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Abstract

Many important problems in evolutionary biology begin with observations of phenotypic variation. Suppose time to
an event-data are used to map quantitative trait loci (QTL) and underlying population is a mixture of susceptible and
non-susceptible subjects. If the cured subjects are ignored we may fail to detect the responsible genetic factors or
find false significant locations. In this article, we propose a nonparametric accelerated failure time cure model which
takes cured subjects as well to model time to an event.
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1. Introduction

Finding and mapping genetic loci(genes, markers are genetic loci) which is responsible for variation in a quantitative
phenotype is a key step toward understanding the molecular bases of a disease. With the development of genetic markers
and genetic linkage maps, using data from experimental crosses, it is now possible to detect and localize chromosomal
regions of interest known as quantitative trait loci (QTL) by applying models relating observed phenotype values with
genotypes. In standard interval mapping of QTL, the trait(or some transformation of trait) distribution is often modeled as
a mixture of two (or more) normal components corresponding to two (or more) different genotypes at the putative QTL,
see Lander and Botstein (1989), Zeng (1993) and many references cited there. Diao et al., (2004) proposed QTL mapping
for censored observations. Non-parametric methods have been also developed to test the presence of QTL, see Krugylak
and Lander (1995), Broman (2003), Poole and Drinkwater (1996), Basrak et al. (2004), Fine, Zou, Yandell (2004), Li,
Boehnke, Abecasis, Song (2006), Zak et al. (2007), Manichaikul (2008) and many references cited there.

In some genetic studies, with survival end points, there are heterogenous populations of subjects which is divided into
two groups. One group consists of subjects who become immune or insusceptible to a disease. They are said to be cured.
The other group consists of susceptible subjects who would eventually experience the event in the absence of censoring.
They are said to be uncured. Survival models with a cure rate referred to as “cure rate models” have received much attention
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in recent years. These models are useful when a proportion of study subjects are cured. In fact, the cure rate models have
been used for modeling time to an event data for various types of cancers, including breast cancer, leukemia, prostate
cancer and hand and neck cancer, where a significant proportion of patients are cured, see Farewell (1986), Kuk and Chen
(1992), Maller and Zhou (1992), Sposto et al. (1992), Lu and Ying (2004) and many references cited there for various cure
models.

When the primary phenotype is time to event and the proportion of a population is cured, various cure models have
been used to model phenotype distribution. See Broman (2003), Liu et al. (2006) and others. In this paper we focus on
joint estimation of QTL location and its effects on survivals of both cured and non-cured subjects using nonparametric
accelerated failure time (AFT) cure model. See Bilgili (2009) and Piao et al.(2011) for parametric AFT cure models.
Recently, Xua and Zhan (2010) proposed a multiple imputation method to impute cure and not cured latent variable
based on the rank estimation method and profile likelihood method for nonparametric AFT cure model. They assumed
all the covariates are observable in AFT part. However, in our situation some of the covariates in AFT part are also not
observable, i.e., some covariates are treated as latent variables. There are two ways to estimate QTL location as well as its
effect on survivals of both cured and non-cured subjects for our situation. The first approach is to borrow strength from
the marker information. Second approach is to use the imputation method. In this paper, we use both EM method as well
as multiple imputation method where genotypes, unobservable covariates, are imputed randomly, but they are conditioned
on the observed marker data. In other words, we simulate from the joint genotype distribution given the observed data
for all subjects. We then follow Wei (1990,1992), Jin et.al (2003) and Zhang and Peng (2007) for estimation of unknown
parameters.

The paper is organized as follows. Section 2 introduces notation and model. In Section 3, we obtain the estimates of
unknown parameters in the model using the imputation method. Section 4 is devoted to the analysis of Listeria monocyto-
genes data. In Section 5 we illustrate simulation study. Some concluding remarks are given in Section 6. Throughout this
paper we consider only single QTL. However, the methods described in this paper can easily be extended to multiple QTL
and/or different designs.

2. Notation and Model Specifications

A cure model can be considered as a survival model where part of the population is not affected by the hazard of interest.
More specifically, consider n subjects in the study. Let 7; be the potential time-to-event for the i-th subject. Then,

E:nlﬂ*+(l_n1)wal:177nv (1)

where 7); is the susceptibility indicator which attains a value 1 if the subject is susceptible otherwise 0 and 7;* < oo is the
failure time for the i-th subject when the subject is susceptible.
We consider the following model for W;* = InT;*.

W;* =InT;* = Bz + Po+ B, Gi + €, 2)

where z; is the covariates of interest, such as environmental factors which are assumed to be independent of G;,i=1,--- ,n
and B’ = (B1,---,B,) and G;’s are genotypes of QTLs. Let the random error € in the equation (2) has the survival function
So. Then, it is clear that

Suewr®) = POV > wr)
P(B'zi+ Bo+ BeGi+€ > w)
P(e > wi" — B'zi — Bo— By Gi)

= So(wi* —B'zi— Po— BsGi).
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In our setup, censoring indicator can be defined as &; = I(W;* < C;) = min(W;*,C;) where C; is the random censoring
time and the censoring time is assumed to be noninformative, i = 1,--- ,n. That is, & = 1 if the actual failure time is
observed and &; = 0 if the censoring time is observed for the i-th individual.

A logistic model is assumed for the susceptibility indicator ;. That is,

oY Zit 1 +%Gi

n(Gi,zi) =P = 1|Gi,z) = 3)

1+ Yzt 0+%G:

where ¥ = (yi,--,%p) andi=1,--- ,n.

Several remarks are in order in regards to equations (2) and (3).

(i) In Zhang and Peng (2007), since all covariates are assumed to be observed, they combined z; and G;. However, in
our situation to distinguish between observable and unobservable covariates we separate the two terms.

(i1) In (2) we make no assumptions on Sy, distribution of €. The model in (2) is often called the nonparametric AFT
model, see Cheng and Tzheng (2009). Combination of (2) and (3) are referred to as the nonparametric AFT cure model. It
should be noted that if we assume some distribution for € in (2), then we refer to it as the parametric AFT. For details see
Bilgili (2009). To avoid confusion, throughout the paper we will assume G;’s has one locus.

3. Estimation of Unknown Parameters

If G; is observable fori = 1,--- ,nin (2) and (3), then one can use the method proposed by Xu and Zhan (2010) to estimate
all the unknown parameters in both models. In our situation, however, the problem is that G;, genotypes of QTLs, are not
observable for i = 1,--- ,n. In this section first we propose methods to obtain the genotypes and then estimate unknown
parameters in (2) and (3).

3.1. Obtaining G; using imputation and EM algorithm
3.1.1. Obtaining G; using imputation

One way to obtain G;’s is to use the hidden Markov models, see Baum(1970), and multiple imputation which imputes
all the missing genotype data and then perform standard interval mapping methods for QTL mapping. Note that here
we need to impute the missing genotype data multiple times and as a rule of thumb, usually 16 different imputations are
recommended. In fact, the more the missing G; the more imputations are needed. Imputations were conducted with the help
of Rqtl package using sim.geno function by specifying n.draws argument. It should be noted that the imputed genotypes at
the markers match those observed assuming no genotyping errors have been made. For general case see Broman(2009).

Sen and Churchill (2001) use imputation method in their work and successfully apply this method on reanalysis of a
hypertension cross described in Sugiyama et al. (2001). Li (2009) et al., showed that genotype imputation works very
well for the susceptibility locus for age-related macular degeneration. In their imputation approach, they masked 5% of the
genotypes at the locus and showed that masked genotypes could be imputed correctly >99% of the time.

3.1.2. EM algorithm

In order to obtain the unknown genotypes (maybe a putative QTL), QTL genotype probabilities need to be obtained
conditioned on the marker data using the nearest flanking markers. Flanking marker is an identifiable region located
close to a gene which is used in linkage studies to understand how gene under investigation is inherited. For exam-
ple, in a backcross design, G; = 1/0 stands for the genotypes AA/AB respectively. We look for the probability that
an individual attains genotype AA or AB at the locus based on the marker data. Table 1 displays these probabilities:
P(AA|M, =AA, M, = AA),P(ABIM| = AA,M, = AA), P(AA|M; = AA,M, = AB),P(AB|M| = AA,M, = AB), P(AA|M; =
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AB,M, = AA),P(AB|M; = AB,M, = AA) and P(AA|M, = AB,M, = AB),P(AB|M; = AB,M, = AB). In Table 1, ry, de-
notes the recombination fraction between two nearest flanking markers in a backcross and r;p is the recombination fraction
between a putative QTL and marker s.

Table 1. Conditional probabilities of a putative QTL given two flanking
marker genotypes for a backcross population.

M, M AA AB
(I=r1p)(1—=r2p) ripra

AAAA T T-12)
AA AB (I=rip)rap rip(1—rap)

r r
AB AA rlr(]lzrzp) (1*"11?’)&1)

r r
AB AB rlPlrzzP (l—rlP)l(zl—”ZP)

1—r2 (1=r12)

Since the above conditional probabilities depend on unknown recombinaton fractions, below we describe the derivation
of the joint maximum likelihood estimates (MLE’s) of the recombination fractions.

Letr=(ry,---,ry—1) denote the set of recombination fractions where N is the number of ordered loci for an individual.
From now on, we use r as a recombination fraction between two markers or marker and a QTL. Let M; denote the observed
marker data for individual i, for i = 1,--- ,n. To avoid complication, we first descibe the procedure when N=2.

Consider AaBb x aabb, where possible genotypes are AaBb, aabb, aaBb and Aabb. For N=2, the likelihood function
can be written as L(r) = 212=1 212,:1 giqlog(ef);,, where observed genotype counts g;, and expected genotype frequencies
(ef) are shown in Table 2. From this case, the maximum likelihoood estimate of r is ¥ = %. In general, the likelihood
can be written as L(r) = [T, P(M;|r) where M; is the observed marker data for individual i, i = 1,--- ,n.

Table 2. Expected genotype frequencies for a backcross experiment:
814 is the observed genotype count for the /-th genotype of locus A and
g-th genotype of locus B. r is the recombination fraction between locus
A and locus B.

Genotypes  Observed Counts(g;,)  Expected Frequency efy,

AaBb 811 0.5(1 — r)
aabb 212 0.5(1—r)
aaBb 21 0.5r
Aabb 822 0.5r

Now, to obtain maximum likelihood estimates of » we use EM algorithm. Generally speaking, the EM algorithm
consists of two steps: E-step and M-step. In the E-step we calculate the expected number of recombinants for every
interval. In the M-step, we obtain the MLE’s by replacing the unobserved quantities with their expected values. For more
details see Broman (2009).

3.2. Estimation for parametric AFT cure model

Assume, the relationship between covariates and the log of failure time is
Wi* = B'zi+ Bo+ B,Gi+ oW. 4)

where o is a scale parameter, [ is the intercept and W is the error which has the unknown distribution Sy. Note that
combining (3) and (4) gives the parametric AFT cure model.
Assuming that models (3) and (4) are correct, we use the likelihood procedure in order to estimate these parameters
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based on the observed data. The likelihood under the observed data (W;*, &;,z;,M;), is

n
L = []PW, &,zi,M:)
i=1

n

= H Z P(VV[*,GhSiaZile‘?ni)
i=1G;,n;
n

= H[P(“/i*7176i7ziaMia])+P(VVi*a176i7ziaMiaO)+P(‘/Vi*7075iaziaMi71)+P(‘/Vi*7075iaziaMi70)]-
i=1

_— {[(FWHESWEN 0P = 1|Gi = 1,21)P(G; = 1|z, My)] + P(1: = 0|G; = 1,2)P(Gi = 1|21, M;) (1 — &)
i=1

+ [P SW )P = 1|G; = 0,2)P(Gi = 0]z, M;)] + [P(n; = 0|G; = 0,2:)P(G; = O]z, M;) (1 — ;)] }.(5)

It should be noted here the parameters of interest are (Bo, By, %, s, B’,Y,0). We refer to (5) as the incomplete (ob-
served) likelihood function. Since it is difficult to get the maximum likelihood estimate of parameters by maximizing (5),
one option is to use the EM algorithm.

For §;=1 and given the fact that §;=1 implies m;=1,
P(Wi*,8:,m:i,GilM;,zi) = P(Wi*|Gi,M;,mi = 1,z;)P(; = 1|G, M;,2:) P(Gi|M;, ;).
For §;=0, 1, is unobservable and therefore,

P(Wi*,8,mi,GilM,z;) = [P(W"|Gi,M;,n; = 1,z;)P(n; = 1|Gi, M;,z;) P(Gi|M;,zi) P(Gi|M;, z;)]
+  [P(Wi"|Gi,Mi,m; = 0,z;)P(n; = 0|G;, M;, zi) P(Gi|M;, z;)].

Thus, the likelihood function for the complete data (W;*, &;, i, Gi, M;, z;) is

no [ Yzt \ " 1 (1-m;)
LComplete = H < >

1+ e?/ZiJrYoJrYgGi 1+ gVZiJrYoJrYgGi

i=1
" W'*—ﬁ/‘—ﬁG'—ﬁ &;ni
X l(l/dfo( e ")]
i=1
/ (1=8)n;
% SQ(M*—ﬁZi;ﬁgGi—ﬁ0> !
x  []P(Gim;). (6)
i=1

This complete data likelihood is composed of three parts: logistic model, the AFT cure model, and the conditional prob-
ability of G; given the flanking markers genotypes M;. It should be noted here the parameters of interest are (B, Bg, 10, %, B’, Y, 0).
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This likelihood can also be expressed in terms of hazard function 2(W;*). That is,

/
eV Zitn+%Gi

n i 1 (1-m)
,IJ 1+ g?/ZiJrYoJrYgGi < 1+ eVZiJrYoJrYgGi)

n % 4 o oini
" Hl(l/c)hO(Wi —ﬁZi;ﬁng ﬁo)]

i=1

T o Ni
% SO<VVI' B zi ﬁth ﬁO)

LComplete =

o

n
X P(Gi|Ml').
i=1

)

where hy is the hazard for Sy and P(G;|M;) can be obtained from Table 1. It is clear that Loy prere is a function of
unobserved quantities {n;, G;, ;G }.

The EM algorithm consists of two steps: E-step and M-step. In the E-step we will calculate the conditional expecta-
tion of leomplete, With respect to unobserved quantities {n;,G;,7;G;} given the current estimated parameter values and the
observed data O; = {W;*, §;,M;,z;}. In the M-step we make our initial guesses for the parameters of interest and maximize
and update them until we reach the convergence. Note that lcomplete = 10g(Lcompiere). In order to calculate E(Icompiere)
we need to find conditional expectations of unobserved quantities namely E(G;), E(n;) and E(1;G;). In this paper these
conditional expectations are derived only for backcross design and are:

If §; = 1 then ni=1, and Prli = E(n,»|M,~,z,~,W,~*) is 1.

If ; = 0, then
Wi~ B'zi— BB W zi—By
(1) piSo( M =PEizBs=Poy 7 (0) (1 — p;)So (WP Ei—Fo
By = MOPSCETa ) | w0 )
where,
Wit —B'zi— By —
Do = mpsy T PEBB L))
Wit — Bz — By —
w1 - pso PR o)1,
If6;, =1,
fo(M Btk 1),
E(Gi|M;,z;,W;") = < -,
Dy
where,
Wit —B'zi— Bg — Wi* —B'zi — Po
pu = s PRy (PSR o)1,
If 6, =0,
E(GM o W) = SO<W>ni<1>pi+<1m<1>>p,»
i|Mi,Zi, Wi = D Dio .
If 6; = 1, then

fo(%)ﬂi(l)m

EMiGilM;,zi,W;") = D
]
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And if §; = 0, then

.*7 / . —
So(M P EiBeboy ) ),
Do '

It should be noted that the same procedure can be used for the other multiple crosses including intercross.

E(NiGi|M;,z;,W;") =

3.3. Nonparametric estimation

Estimation method for the unknown parameters is based on EM algorithm and rank estimator. Similar methods used by
Wei et.al (1990,1992) and Jin et.al (2003) in the AFT model. Zhang and Peng (2007) considered semiparametric AFT
model with the cure part. Using Gehan type weight in the estimating equation, they obtained updated estimates in the M
step through minimizing a convex function using a linear programming method. If there exists a solution for the estimating
function, it will be unique and consistent. For details see Zhang and Peng (2007). Let fj be the density probability function
for € and Sy be the corresponding survival function. The conditional survival function of W;*, given the patient is not
cured, is So(W;* — B'zi — Bo — B, Gi). Let O; = (W;*, 8;, M;, z;) denote the observed data for the i-th individual, i = 1,--- ,n.
It should be noted that G;’s are not provided in the original data set. However, they are obtained through imputation
method. The contribution to the likelihood from the i-th individual is given in section 3.2. The likelihood is the same as
the parametric likelihood which coincides with Zhang and Peng (2007).

We can obtain the estimates through maximizing observed likelihood directly if the distribution of the error term is
known to us. However, due to lack of information about Sy, this is difficult to do. We then follow Zhang and Peng(2007).

As mentioned earlier, the latent variable 1); defines whether the subject is susceptible (1; = 1) to a disease or not
(n; = 0). It can be easily seen that if § = 1 then 1; = 1. However, if § = 0, we have no information on 17;.

To get the unknown parameter estimates, we will make use of EM algorithm which requires 1. Let n; ®) =F (nil alk), 0;)
where a = (o, Bg, 10, Y, B’ Y, So). Note that n:) can be interpreted as the conditional probability that the i-th individual
is uncured at the k-th iteration of the algorithm. If §;=0, then

P(W*ni =1,0)P(n; = 1|Qy)

10, of®
E(m]0;, ) Dy ®)
where,
Dp = PW|ni=1,0)P(mi=1|Q:) +P(W;"In; = 0,0:;)P(1n; = 0|Q:)
and Q; = (0, a(k)). Combining (8) and using the fact §; = 1 implies 1; = 1, we get the following.
1 = 8)7(Gi,z:)So(Wi* — B'zi — Bo — B Gi
ni(k):5i+( )7(Gi, z:)So( B'zi — Bo — B:Gi) ©

Dy ’
where,
Dj3 = [1 = (G, zi) + 7(Gi, 2:)So(Wi* — B'zi — Bo — By Gi)].

It is worth note that the difference between (9) and E(n;|M;,z;, W;*) for the parametric case. Once the genotypes are
imputed, we make use of equation (9), otherwise we use E(1;|M;,z;, W;*) where G;’s are not known.

Our interest is to estimate the unknown parameters (Bo, Be, 10, ¥e» B’, Y, So). Following Zhang and Peng (2007) we can
obtain the estimate of Sy through the residuals of the model. Let rj < rp < --- < r,, be the the failure residuals and d,j
denote the number of failures at time corresponding to r; and R(r;) denote the risk set at r;, then the estimate of Sy in the
current maximization step is

~ (k+1 d,.
SO( + >(g) = exp (— Z W) (10)
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The estimate of survival function is stable. To see that, since stability of estimation of unknown parameters, guarantees the
stability of estimate of survival function we showed the stability of parameters.
Table 3 shows the estimated parameters with different initial values of unknown parameters.

Table 3. Parameter estimates for listeria data for different inital values.

Initial values for B,,%,%, Estimate

(-100,0,0) (-0.436,0.265,1.181)
(-10,0,0) (-0.437,0.223,1.130)
(-1,0,0) (-0.433,0.223,1.310)
(0,0,0) (-0.437,0.265,1.181)
(1,0,0) (-0.437,0.265,1.181)
(10,0,0) (-0.431,0.265,1.181)
(100,0,0) (-0.434,0.265,1.181)

Table 4. Parameter estimates and their standard errors.

Parameters Estimate  Std Err

Be 0484 0.005
Bo 4934 0.004
Y 1330 0.029
% 0218  0.016

Because of the lack of having a complete log-likelihood function, it is not easy to obtain the variances of the estimated
parameters in the proposed semiparametric AFT cure model. In order to handle these challenges in estimation of variances
for the semiparametric AFT cure model, we used bootstrap method to estimate the standard error of the parameters. We
generated 1000 data sets from the listeria data. Table 4 shows the estimates and their standard errors.

For convergence criterion, we looked at the absolute differences between the estimated values of parameters at the
k-th iteration and the estimated values of parameters at (k + 1)-th iteration until the difference between k-th and (k+ 1)-th
iteration values is less than 0.05. We usually achieved convergence in three updates. During simulations the convergence
is guaranteed and resulted in consistent estimates.

3.4. LOD score

Evidence in identifying QTL is summarized by a LOD score, defined as the log10-likelihood ratio comparing the alternative
hypothesis of a QTL at the position of interest with the null hypothesis of no QTL. More specifically, for a given location
&, suppose we want to test,

Hy: Be(8) =0,%() =0. (11
Then it is clear that under Hy, the LOD score at a given putative location & can be defined as
L
LOD(E) = logjo 7~ 12)
2
where
Li=L- s
Be(£).%(8).Bo(£).5(6).B(£).7(5)

Ly=Ls
B(&).Y(E) Bo(&).5(E)|Be (5)=0.%(&)=0).
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We maximize numerator under alternative hypothesis, H,, while keeping all the parameters in the general model. Also,
we maximize the denominator in the absence of B,(&) and %(&) corresponding to Hy for every putative and marker
locations for the whole genome. In other words, we scan the whole genome by calculating the LOD scores. We choose the
location which gives the highest LOD score.

In parametric case, W has an extreme value distribution then 7;* follows a Weibull distribution. We used this distribution
because it can be used to model a variety of life behaviors and has wide applications in biomedical research. There are
theoretical motivations such as time to appearance of tumor or until death in animals. See Pike (1966), Peto and Lee
(1973). It is shown that Weibull model fits data well dealing with the time to appearance of tumors in animals. See Lee
and O’Neill (1971) and Doll (1971).

4. Applying Methodology to the Listeria Data Set

In this section we illustrate the methods with an application to Listeria data and conduct simulations to evaluate the perfor-
mance of our methods.

4.1. Ilustration of our method using the listeria data

We apply our methods described in Section 3 to the Listeria monocytogenes data set by Boyartchuk, Broman, Mosher,
D’orazio, Starnbach (2001) and Broman (2003).

The data set consists of 120 age-matched (9 weeks of age) female BALB/cByJ x C57BL/6ByJ intercross (CB6F2/ByJ)
mice that were infected by intravenous injection and were monitored to find their time of death within eight hours. For
more details see Broman (2000). All animals at the point of death were recorded as dead. Animals surviving past 264 hours
(6; = 0) were considered recovered from the disease. Traditional interval mapping, which relies on normally distributed
traits, is thus not appropriate. We checked all chromosomes and chromosome 13 showed promising results from other
investigations as well as our investigation, we decided to analyze only chromosome 13 where m =29, n =116 and k = 12.
Here m is the number of putative QTL including observed markers, n is the number of mice and & is the number of observed
markers. We used R and optim function for the maximization. Now, we are ready to apply our methodology to the data set
we described in Section 4.1. We provide the LOD scores of 29 locations on Chromosome 13 for the nonparametric method.
They are: 0.19, 0.89, 0.83, 0.36, 1.01, 0.23, 0.72, 0.54, 0.88, 1.09, 1.12, 0.73, 0.42, 0.82, 1.32, 1.58, 1.63, 2.02, 2.85, 4.97,
5.66, 6.18, 4.86, 4.69 ,4.46, 3.43, 3.26, 2.85, 2.56 from location 1 through 29 respectively. It is clear that location 22 has
the highest LOD score. Large LOD score indicates evidence for the presence of a QTL. In other words, the larger the LOD
score the greater the evidence.

5. Simulation Study

From Table 5, it can be seen that the results using parametric and and nonparametric methods are similar. Whenn =115
it took approximately 9 hours to complete 1000 simulations. When n = 50, it took about 5.5 hours and it was around 3
hours for n = 25 with Intel Core 2 Duo CPU at 2.10GHz. We also counted how many times location 22 was picked (in
terms of percentage) for the parameter values specified above and for different sample sizes. We obtained the bias and
standard errors of the estimates for parameters. Here we assumed that there are no environmental covariates for AFT as
well as logistic part.

Table 5 contains bias, MSE and proportion of times that correct location which is location 22 is picked. From Table
5 it is clear that both methods performs well in terms of bias, MSE and proportion of time that location 22 was picked.
Parametric approach does slightly better. However, the difference is small. Based on Table 5 it can be seen that parametric
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and nonparametric approaches are comparable. Also, as n increases our results improve as one expected.

Table 5. Coverage, Biases and MSE of simulated data sets.

Method QTL coverage (%) Size Par Bias MSE

Parametric 68 25 Bs 0.524  0.000291
Y. 0228 0.010414
Bo 0.304 0.000138
Yo 0.144  0.046140
79 50 B, 0.236  0.000026
Y. 0.063  0.000808
Bo 0.198  0.000022
% 0.022 0.012139
83 115 B, 0.178 0.000018
Y 0.038 0.000297
Bo 0.140 0.000014
Yo 0.017 0.000126
Nonparametric 58 25 B, 0476 0.001772
Y. 0277 0.018913
Bo 0.369 0.001364
Yo 0.159 0.051305
75 50 B, 0279 0.000915
Y. 0.062 0.010715
Bo 0249  0.000868
Yo 0.024 0.012407
82 115 B, 0224 0.000748
Y. 0.019 0.003115
Bo 0.139  0.000510
Y  0.005 0.000160

6. Concluding Remarks

In this article, we described interval mapping using nonparametric accelerated failure time cure model. We proposed a
nonparametric method using imputation for QTL location and effects on both cured and non-cured subjects. We applied
our methodologies to a real data set. Both parametric and nonparametric approaches provided similar results of unknown
parameters as well as the same QTL location. Imputation seems a good choice without the need of computing all expected
values over an EM algorithm. We also conducted simulations to evaluate performance of our methodology. The results
show that our methods perform well in terms of bias, MSE and detecting the QTL location.
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