once one leaves
the surface in parameter space is demonstrably nontenable. These solutions, termed ‘subsidiary’
by Rajasekar [24] which seems to be more acceptable than the previously used terms ‘partial’
and ‘particular’, do not invalidate the possession by the equations concerned of the Painlevé
Property.

We conclude the discussion of the special instance of the Riccati hierarchy with an observation.
This concerns the values of α corresponding to the values of the resonance revealed by Step Two
of the Painlevé Test. The results are summarised in Table 2.

The polynomial used for the calculation is the characteristic equation for the resonances for
member IV in Table 1. One notes that for the value r = 4, which is not a resonance of the
equation, we obtain α = 0(2),±i

√
5 so that there is some pattern in the roots for α in the

polynomial as this irrelevant detail helps to indicate.
We have spent a considerable space on the special case in which λ8 = C = 0 and h8 = 1 in

(2.1) and (2.3). In the first instance it is a simpler case to treat and yet reveals several interesting
properties. Two questions are relevant. Do these properties persist for general forms of (2.1)
and (2.3)? If this be not the case, what properties can we adduce for the general forms? For
the remainder of this section we address these questions.
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Consider (2.3) with λ8 = 0, ie

u′′ + h8(u)u′2 = 0. (2.26)

This is not the derivative form of a Riccati equation for h8(u) not a constant. Indeed unlike
(2.3) with h8 a constant (2.26) is truly a second-order equation. We rewrite h8 as

h8 =
H ′′(u)

H ′(u)
(2.27)

so that (2.26) becomes

H ′′(u)u′2 + H ′(u)u′′ = 0 (2.28)

which is obviously

d2H

dx2
= 0 =⇒ H = A + Bx. (2.29)

From (2.27) it is evident that

H(u) =

∫

exp

[
∫

h8(u)du

]

du. (2.30)

In general the right hand side of (2.30) is some function of u the global inversion of which is cer-
tainly to be problematical, but local inversion is guaranteed almost everywhere by consequence
of the Implicit Function Theorem. Thus we can write

u(x) = F−1(A + Bx), (2.31)

where F−1 is the inverse function of the right side of (2.30).
When we turn to (2.4) with λ8 = C = 0, we have the equation

u′′′ + 3h8u
′u′′ +

(

ḣ8 + h2
8

)

u′3 = 0. (2.32)

We recall that (2.32) has a similarity symmetry for h8 a constant. This cannot be expected to
persist for some general h8(u). We assume a symmetry of the form6

Γ = P (u)∂u, (2.33)

where P is some function of u. The invariants of Γ are

r = x and s =
u′

P (u)
. (2.34)

Under this reduction of order (2.32) becomes

d2s

dr2
= 0 (2.35)

6The motivation for so doing is that in our previous explorations the independent variable, x, has played a
subsidiary role.
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provided that the coefficient function in Γ is given by

P (u) = exp

[

−
∫

h8(u)du

]

. (2.36)

Through (2.34) we have a linearisation of (2.32) in (2.35). The solution of (2.35) is just of the
form of that given in (2.29) with H replaced by s. On reverse substitution and an integration
we obtain

u = F−1
(

A + Bx + Cx2
)

, (2.37)

where F−1 is the same inverse function as we introduced above.
It is evident that we have a generalisation of the Corollary to Proposition III in

Proposition IV: The general solution of the nth-order member of the hierarchy of ordinary
differential equations generated from the second-order ordinary differential equation

u′′ + h8(u)u′2 = 0 (2.38)

by the recursion operator R8 = D + h8(u)u′ given by

un(x) = F−1

(

n−1
∑

i=1

Aix
i

)

, (2.39)

where F−1 is the inverse function of
∫

exp
[∫

h8(u)du
]

du.

Thus we see that the introduction of a nonconstant h8(u) does not destroy the integrability7

of the hierarchy. For a general function h8(u) one would not expect the members of the hierarchy
to be distinguished by any particular Lie point symmetry apart from the obvious ∂x. A fortiori
the possession of the Painlevé Property is generally unlikely. Nevertheless the nth-order member
of the hierarchy does possess n functionally independent first integrals for one can rewrite (2.39)
as

n−1
∑

i=1

Aix
i = F (u) (2.40)

(we drop the subscript n from u for an obvious reason). This and the n− 1 derivatives of (2.40)
with a nonvanishing left side provides a regular system of n linear equations for the constants
of integration Ai, i = 1, n, and the solution of this system for the coefficients Ai gives the set of
n independent first integrals which is an alternate definition of integrability8. Indeed the route
proffered by (2.40) and its derivatives may well be generally more attractive than the solution
(2.39). The integral

∫

exp
[∫

h8(u)du
]

du can be expected to be rather better defined than its
inverse.

7We use the word ‘integrability’ in the formal sense of being able to express the solution as in (2.39) rather
than in the more precise sense of a single-valued analytic function.

8This alternate definition is often of great use in Mechanics. A system may have a complete set of first integrals
of moderately attractive functional form, but the elimination of the derivatives to obtain the solution can be an
exercise in the futile attempted inversion of refractory functions.
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The formal origin of the n first integrals is easy to see. If I = I(x, u, u′, . . . , u(n−1)) is to be
an integral of the nth-order member of the hierarchy invariant under the symmetry Γ = ∂x, two
equations must be satisfied, videlicet

Γ[n−1]I = 0 and
dI

dx
= 0, (2.41)

where Γ[n−1] is the nth extension of Γ, with the differential equation taken into account for the
second in (2.41). The former equation in (2.41) eliminates x from I and so the latter provides
n− 1 first integrals. If one takes a general nth-order autonomous ordinary differential equation
and applies this procedure, one would not expect to be able to find all of these n−1 autonomous
first integrals. In our case they are easily obtained by eliminating x from the n integrals obtained
as described above. The secret lies in the linearisability of the hierarchy. There is in fact always
a sufficient number of Lie symmetries to give the nth-order differential equation a structure
commensurate with integrability.

For nonzero λ the nth-order equation in H becomes

dnH

dxn
+ λ

dn−1H

dxn−1
= 0 (2.42)

which has the solution

H =
n−2
∑

i=0

Aix
i + An−1 exp [−λx] (2.43)

and so we have

Proposition V: The general solution of the nth member of the hierarchy of ordinary differential
equations generated from the second-order differential equation

u′′ + h8(u)u′2 + λu′ = 0 (2.44)

by the recursion operator R8 = D + h8(u)u′ is given by

u(x) = F−1

(

n−2
∑

i=0

Aix
i + An−1 exp [−λx]

)

, (2.45)

where F−1 is as defined above.

Finally we turn to a situation in which the hierarchy of equations is generated by a polynomial
in R8 of specific structure, namely that in which the recursion operator from one order to the
next is R8[u] + C, where C is a constant, ie the sequence of equations beginning with (2.4) and
(2.5). To give a flavour of what happens we consider (2.4) in the H representation which is

d3H

dx3
+ (λ + C)

d2H

dx2
+ λC

dH

dx
= 0 (2.46)

with the obvious solution

H = A + Be−λx + Ce−Cx , C 6= λ, (2.47)
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and

H = A + (B + Cx)e−λx, C = λ, (2.48)

ie, there is a new option as to the direction of the evolution of a solution for higher members of
the hierarchy. A few moments spent with (2.5), which in terms of H is

d4H

dx4
+ (λ + 2C)

d3H

dx3
+ C(λ + C)

d2H

dx2
+ λC2 dH

dx
= 0 (2.49)

with the solutions

H = A + Be−λx + (C + Dx)e−Cx, C 6= λ, (2.50)

and

H = A + (B + Cx + Dx2)e−λx, C = λ, (2.51)

leads one immediately to

Proposition VI: For the same as Proposition V with the exception that now we use the recursion
operator D + h8(u)u′ + C the solution of the nth member of the hierarchy is

u(x) = F−1

(

A + Be−λx +

(

n−3
∑

i=0

Cix
i

)

e−Cx

)

, C 6= λ, (2.52)

and

u(x) = F−1

(

A +

(

n−2
∑

i=0

Bix
i

)

e−λx

)

, C = λ, (2.53)

where again F−1 is the inverse function defined through (2.30).

We have completed the formal construction of the solutions of the hierarchy of ordinary dif-
ferential equations derived from the Class VIII nonlinear evolution partial differential equations
presented by Euler et al [5]. We dwelt in detail upon the simplest members of the hierarchy
of nonlinear ordinary differential equations since it commences with two equations, the Riccati
Equation and the Painlevé–Ince Equation, which arise so often in theory and application. This
family displays a richness in terms of both the symmetry and the singularity analyses which
can only be described as unfortunately exceptional. That the members of the family are lin-
earisable through a point transformation for all functions h8(u) and the parameters λ and C
means that all members of the hierarchy possess the symmetry algebra of the linearised version.
The simplest version of the hierarchy comprised equations of maximal Lie point symmetry and
possessed the Painlevé Property with a richness of detail which is pedagogically useful even for
practitioners in the field. Obviously our final question of this class of equations is the persistence
or otherwise of these properties for general functions h8(u) and parameters λ and C.

As far as Lie point symmetries are concerned, we cannot commence with the first member of
the hierarchy, (2.3), since it is transformable to a linear second-order equation by a point trans-
formation and so always possesses the eight-element algebra sl(2, R). For n ≥ 3 the linearised
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equation, and so the original equation, possesses at least n + 2 Lie point symmetries comprising
n solution symmetries, the homogeneity symmetry and ∂x [15]. Two additional symmetries,
which with ∂x constitute a representation of the three element sl(2, R), exist if the coefficients
of the equation in normal form are related in a suitable way9. For an nth-order linear equation
in normal form with constant coefficients, videlicet

w(n) +

n−2
∑

i=0

Biw
(i) = 0, (2.54)

the symmetries related to sl(2, R) are found from the solution of the third-order equation,

(n + 1)!

(n − 2)!4!
a(3) + a(1)Bn−2 + 1

2aB
(1)
n−2 = 0, (2.55)

where the symmetry has the form a(x)∂x + 1
2(n − 1)a(1)y∂y, which involves just the coefficient

Bn−2. The consistency of the rest of the equation with (2.55) is expressed as the requirement
that the coefficients in (2.54) satisfy the sequence of equations

(n + 1)!(i − 1)

2(n − i)!(i + 1)!
a(i+1) + ia(1)Bn−i + aB

(1)
n−i

+

n−1
∑

j=2

Bn−j
(n − j)![n(i − j − 1) + i + j − 1]

2(n − i)!(i − j + 1)!
= 0, i = 3, n. (2.56)

The coefficients in the normal form of the nth member of the hierarchy are autonomous. In this
case the first few equations of the sequence (2.56) lead to the conditions

Bn−3 = 0

Bn−4 =
1

2.5(n + 1)!
(n − 2)!(5n + 7)(n − 2)(n − 3)B2

n−2

Bn−5 = 0

Bn−6 =
(n − 2)!3(35n2 + 110n + 93)

2.3.5.7(n − 6)!(n + 1)!2
B3

n−2

Bn−7 = 0

Bn−8 =
(n − 2)!(175n3 + 945n2 + 1769n + 1143)

22.3.52.7(n − 8)!(n + 1)!
B4

n−2. (2.57)

Our task is to relate these results to the nth-order equation generated by R8 + C from (2.3)
in its linear equivalent.

In the case that n = 3 the linear equation corresponding to (2.4) is

d3H

dx3
+ (λ + C)

d2H

dx2
+ λC

dH

dx
= 0 (2.58)

and this has the normal form

w′′′ − 1
3

(

λ2 − λC + C2
)

w′ + 1
27 (λ + C)(2λ − C)(λ − 2C)w = 0 (2.59)

9A thorough discussion is found in Mahomed et al [15]. Here we are simply quoting the relevant results.



The Riccati and Ermakov-Pinney hierarchies 303

when we set H = w(x) exp
[

−1
3 (λ + C)x

]

. From (2.57) the only requirement that (2.58) be a
third-order equation of maximal symmetry is that the coefficient of w be zero, ie

λ = −C, 2C, C/2. (2.60)

For λ and C otherly related (2.4) has just the five Lie point symmetries10.

In the case of (2.5) the normal form of the equation is

w′′′′− 1
8

(

9λ2 + 16λC + 35C2
)

w′′+ 1
8λ2(λ−2C)w′− 1

256λ+2C)(3λ−2C)(λ−2C)2w = 0. (2.61)

For the coefficient of w′ to be zero we require that λ = 0, 2C so that B0 = −C2/32, 0,
respectively. However, from (2.57) we have that

B0 = 9
6400

(

9λ2 + 16λC + 35C2
)

= 9.352C4

6400 , 9.1012C4

6400 ,

respectively. Neither expression is zero for C nonzero. Even though we had a common relation
of λ = 2C for both third-order and fourth-order equations, the additional constraints on the
fourth-order equation reduced the hierarchy to the specific instance of the Riccati hierarchy.

We conclude that the general hierarchy is not of maximal Lie point symmetry.

3 The Ermakov–Pinney equation

All Ermakov–Pinney equations can be transformed by a point transformation to the basic form

y′′ = y−3. (3.1)

This admits the rescaling symmetry x∂x + 1
2y∂y and does not have the Painlevé property since

the leading order exponent is 1
2 . Under the transformation

u(x) =
1

y2(x)

we obtain

uu′′ − 3

2
(u′)2 + 2u4 = 0, (3.2)

which has the Painlevé Property. The Riccati transformation

u(x) = α
w′(x)

w(x)
, α2 = −1

4
,

brings us to the third order equation

w′w′′′ − 3
2 (w′′)2 = 0

which is the Kummer-Schwarz equation.

10As a linear third-order equation with fewer than the maximal number of Lie point symmetries (2.4) does not
have any intrinsically contact symmetries.
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For the construction of a Ermakov-Pinney hierarchy we use (3.2) as the basic equation. We
note that (3.2) is the Cavalcant-Tenenblat [2] equation (1.3) with

vt = 0, λ2 = 3, λ1 = C = 0,

namely

v−3/2
x vxxx − 3

2
v−5/2
x v2

xx + 2v3/2
x = 0. (3.3)

This becomes (3.2) when we multiply by v
5/2
x and put vx = u(x). To find the second member

of the hierarchy we use the recursion operator (1.4) of the Cavalcante-Tenenblat equation and
obtain

v−11/2
x

(

v3
xv5x − 15

2
v2
xvxxv4x − 5v2

xv2
3x +

5

2
v5
xv3x +

245

8
vxv2

xxv3x

−315

16
v4
xx − 5

2
v4
xv2

xx + v8
x

)

= 0. (3.4)

Under vx = u(x) and multiplication by v
11/2
x this equation become the following fourth-order

equation

u3u(4) − 15

2
u2u′u′′′ − 5u2(u′′)2 +

5

2
u5u′′ +

245

8
u(u′)2u′′

−315

16
(u′)4 − 5

2
u4(u′)2 + u8 = 0. (3.5)

Remark: The Cavalcante–Tenenblat equation as generalised, (1.3), is an evolution equation
and the applications of the recursion operator and its inverse require that the equation have
the form vt = . . .. We maintain that structure for the ordinary differential equatiions of this
hierarchy to avoid confusion. Thus for example we write the integrating factors as in (3.6) and
(3.7) below. Were one to separate entirely the treatment of the ordinary differential equations
from the partial differential equations once they are generated,(3.3) for example would be written

without the common multiplier v
−11/2
x . The two integrating factors, µ1 and µ2, would have to

be adjusted accordingly. To avoid confusion we keep just the initial structures. Next we discuss
the first integrals of the above two members of the Ermakov-Pinney hierarchy. The recursion
operator (1.4) provides us with one integrating factor, µ1, namely the term to the right of D−1,
i.e.

µ1 = v−3/2
x vxx. (3.6)

Higher order integrating factors for the higher order members of this hierarchy can then be
obtained by acting the adjoint of R[v] on µ1. For the first member we obtain the second
integrating factor

µ2 = R[v]∗µ1 =
1

8
v−9/2
x

(

35v3
xx − 40vxvxxv3x + 8v2

xv4x + 12v4
xvxx

)

. (3.7)

By the use of µ1 we obtain the first integral of (3.3), namely

I11 =
1

2
v−3
x v2

xx + 2vx, (3.8)
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and by the same integrating factor a first integral of (3.4) is obtained in the form

I21 = v−4
x vxxv4x − 1

2
v−4
x v2

3x − 7

2
v−5
x v2

xxv3x +
105

32
v−6
x v4

xx +
5

4
v−2
x v2

xx +
1

2
v2
x. (3.9)

By means of the integrating factor µ2 we obtain a second first integral for (3.4), namely

I22 =
1

2
v−5
x v2

4x +
35

8
v−7
x v3

xxv4x +
3

2
v−3
x vxxv4x − 5v−6

x vxxv3xv4x +
1

2
v−3
x v2

3x

−175

8
v−8
x v4

xxv3x +
25

2
v−7
x v2

xxv2
3x − 37

4
v−4
x v2

xxv3x + v3x − 5

8
v−1
x v2

xx

+
1225

128
v−9
x v6

xx +
259

32
v−5
x v4

xx +
1

2
v3
x. (3.10)

By solving for v4x from I21 and inserting it into I22 and further replacing v3x from the first
member of the hierarchy (3.3), we obtain the following relation between the first integrals of
(3.3) and (3.4):

I22 =
1

16
I3
11, I21 = −3

8
I2
11. (3.11)

The use of I21 and I22 to reduce the fifth-order equation to a third-order equation with the two
parameters, I21 and I22, is standard. By eliminating vxxx from the resulting equation by the use
of the first member of the hierarchy, (3.3), we are demanding a consistency between the solution
of (3.3) and the more general (3.4). This is achieved by imposing constraints in the values of I21

and I22, ie. they are turned from integrals to configurational invariants [12, 27] and consequently
act as constraints. If one thinks of the extended phase space of (3.4), it is a six-dimensional
space spanned by x, v, vx, vxx, vxxx and vxxxx. Each integral represents an hypersurface in
this six-dimensional space and its location is a function of the actual value of the integral. The
knowledge of five independent integrals leaves the trajectory as the curve of common intersection
of these integrals. This is the general situation. Here we look for solutions of (3.4) compatible
with (3.3). Naively one might think that this compatibility could be achieved simply be putting
I21 and I22 each equal to zero which is a simple projection onto a space of dimension two lesser.
However, in (3.11) we find a somewhat richer result in that the constraints on the integrals are
expressed as hypersurfaces determined by specific relationships with an integral of (3.3). This is
reminescent of the result for a generalisation of the Kepler Problem [28] in which the subspace
for the zero value of the energy, ie a configurational invariant, was not a plane as in the case of
the Kepler Problem but a paraboloid [11].

We proceed by performing a Painlevé analysis of the Ermakov-Pinney hierarchy. To obtain
a better sense of the behaviour of the leading order coefficients and resonances we also consider
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the next member of the hierarchy which takes the following form:

v−17/2
x

(

v5
xv7x − 14v4

xvxxv6x +
861

8
v2
xxv3

xv5x − 28v4
xv3xv5x +

7

2
v7
xv5x − 35

2
v4
xv2

4x

+
1449

4
v3
xvxxv3xv4x − 9009

16
v2
xv3

xxv4x − 77

4
v6
xvxxv4x +

651

8
v3
xv3

3x

−18249

16
v2
xv2

xxv2
3x − 49

4
v6
xv2

3x +
1043

16
v5
xv2

xxv3x +
267267

128
vxv4

xxv3x +
35

8
v9
xv3x

−225225

256
v6
xx − 2415

64
v4
xv4

xx − 35

16
v8
xv2

xx +
3

4
v12
x

)

= 0. (3.12)

Under vx = u(x) and multiplication by v
17/2
x (3.12) becomes the following sixth-order equation

u5u(6) − 14u4u′u(5) +
861

8
u3(u′)2u(4) − 28u4u′′u(4) +

7

2
u7u(4) − 35

2
u4(u(3))2

+
1449

4
u3u′u′′u(3) − 9009

16
u2(u′)3u(3) − 77

4
u6u′u(3) +

651

8
u3(u′′)3

−18249

16
u2(u′)2(u′′)2 − 49

4
u6(u′′)2 +

1043

16
u5(u′)2u′′ +

267267

128
u(u′)4u′′ +

35

8
u9u′′

−225225

256
(u′)6 − 2415

64
u4(u′)4 − 35

16
u8(u′)2 +

3

4
u12 = 0. (3.13)

We summarise the result of the Painlevé test for these three members of the Ermakov-Pinney
hierarchy, (3.2), (3.5) and (3.13), in Table 3 below.

4 Conclusion

We have presented the structure of two hierarchies of ordinary differential equations based upon
an initial second-order differential equation possessing a recursion operator. One of the hier-
archies contained the Riccati Equation and the Painlevé–Ince Equation, equations frequently
encountered in the relevant literature, as early members when certain constraints were placed
upon the initial equation and the recursion operator. This particular form of the hierarchy
displayed rich features in terms of the symmetry and singularity properties of its members.
Although the hierarchy was constructed to be linearisible, there was a dimunition of both sym-
metry and singularity properties from the particular class to the general class. Generically the
possession of the Painlevé Property was lost since the inverse function, F−1, introduced is not
invariably analytic. In terms of symmetry the situation was more satisfactory in that generically
the members of the hierarchy possess n + 2 Lie point symmetries. However, in general they do
not possess the property of being of maximal symmetry.

We mentioned in the earlier part of §2 that one could contemplate alternate routes for the
construction of the hierarchy. Indeed one may be even less diciplined in the construction of
higher order equations. Instead of using R8[u] + C repeatedly one could contemplate the use
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Table 3. Summary of the results of the Painlevé Test applied to the earlier members of the Ermakov–

Pinney hierarchy. We refer to each member of the hierarchy by its equation number in the text.

Member Characteristic equations for α and r Roots

(3.2) 4α2 + 1 = 0 α2 = −1/4
r2 + 8α2 + 1 = 0 r ∈ {−1, 1}

(3.5) 16α4 + 40α2 + 9 = 0 α2 = −1/4
r ∈ {−1, 1/2, 1, 2}

18 + 120α2 + 64α4 + 5r2 − 20r3 − 20α2r or
α2 = −9/4

+15r + 20r2α2 + 8r4 = 0 r ∈ {−3/2,−1, 2, 3}

(3.13) 64α6 + 560α4 + 1036α2 + 225 = 0 α2 = −1/4
r ∈ {−1, 1/2, 1, 3/2, 2, 3}

1152α6 + 2128r4 − 1120rα4 − 2016r3α2 or
−1624r3 + 8400α4 + 560r2α4 + 2968r2α2 α2 = −9/4
−784rα2 + 2025 + 448r4α2 − 861r2 r ∈ {−3/2,−1, 1, 3/2, 3, 4}
+12432α2 − 896r5 + 1890r + 128r6 = 0 or

α2 = −25/4
r ∈ {−5/2,−3/2,−1, 3,

4, 5}

of Πm
i=1(R8[u] + Ci). Obviously th property of linearisability persists, but the algebraic choices

become wider as there are more combinations of constants with which to play. When the
recursion operator is not self-adjoint, the adjoint operator may also be used to generate higher
order equations so that one could employ not only a random sequence of constants, Ci, but of
recursion operator and its adjoint. The properties of these alternate approaches to the generation
of hierarchies deserve further attention.

The second hierarchy of ordinary differential equations based on the Ermakov–Pinney variant
is complicated by the fact that its recursion operator cause the order of the differential equation
to increase by two per recursion and so the complexity of the higher members of the hierarchy
comes more quickly than for the Riccati hierarchy. Consequently our results must necessarily
be somewhat circumscribed. The relationship of the solution of the higher order member to the
lower is given in (3.91). It is not as simple as one might imagine.

The singularity analysis, summarised in Table 3, is not as clear-cut as it was for the Riccati
hierarchy. Perhaps one should not be surprised at this for the early members of the Riccati



308 M Euler, N Euler and PGL Leach

hierarchy have been known for many years to be quite exceptional. Nevertheless certain patterns
are evident. The first is that only (3.3), the Ermakov–Pinney Equation, is the only member
of the hierarchy (as revealed, but a certain extrapolation is not unreasonable) to possess the
Painlevé Property. For one value of the leading order coefficient equations (3.3) and (3.4) pass
the weak form of the test. As in the case of the Riccati hierarchy one would expect the pattern
to persist. For other values of the leading order coefficient we obtain mixed resonances so that
incomplete Left Painlevé Series and Right Painlevé Series can be found for these leading order
coefficients. As we noted above, the existence of a subsiduary solution is not incompatible with
the possession of the (weak) Painlevé Property. By way of contrast to the Riccati hierarchy there
is no suggestion of the equations passing the Painlevé Test with a complete Left Painlevé Series
as in the case of the Riccati hierarchy. This is already found in the Ermakov–Pinney equation for
which there is effectively just one leading order coefficient since in the analysis it always appears
as a square. The same is repeated for the higher members of the Ermakov–Pinney hierarchy.
From the three equations considered there is evidently a pattern of resonances associated with
the sequence of leading order coefficients.

Our study cannot be considered complete. Nevertheless we have demonstrated that the
concept of recursion operators, applied so fruitfully to evolution equations, is equally applicable
to ordinary differential equations. We further see that subclasses of hierarchies, witness the
Riccati hierarchy, can have richer properties than the general class. We confined our attention
to just one of the eight classes of linearisable hierarchies and one of the two quasilinear equations
reported by Petersson et al. even with these restrictions we have unfolded a rich set of results.
Exploration of the other classes is thereby encouraged.
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