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Abstract—This article proposes the preventive replacement policy 
for an operating system which may continuously work for N jobs 
with random working times and be imperfectly maintained upon 
failure. As a failure occurs, the system suffers one of the two 
types of failures based on some random mechanism: type-I 
(repairable or minor) failure is rectified by a minimal repair, or 
type-II (non-repairable or catastrophic) failure is removed by a 
corrective replacement. A bivariate replacement policy is 
considered in which the system is replaced preventively at an 
operating time T, at number N of working times, or replaced 
correctively after any type-II failure, whichever occurs first. The 
optimal schedule of preventive replacement that minimizes the 
mean cost rate is presented theoretically and determined 
numerically. Because the framework and analysis are general, 
the proposed model extends several existing results. 
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I.  INTRODUCTION 

Various kinds of systems are subjected to aging and 
degradation after being launched and suffer stochastic failures 
during actual operation. For the non-repairable system, 
replacement is carried out once it fails; while most repairable 
systems, such as aircrafts, power generators, nuclear systems, 
and computer systems, can be restored to a functioning state 
through a specific maintenance activity. Therefore, selecting 
cost efficient, effective maintenance actions and strategies to 
improve system reliability and physical performance is crucial 
work in reliability engineering. 

To measure the quality of maintenance activities, one can 
classify maintenance into some categories according to its 
impact on the system. In most cases, maintenance does not 
make a system “as good as new” (perfect maintenance or 
simply replacement) or “as bad as old” (minimal maintenance 
or minimal repair). A minimal repair restores the system to its 
functioning condition just prior to the failure, and the failure 
rate is not affected by minimal repair [1]. However, it is more 
realistic to consider that maintenance restores a system to 
somewhere between these two possible extreme cases, and that 
activity is referred to as imperfect maintenance. Various 
models have been proposed for imperfect maintenance in the 
past from different perspectives as reviewed in complete detail 
in [2]. In particular, one probabilistic approach of modeling an 

imperfect maintenance activity is the choice between 
replacement and minimal repair based on some random 
mechanism. Brown and Proschan [3] considered a model in 
which, upon failure, the system is replaced with probability p 
and is minimally repaired with probability q (=1-p), 
independently of the previous history of maintenance. Further 
enhancement to this probabilistic approach of two failure 
mechanisms was to consider the probabilities as time-
dependent functions [4]. These results have been extended and 
applied extensively in reliability research, some recent 
applications in such as cumulative repair-cost limit replacement 
policy and used system can be found in [5]－[7], respectively. 
In this paper, we are concerned with constructing the 
preventive replacement policy of using the imperfect 
maintenance of two failure mechanisms. 

Preventive replacement actions for an operating system are 
generally grouped into time-based replacement that is based on 
planned time, age, or usage time of the system, etc. Age 
replacement policy (ARP) is a well-known preventive 
replacement model of unique time scale: an operating system is 
replaced at age T or at failure, whichever occurs first [1]. 
However, for some systems in offices and industry, when a job 
has a variable working cycle, it would be better to do 
maintenance or replacement after it has completed its work [8]. 
If a system is replaced only at random working times, the 
policy can be called a random replacement policy. The early 
investigation into the random replacement policy can be found 
in [9]－ [10]. Recently, replacement policies with two time 
scales have been discussed and proposed [11]. Chen et al. [12] 
take up an operating system which works at successive random 
times and its age replacement policies. Chen et al. [13] consider 
replacement and maintenance policies for an operating system 
which works at random times and undergoes minimal repair at 
failures. In this paper, we will further develop the modified 
random and age replacement policies for an operating system 
with jobs successively and imperfect maintenance quality. 

II. PREVENTIVE REPLACEMENT 

In this article, a modified preventive replacement policy 
with   working times for a system in which repair, maintenance, 
and replacement take place according to the following scheme. 
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• A new system with a failure time X  begins to operate 
at time 0. When X  has a general distribution ( )F t  

and probability density function ( )f t , then the failure 

rate ( ) ( ) ( )r t f t F t≡  is assumed to increase to. A 
preventive replacement (PR) is planned to carry out 
when the system reaches age. 

• It is assumed that the system failures at time t  can 
experience two types: a type-I failure (repairable or 
minor) occurs with probability q  and is corrected by a 
minimal repair, whereas a type-II failure (non-
repairable or catastrophic) occurs with probability 

( 1 )p q= −  and requires a corrective replacement (CR). 

• It is assumed that jY  is the j th working time of the 

system and is independent with an identical 

distribution ( ) ( )
j

G t P Y t≡ ≤ . Then the total working 

time 
1j j

S Y Y≡ + +⋯  up to the j th working time has 

a distribution ( ) ( ) ( )j

j
G t P S t≡ ≤ , where ( ) ( )jG t is the 

j -fold Stieltjes convolution of ( )G t  with itself and 
(0 ) ( ) 1G t ≡ . Another PR is performed at the 

completion of the N th working time. 

• In summary, PR is performed before any type-II 
failures at age T  or at number N  of working times, 
whichever occurs first, which is called preventive 
replacement first (PRF). CR is done immediately after 
any type-II failure. 

• Repairs and replacements are completed 
instantaneously. After a replacement, the system 
becomes brand new and resets to time 0. A renewal 
cycle is defined as the time interval between two 
consecutive replacements. 

Let Z  be the waiting time until the first type-II failure. 
From Beichelt (1993), the survival function of Z  is directly 
obtained  

 ( ) ( ) exp( ( ))
p

F t P Z t p t≡ > = − Λ , (1) 

where the cumulative hazard 
0

( ) ( )d ln ( )
t

t r u u F tΛ ≡ = −∫  is 

the mean number of failures that occur in [0, ]t . Te mean time 
of a renewal cycle can be given 

 ( )

0
( )[1 ( )]d

T N

p
F t G t t−∫ . (2) 

Next, because the mean number of type-I failures (minimal 

repairs) in [0, ]t  can be derived as ( ) ( )
q

t q tΛ ≡ Λ  [14], the 

total mean number of type-I failures before replacement is  

 ( )

0
( )[1 ( )] ( )d

T N

p
F t G t qr t t−∫ . (3) 

Furthermore, the following cost structure is introduced for 
this model. The PR costs due to age T  and due to number N  

are 
T

C  and 
N

C , respectively. The CR cost due to type-II 

failure is 
Z

C . It is also assumed that the corrective replacement 

cost is not less than the preventive replacement costs. Cost 
m

c  

is the minimal repair cost. Then, the mean cost rate of a 
renewal cycle is, from (2)-(3), 

( )

0

( ) ( )

0 0

( )

0

( ) ( )d ( )

( ) [1 ( )]d ( ) ( )[1 ( )] ( )d
( , ) .

( )[1 ( )]d

T N
T N T p

T TN N
Z T p m p

T N
p

C C C F t G t

C C G t F t c F t G t qr t t
J T N

F t G t t

+ −

+ − − + −
≡

−

∫

∫ ∫

∫

 (4) 

III.  OPTIMIZATION 

First, we derive an optimal number *N  which minimizes 
( , )J T N  with respect to N  for a given T . We see that the 

inequalities ( , 1) ( , )J T N J T N+ ≥  and ( , ) ( , 1)J T N J T N< −   
hold if and only if 

 ( ; )
T

L N T C≥  and ( 1; )
T

L N T C− < , (5) 

where 

{
}

( ) ( )

0 0

( ) ( )

0 0

( ; ) ( )[1 ( )]d ( ) ( )d ( )

   ( ) [1 ( )]d ( ) ( )[1 ( )] ( )d ,( ; )

    for 1,2, ,

0, for 0,

T TN N
p N T p

T TN N
Z T p m p

N T F t G t t C C F t G t

C C G t F t c F t G t qr t tL N T

n

n

ζ − − −

 + − − + −≡ 


=
 =

∫ ∫

∫ ∫
⋯

(6) 

( )

0

( ) ( )

0 0

( )

0

( ) ( )d ( )

( ) ( )d ( ) ( ) ( ) ( )d
( ; ) ,

( ) ( )d

T N
T N p

T T
N N

Z T p m p

T
N

p

C C F t G t

C C G t F t c F t G t qr t t
N T

F t G t t
ζ

−

+ − +
≡

∫

∫ ∫

∫

ɶ

ɶ ɶ

ɶ

 (7) 

and ( ) ( ) ( 1)( ) ( ) ( )N N NG t G t G t+≡ −ɶ . 

Furthermore, let  

0

0

( ) ( ) ( ) ( )d

( )d

T

T Z T p m p

T

p

C C C F T c F t qr t t

F t t
ρ

+ − +
≡

∫

∫
.         (8) 

The optimal policy *N  that minimizes the mean cost rate 
( , )J T N  with respect to N  for a given T  can be summarized 

as below. 

371



If ( ; )N Tζ  is increasing in N  and lim ( ; )
N

N Tζ ρ
→∞

> , then 

there exists a finite and unique *N  that satisfies 
*( ; )

T
L N T C≥  and *( 1)

T
L N C− <  for * 1, 2,N = ⋯ . 

Next, we derive an optimal age *T  that minimizes 
( , )J T N  with respect to T  for a given N . Differentiating 

( , )J T N  in (4) with respect to T and setting it equal to zero, 

we see that ( , ) 0J T N T∂ ∂ =  if and only if 

 ( ; )
T

Q T N C= , (9) 

where 

( ) ( )

0 0

( ) ( )

0 0

( ; ) ( ; ) ( )[1 ( )]d ( ) ( )d ( )

                 ( ) [1 ( )]d ( ) ( )[1 ( )] ( )d ,

T TN N
p N T p

T TN N
Z T p m p

Q T N T N F t G t t C C F t G t

C C G t F t c F t G t qr t t

ϕ ≡ − − −


+ − − + −


∫ ∫

∫ ∫

(10) 

( ; ) ( ) ( ) ( ) ( ) ( )
N

N T G Z T p m
T N C C r T C C r T c qr Tϕ ≡ − + − + , (11) 

and 
( )

( )

( )
( )

1 ( )N

N

G N

G T T
r T

G T

∂ ∂
≡

−
, 

( )
( )

( )

p

p

p

F T T
r T

F T

∂ ∂
≡ .  

Furthermore, let 

( )

0

( ) ( )

0 0

( )

0

( ) ( )d ( )

 ( ) [1 ( )d ( ) ( )[1 ( )] ( )d

( )[1 ( )]d

N

T N T p

N N

Z T p m p

N

p

C C C F t G t

C C G t F t c F t G t qr t t

F t G t t
θ

∞

∞ ∞

∞

+ −

+ − − + −
≡

−

∫

∫ ∫

∫
.(12) 

We can summarize the structure properties of the optimal 

policy *T  that minimizes ( , )J T N  with respect to T  for a 
given N  as follows. 

Suppose that ( ; )T Nϕ  is continue and increasing in T . If 

lim ( ; )
T

T Nϕ θ
→∞

> , then there exists a finite and unique *T  

which satisfies (9) and the optimal mean cost rate is 
* *( , ) ( ; )J T N T Nϕ= ; otherwise, the optimal policy is 

*T → ∞ . 

IV. NUMERICAL EXAMPLE 

In this section, a numerical example is given to illustrate the 
characteristics of the presented models. Suppose that a system 
with a failure time X  deteriorates increasingly with its age, 
and fails according to the Weibull distribution 

( ) ( )F t P X t≡ ≤  with scale parameter α  and shape parameter 

β , i.e., ( ) 1 exp[( ) ]F t t βα= − − . We assume that each random 

working cycle of the system has an independent exponential 
distribution ( ) 1 exp( )G t tθ= − − . 

In practice, the repair cost is a random variable and the 
decision to repair or replace a failed system may depend on the 
estimated repair cost, denoted by C . Such a formulation has 
been studied by [15]－[16], and is central to what is called 
repair limit replacement policy. Here, we consider a repair limit 
replacement policy where, in a failure state, one replaces the 
system or repairs it depending on the random cost C . A 

system undergoes a corrective replacement if C cδ ∞>  and is 

minimally repaired if C cδ ∞≤ , where c∞  is the constant cost 

of replacement at failure and δ  ( 0 1δ≤ ≤ ) can be interpreted 

as a fraction of the constant cost c∞ . Suppose that the random 

repair cost C  has a distribution ( )L u  and density function 

( )l u . Hence, δ  satisfies 
0

( )d
c

q l u u
δ ∞= ∫ , and the expected 

minimal repair cost 
m

c  can be given by 
0

( )d
c

m
c ul u u q

δ ∞= ∫ . 

The parameter q  (minimal repair probability) is varied to 
determine its influence on the optimal policies.  

The mean cost rate ( , )J T N  in (4) is a bivariate function of 

( , )T N , and we may obtain the bivariate optimal replacement 

policy *( , )T N  such that *( , ) min min ( , )
N T

J T N J T N=  
  . The 

optimal preventive replacement policies and related minimum 
mean cost rates for the imperfect maintenance models under 
different minimal repair probabilities are reported in Table I. 

TABLE I.  OPTIMAL PREVENTIVE REPLACEMENT POLICIES AND MEAN 

COST RATES 
2

2 ( 10 )

,1000, 1000, ~ (100, 25 ) ( ) 1 , ( ) 1
t t

Z
C c C N F t e G t e

− −

∞
= = = − = −  

 
Case 1. 
100, 150T YC C= =   

Case 2. 
150, 200T YC C= =   

Case 3. 
200, 250T YC C= =  

q *N  *T  
*( , )JT N   *N  *T  

*( , )JTN   *N  *T  
*( , )JT N  

0.9 25 7.5820 26.6305  29 9.4456 32.2316  32 11.1009 36.7700 
0.8 23 6.3286 32.0233  27 7.9384 38.5814  29  9.3993 43.8019 
0.7 21 5.5357 36.6809  25 6.9690 44.0878  27  8.2848 49.9263 
0.6 21 4.9770 40.8560  24 6.2795 49.0236  26  7.4836 55.4305 
0.5 19 4.5562 44.6532  23 5.7569 53.5426  25  6.8721 60.4786 
0.4 19 4.2243 48.1865  22 5.3430 57.7415  24  6.3854 65.1755 
0.3 19 3.9538 51.5032  21 5.0045 61.6869  23  5.9859 69.5933 
0.2 18 3.7275 54.6455  21 4.7206 65.4280  22  5.6497 73.7864 
0.1 17 3.5340 57.6485  20 4.4773 69.0063  22  5.3610 77.8008 
0.0 16 3.3645 60.5612  20 4.2636 72.4815  21  5.1065 81.7048 

 
. 

From the numerical results, we have the following 
observations: 

• We see that when the minimal repair probability q  
increases, the minimum mean cost rate diminishes, and 
the optimal preventive replacement schedule extends. 
This is intuitive, as the lower probability of 
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replacement leads to a lower mean cost and a 
lengthened replacement schedule. 

• We see that some improvement can be made in the 
minimum mean cost rate if one allows for minimal 
repair at minor failure. That is to compare the 
maintenance policies proposed in this paper with pure 
maintenance policies (i.e., without minimal repair), 
minimal repair can lead to more advantage in 
maintenance cost. 

• It can be seen that the present model is a generalization 
of the previous models and the policy with preventive 
replacement outperforms the one without preventive 
replacement. 
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