# $q$-Euler numbers and polynomials associated with $p$-adic $q$-integrals 

Taekyun KIM

EECS, Kyungpook National University, Taegu 702-701, S. Korea<br>E-mail: tkim@knu.ac.kr, tkim64@hanmail.net

Received June 23, 2006; Accepted in Revised Form August 22, 2006


#### Abstract

The main purpose of this paper is to present a systemic study of some families of multiple $q$-Euler numbers and polynomials. In particular, by using the $q$-Volkenborn integration on $\mathbb{Z}_{p}$, we construct $p$-adic $q$-Euler numbers and polynomials of higher order. We also define new generating functions of multiple $q$-Euler numbers and polynomials. Furthermore, we construct Euler $q$-Zeta function.


## 1 Introduction

For any complex number $z$, it is well known that the familiar Euler polynomials $E_{n}(z)$ are defined by means of the following generating function, see Refs. [3, 5, 6, 9, 13]:

$$
\begin{equation*}
F(z, t)=\frac{2}{e^{t}+1} e^{z t}=\sum_{n=0}^{\infty} E_{n}(z) \frac{t^{n}}{n!}, \quad(|t|<\pi) . \tag{1.1}
\end{equation*}
$$

We note that, by substituting $z=0$ into (1.1), $E_{n}(0)=E_{n}$ is the familiar $n$-th Euler number defined by $[4,5]$

$$
G(t)=F(0, t)=\frac{2}{e^{t}+1}=\sum_{n=0}^{\infty} E_{n} \frac{t^{n}}{n!}, \quad(|t|<\pi) .
$$

By the meaning of the generalization of $E_{n}$, Frobenius-Euler numbers and polynomials are also defined by [16]

$$
\frac{1-u}{e^{t}-u}=\sum_{n=0}^{\infty} H_{n}(u) \frac{t^{n}}{n!}, \text { and } \frac{1-u}{e^{t}-u} e^{x t}=\sum_{n=0}^{\infty} H_{n}(u, x) \frac{t^{n}}{n!} \quad(u \in \mathbb{C} \text { with }|u|>1) .
$$

Over five decades ago, Calitz [2,3] defined $q$-extension of Frobenius-Euler numbers and polynomials and proved properties analogous to those satisfied $H_{n}(u)$ and $H_{n}(u, x)$. Recently, Satoh $[14,15]$ used these properties, especially the so-called distribution relation
for the $q$-Frobenius-Euler polynomials, in order to construct the corresponding $q$-extension of the $p$-adic measure and to define a $q$-extension of $p$-adic $l$-function $l_{p, q}(s, u)$.

Let $p$ be a fixed odd prime in this paper. Throughout this paper, the symbols $\mathbb{Z}$, $\mathbb{Z}_{p}, \mathbb{Q}_{p}, \mathbb{C}$ and $\mathbb{C}_{p}$, denote the ring of rational integers, the ring of $p$-adic integers, the field of $p$-adic numbers, the complex number field, and the completion of the algebraic closure of $\mathbb{Q}_{p}$, respectively. Let $\nu_{p}(p)$ be the normalized exponential valuation of $\mathbb{C}_{p}$ with $|p|_{p}=p^{-\nu_{p}(p)}=p^{-1}$. When one speaks of $q$-extension, $q$ can be regarded as an indeterminate, a complex number $q \in \mathbb{C}$, or a $p$-adic number $q \in \mathbb{C}_{p}$; it is always clear from the context. If $q \in \mathbb{C}$, then one usually assumes that $|q|<1$. If $q \in \mathbb{C}_{p}$, then one usually assumes that $|q-1|_{p}<p^{-\frac{1}{p-1}}$, and hence $q^{x}=\exp (x \log q)$ for $x \in \mathbb{Z}_{p}$. In this paper, we use the below notation $[6,7,8,9,10,11,14]$

$$
[x]_{q}=\frac{1-q^{x}}{1-q}, \quad(a: q)_{n}=(1-a)(1-a q) \cdots\left(1-a q^{n-1}\right) .
$$

Note that $\lim _{q \rightarrow 1}[x]_{q}=x$ for any $x$ with $|x|_{p} \leq 1$ in the $p$-adic case. For a fixed positive integer $d$ with $(p, d)=1$, set

$$
\begin{aligned}
& X=X_{d}=\underset{N}{\lim _{N}} \mathbb{Z} / d p^{N}, X_{1}=\mathbb{Z}_{p}, X^{*}=\bigcup_{\substack{0<a<d p \\
(a, p)=1}} a+d p \mathbb{Z}_{p}, \\
& a+d p^{N} \mathbb{Z}_{p}=\left\{x \in X \mid x \equiv a\left(\bmod p^{N}\right)\right\},
\end{aligned}
$$

where $a \in \mathbb{Z}$ satisfies the condition $0 \leq a<d p^{N}$, (see Refs. [10, 11]). We say that $f$ is a uniformly differentiable function at a point $a \in \mathbb{Z}_{p}$, and write $f \in U D\left(\mathbb{Z}_{p}\right)$, if the difference quotients $F_{f}(x, y)=\frac{f(x)-f(y)}{x-y}$ have a limit $f^{\prime}(a)$ as $(x, y) \rightarrow(a, a)$ [11]. For $f \in U D\left(\mathbb{Z}_{p}\right)$, let us begin with the expression [7, 8, 9, 11]

$$
\frac{1}{\left[p^{N}\right]_{q}} \sum_{0 \leq j<p^{N}} q^{j} f(j)=\sum_{0 \leq j<p^{N}} f(j) \mu_{q}\left(j+p^{N} \mathbb{Z}_{p}\right),
$$

which represents a $q$-analogue of Riemann sums for $f$. The integral of $f$ on $\mathbb{Z}_{p}$ is defined as the limit of those sums (as $n \rightarrow \infty)$ if this limit exists. The $q$-Volkenborn integral of a function $f \in U D\left(\mathbb{Z}_{p}\right)$ is defined by

$$
I_{q}(f)=\int_{X} f(x) d \mu_{q}(x)=\int_{X_{d}} f(x) d \mu_{q}(x)=\lim _{N \rightarrow \infty} \frac{1}{\left[d p^{N}\right]_{q}} \sum_{x=0}^{d p^{N}-1} f(x) q^{x} .
$$

Recently, we considered another construction of a $q$-Eulerian numbers, which are different than Carlitz's $q$-Eulerian numbers as follows [ $6,12,13]$ :

$$
F_{q}(x, t)=[2]_{q} \sum_{n=0}^{\infty}(-1)^{n} q^{n} e^{[n+x]_{q} t}=\sum_{n=0}^{\infty} E_{n, q}(x) \frac{t^{n}}{n!} .
$$

Thus we have

$$
E_{n, q}=E_{n, q}(0)=\frac{[2]_{q}}{(1-q)_{n}} \sum_{l=0}^{n}\binom{n}{l} \frac{(-1)^{l}}{1+q^{l+1}}, E_{n, q}(x)=\frac{[2]_{q}}{(1-q)_{n}} \sum_{l=0}^{n}\binom{n}{l} \frac{(-1)^{l}}{1+q^{l+1}} q^{l x},
$$

where $\binom{n}{l}$ is a binomial coefficient [13].
Note that $\lim _{q \rightarrow 1} E_{n, q}=E_{n}$ and $\lim _{q \rightarrow 1} E_{n, q}(x)=E_{n}(x)$. In Ref. [12], we also proved that $q$-Eulerian polynomial $E_{n, q}(x)$ can be represented by $q$-Volkenborn integral as follows:

$$
\int_{X_{d}}\left[x+x_{1}\right]_{q}^{k} d \mu_{-q}\left(x_{1}\right)=\int_{\mathbb{Z}_{p}}\left[x+x_{1}\right]_{q}^{k} d \mu_{-q}(x)=E_{k, q}(x), \quad \text { for } k, d \in \mathbb{N}
$$

where $\mu_{-q}\left(x+p^{N} \mathbb{Z}_{p}\right)=\frac{q^{x}[2]_{q}}{1+q^{p^{N}}}(-1)^{x}$.
The purpose of this paper is to present a systemic study of some families of multiple $q$-Euler numbers and polynomials. In particular, by using the $q$-Volkenborn integration on $\mathbb{Z}_{p}$, we construct $p$-adic $q$-Euler numbers and polynomials of higher order. We also define new generating function of these $q$-Euler numbers and polynomials of higher order. Furthermore, we construct Euler $q-\zeta$-function. From section 2 to section 5, we assume that $q \in \mathbb{C}_{p}$ with $|1-q|_{p}<p^{-\frac{1}{p-1}}$.

## $2 \quad q$-Euler numbers and polynomials associated with an invariant $p$-adic $q$-integrals on $\mathbb{Z}_{p}$

Let $h \in \mathbb{Z}, k \in \mathbb{N}=\{1,2,3, \cdots\}$, and let us consider the extended higher-order $q$-Euler numbers as follows:

$$
E_{m, q}^{(h, k)}=\underbrace{\int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}}}_{k \text { times }}\left[x_{1}+x_{2}+\cdots+x_{k}\right]_{q}^{m} q^{x_{1}(h-1)+\cdots+x_{k}(h-k)} d \mu_{-q}\left(x_{1}\right) \cdots d \mu_{-q}\left(x_{k}\right)
$$

Then we have

$$
E_{m, q}^{(h, k)}=\frac{[2]_{q}^{k}}{(1-q)^{m}} \sum_{l=0}^{m}\binom{m}{l} \frac{(-1)^{l}}{\left(-q^{h+l}: q^{-1}\right)_{k}}
$$

From the definition of $E_{m, q}^{(h, k)}$, we can easily derive the below:

$$
E_{m, q}^{(h, k)}=E_{m, q}^{(h-1, k)}+(q-1) E_{m+1, q}^{(h-1, k)}, \quad(m \geq 0)
$$

It is easy to show that

$$
\begin{align*}
& \underbrace{\int_{k+1 \text { times }} \cdots \int_{\mathbb{Z}_{p}} q^{\sum_{j=1}^{k+1}(m-j) x_{j}} d \mu_{-q}\left(x_{1}\right) \cdots d \mu_{-q}\left(x_{k+1}\right)=}_{\mathbb{Z}_{p}} \\
& \sum_{j=1}^{m}\binom{m}{j}(q-1)^{j} \underbrace{\int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}}\left[\sum_{l=1}^{k+1} x_{l}\right]_{q}^{j} q^{-\sum_{j=1}^{k} j x_{j}} d \mu_{-q}\left(x_{1}\right) \cdots d \mu_{-q}\left(x_{k+1}\right)}_{k+1 \text { times }} \tag{2.1}
\end{align*}
$$

and we also get

From (2) and (2.2), we can derive the below proposition.

Proposition 1. For $m, k \in \mathbb{N}$, we have

$$
\begin{aligned}
& \sum_{j=0}^{m}\binom{m}{j}(q-1)^{j} E_{j, q}^{(0, k+1)}=\frac{[2]_{q}^{k+1}}{\left(-q^{m}: q^{-1}\right)_{k+1}}, E_{m, q}^{(h, k)}= \\
& \frac{[2]_{q}^{k}}{(1-q)^{m}} \sum_{l=0}^{m}\binom{m}{l} \frac{(-1)^{l}}{\left(-q^{h+l}: q^{-1}\right)_{k}} .
\end{aligned}
$$

Remark. Note that $E_{n, q}^{(1,1)}=E_{n, q}$, where $E_{n, q}$ are the $q$-Euler numbers (see Ref. [13]).
From the definition of $E_{n, q}^{(h, k)}$, we can derive

$$
\sum_{j=0}^{i}\binom{i}{j}(q-1)^{j} E_{m-i+j, q}^{(h-1, k)}=\sum_{j=0}^{i-1}\binom{i-1}{j}(q-1)^{j} E_{m+j-i, q}^{(h, k)}
$$

for $m \geq i$. By simple calculation, we easily see that

$$
\sum_{j=0}^{m}\binom{m}{j}(q-1)^{j} E_{j, q}^{(h, 1)}=\int_{\mathbb{Z}_{p}} q^{m x} q^{(h-1) x} d \mu_{-q}(x)=\frac{[2]_{q}}{[2]_{q^{m+h}}} .
$$

Furthermore, we can give the following relation for the $q$-Euler numbers, $E_{m, q}^{(0, h)}$,:

$$
\begin{equation*}
\sum_{j=0}^{m}\binom{m}{j}(q-1)^{j} E_{j, q}^{(0, k)}=\frac{[2]_{q}^{k}}{\left(-q^{m}: q^{-1}\right)_{k}} . \tag{2.3}
\end{equation*}
$$

## 3 Polynomials $E_{n, q}^{(0, k)}(x)$

We now define the polynomials $E_{n, q}^{(0, k)}(x)$ (in $q^{x}$ ) by

Thus, we have

$$
\begin{equation*}
(q-1)^{m} E_{m, q}^{(0, k)}(x)=[2]_{q}^{k} \sum_{j=0}^{m}\binom{m}{j} q^{j x}(-1)^{m-j} \frac{1}{\left(-q^{j}: q^{-1}\right)_{k}} \tag{3.1}
\end{equation*}
$$

It is not difficult to show that

$$
\underbrace{\left.\int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}} q^{\sum_{j=1}^{m}(m-j) x_{j}+m x} d \mu_{-q}\left(x_{1}\right) \cdots d \mu_{-q}\left(x_{k}\right)=q^{m x} \frac{[2]_{q}^{k}}{\left(-q^{m}: q^{-1}\right)_{k}}, \text {, }, \text {, }, \text {. }{ }^{2}\right)}_{k \text { times }}
$$

and

$$
\underbrace{\int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}} q^{\sum_{j=1}^{m}(m-j) x_{j}+m x} d \mu_{-q}\left(x_{1}\right) \cdots d \mu_{-q}\left(x_{k}\right)=\sum_{j=0}^{m}\binom{m}{j}(q-1)^{j} E_{j, q}^{(0, k)}(x) . . ~ . . ~ . ~}_{k \text { times }}
$$

Therefore we obtain the following.

Lemma 1. For $m, k \in \mathbb{N}$, we have

$$
\begin{align*}
& \sum_{j=0}^{m}\binom{m}{j}(q-1)^{j} E_{j, q}^{(0, k)}(x)=\frac{q^{m x}[2]_{q}^{k}}{\left(-q^{m}: q^{-1}\right)_{k}}, E_{m, q}^{(0, k)}(x)= \\
& \frac{[2]_{q}^{k}}{(1-q)^{m}} \sum_{j=0}^{m}\binom{m}{j} q^{j x}(-1)^{j} \frac{1}{\left(-q^{j}: q^{-1}\right)_{k}} . \tag{3.2}
\end{align*}
$$

Let $l \in \mathbb{N}$ with $l \equiv 1(\bmod 2)$. Then we get easily

$$
\begin{aligned}
& \underbrace{\int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}}}_{k \text { times }}\left[x+\sum_{j=1}^{k} x_{j}\right]_{q}^{m} q^{-\sum_{j=1}^{k} j x_{j}} d \mu_{-q}\left(x_{1}\right) \cdots d \mu_{-q}\left(x_{k}\right)= \\
& \frac{[l]_{q}^{m}}{[l]_{-q}^{k}} \sum_{i_{1}, \cdots, i_{k}=0}^{l-1} q^{-\sum_{j=2}^{k}(j-1) i_{j}} \cdot(-1)^{\sum_{j=1}^{k} i_{j}} \times \\
& \times \underbrace{\int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}}}_{k \text { times }}\left[\frac{x+\sum_{j=1}^{k} i_{j}}{l}+\sum_{j=1}^{k} x_{j}\right]_{q^{l}}^{m} q^{-l \sum_{j=1}^{k} j x_{j}} d \mu_{-q^{l}}\left(x_{1}\right) \cdots d \mu_{-q^{l}}\left(x_{k}\right) .
\end{aligned}
$$

From this, we can derive the following "multiplication formula":

Theorem 1. Let l be an odd positive integer. Then

$$
\begin{equation*}
E_{m, q}^{(0, k)}(x)=\frac{[l]_{q}^{m}}{[l]_{-q}^{k}} \sum_{i_{1}, \cdots, i_{k}=0}^{l-1} q^{-\sum_{j=2}^{k}(j-1) i_{j}}(-1)^{\sum_{l=1}^{k} i_{l}} E_{m, q^{l}}^{(0, k)}\left(\frac{x+i_{1}+\cdots+i_{k}}{l}\right) . \tag{3.3}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
E_{m, q}^{(0, k)}(l x)=\frac{[l]_{q}^{m}}{[l]_{-q}^{k}} \sum_{i_{1}, \cdots, i_{k}=0}^{l-1} q^{-\sum_{j=2}^{k}(j-1) i_{j}}(-1)^{\sum_{l=1}^{k} i_{l}} E_{m, q^{l}}^{(0, k)}\left(x+\frac{i_{1}+\cdots+i_{k}}{l}\right) \tag{3.4}
\end{equation*}
$$

From (2.3) and (3.1), we can also derive the below expression for $E_{n, q}^{(0, k)}(x)$ :

$$
\begin{equation*}
E_{m, q}^{(0, k)}(x)=\sum_{i=0}^{m}\binom{m}{i} E_{i, q}^{(0, k)}[x]_{q}^{m-i} q^{i x} \tag{3.5}
\end{equation*}
$$

whence also

$$
\begin{equation*}
E_{m, q}^{(0, k)}(x+y)=\sum_{j=0}^{m}\binom{m}{j}[y]_{q}^{m-i} q^{j y} E_{j, q}^{(0, k)}(x) \tag{3.6}
\end{equation*}
$$

## 4 Polynomials $E_{m, q}^{(h, 1)}(x)$

Let us define

$$
\begin{equation*}
E_{m, q}^{(h, 1)}(x)=\int_{\mathbb{Z}_{p}}\left[x+x_{1}\right]_{q}^{m} q^{x_{1}(h-1)} d \mu_{-q}\left(x_{1}\right) . \tag{4.1}
\end{equation*}
$$

Then we have

$$
E_{m, q}^{(h, 1)}(x)=\frac{[2]_{q}}{(1-q)^{m}} \sum_{l=0}^{m}\binom{m}{l}(-1)^{l} q^{l x} \frac{1}{\left(1+q^{l+h}\right)} .
$$

By simple calculation of $q$-Volkenvorn integral, we note that

$$
\begin{aligned}
& q^{x} \int_{\mathbb{Z}_{p}}\left[x+x_{1}\right]_{q}^{m} q^{x_{1}(h-1)} d \mu_{-q}\left(x_{1}\right)= \\
& (q-1) \int_{\mathbb{Z}_{p}}\left[x+x_{1}\right]_{q}^{m+1} q^{x_{1}(h-2)} d \mu_{-q}\left(x_{1}\right)+\int_{\mathbb{Z}_{p}}\left[x+x_{1}\right]_{q}^{m} q^{x_{1}(h-2)} d \mu_{-q}\left(x_{1}\right)
\end{aligned}
$$

Thus, we have

$$
\begin{equation*}
q^{x} E_{m, q}^{(h, 1)}(x)=(q-1) E_{m+1, q}^{(h-1,1)}(x)+E_{m, q}^{(h-1,1)}(x) . \tag{4.2}
\end{equation*}
$$

It is easy to show that

$$
\int_{\mathbb{Z}_{p}}\left[x+x_{1}\right]_{q}^{m} q^{(h-1) x_{1}} d \mu_{-q}\left(x_{1}\right)=\sum_{j=0}^{m}\binom{m}{j}[x]_{q}^{m-j} q^{j x} \int_{\mathbb{Z}_{p}}\left[x_{1}\right]_{q}^{j} q^{(h-1) x_{1}} d \mu_{-q}\left(x_{1}\right) .
$$

This is equivalent to

$$
E_{m, q}^{(h, 1)}(x)=\sum_{j=0}^{m}\binom{m}{j}[x]_{q}^{m-j} q^{j x} E_{j, q}^{(h, 1)}=\left(q^{x} E_{q}^{(h, 1)}+[x]_{q}\right)^{m}, \quad \text { for } m \geq 1,
$$

where we use the technique method notation by replacing $\left(E_{q}^{(h, 1)}\right)^{n}$ by $E_{n, q}^{(h, 1)}$, symbolically. From (4.1), we can derive

$$
\begin{equation*}
q^{h} E_{m, q}^{(h, 1)}(x+1)+E_{m, q}^{(h, 1)}(x)=[2]_{q}[x]_{q}^{m} . \tag{4.3}
\end{equation*}
$$

For $x=0$ in (4.3), this gives

$$
\begin{equation*}
q^{h}\left(q E_{m, q}^{(h, 1)}+1\right)^{m}+E_{m, q}^{(h, 1)}=\delta_{0, k}, \tag{4.4}
\end{equation*}
$$

where $\delta_{0, k}$ is Kronecker symbol. By the simple calculation of $q$-Volkenborn integration, we easily see that

$$
\int_{\mathbb{Z}_{p}} q^{x_{1}(h-1)} d \mu_{-q}\left(x_{1}\right)=\frac{[2]_{q}}{[2]_{q^{h}}} .
$$

Thus, we have $E_{0, q}^{(h, 1)}=\frac{[2]_{q}}{[2]_{q^{h}}}$. From the definition of $q$-Euler polynomials, we can derive

$$
\int_{\mathbb{Z}_{p}}\left[1-x+x_{1}\right]_{q-1}^{m} q^{-x_{1}(h-1)} d \mu_{-q}\left(x_{1}\right)=q^{m+h-1}(-1)^{m} E_{m, q}^{(h, 1)}(x) .
$$

Therefore we obtain the below "complementary formula":

Theorem 2. For $m \in \mathbb{N}, n \in \mathbb{Z}$, we have

$$
\begin{equation*}
E_{m, q^{-1}}^{(h, 1)}(1-x)=(-1)^{m} q^{m+h-1} E_{m, q}^{(h, 1)}(x) \tag{4.5}
\end{equation*}
$$

In particular, for $x=1$, we see that

$$
\begin{equation*}
E_{m, q-1}^{(h, 1)}(0)=(-1)^{m} q^{m+h-1} E_{m, q}^{(h, 1)}(1)=(-1)^{m-1} q^{m-1} E_{m, q}^{(h, 1)}, \quad \text { for } m \geq 1 \tag{4.6}
\end{equation*}
$$

For $l \in \mathbb{N}$ with $l \equiv 1(\bmod 2)$, we have

$$
\begin{aligned}
& \int_{\mathbb{Z}_{p}} q^{(h-1) x_{1}}\left[x+x_{1}\right]_{q}^{m} q^{x_{1}(h-1)} d \mu_{-q}\left(x_{1}\right)= \\
& \frac{[l]_{q}^{m}}{[l]_{-q}} \sum_{i=0}^{l-1} q^{h i}(-1)^{i} \int_{\mathbb{Z}_{p}}\left[\frac{x+i}{l}+x_{1}\right]_{q^{l}}^{m} q^{x_{1}(h-1) l} d \mu_{-q^{l}}\left(x_{1}\right)
\end{aligned}
$$

Thus, we can also obtain the following:
Theorem 3. (Multiplication formula) For $l \in \mathbb{N}$ with $l \equiv 1(\bmod 2)$, we have

$$
\frac{[2]_{q}}{[2]_{q^{l}}}[l]_{q}^{m} \sum_{i=0}^{l-1} q^{h i}(-1)^{i} E_{m, q^{l}}^{(h, 1)}\left(\frac{x+i}{l}\right)=E_{m, q}^{(h, 1)}(x)
$$

Furthermore,

$$
\frac{[2]_{q}}{[2]_{q^{l}}}[l]_{q}^{m} \sum_{i=0}^{l-1} q^{h i}(-1)^{i} E_{m, q^{l}}^{(h, 1)}\left(x+\frac{i}{l}\right)=E_{m, q}^{(h, 1)}(l x)
$$

## 5 Polynomials $E_{m, q}^{(h, k)}(x)$ and $h=k$

It is now easy to combine the above results and define the new polynomials as follows:

$$
E_{m, q}^{(h, k)}(x)=\underbrace{\int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}}}_{k \text { times }}\left[x+x_{1}+\cdots+x_{k}\right]_{q}^{m} q^{(h-1) x_{1}+\cdots+(h-k) x_{k}} d \mu_{-q}\left(x_{1}\right) \cdots d \mu_{-q}\left(x_{k}\right)
$$

Thus, we note that

$$
\begin{equation*}
(q-1)^{m} E_{m, q}^{(h, k)}(x)=\sum_{j=0}^{m}\binom{m}{j}(-1)^{m-j} q^{x j} \frac{[2]_{q}^{k}}{\left(-q^{j+h}: q^{-1}\right)_{k}} \tag{5.1}
\end{equation*}
$$

We may now mention the following formulas which are easy to prove.

$$
\begin{equation*}
q^{h} E_{m, q}^{(h, k)}(x+1)+E_{m, q}^{(h, k)}(x)=[2]_{q} E_{m, q}^{(h-1, k-1)}(x) \tag{5.2}
\end{equation*}
$$

and

$$
\begin{equation*}
q^{x} E_{m, q}^{(h+1, k)}(x)=(q-1) E_{m+1, q}^{(h, k)}(x)+E_{m, q}^{(h, k)}(x) \tag{5.3}
\end{equation*}
$$

Let $l \in \mathbb{N}$ with $l \equiv 1(\bmod 2)$. Then we note that

$$
\begin{aligned}
& \underbrace{\int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}}}_{k \text { times }}\left[x+\sum_{j=1}^{k} x_{j}\right]_{q}^{m} q^{\sum_{j=1}^{k}(h-j) x_{j}} d \mu_{-q}\left(x_{1}\right) \cdots d \mu_{-q}\left(x_{k}\right)= \\
& \frac{[l]_{q}^{m}}{[l]^{k}} \sum_{{ }_{q}}^{l-1}, \cdots, i_{k}=0 \\
& i_{1}=1 \\
& q^{\sum_{j=1}^{k} i_{j}-\sum_{j=2}^{k}(j-1) i_{j}}(-1)^{\sum_{j=1}^{k} i_{j} \times} \\
& \times \underbrace{\int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}}}_{k \text { times }}\left[\frac{x+\sum_{j=1}^{k} i_{j}}{l}+\sum_{j=1}^{k} x_{j}\right]_{q^{l}}^{m}\left(q^{l}\right)^{\sum_{j=1}^{k}(h-j) x_{j}} d \mu_{-q^{l}}\left(x_{1}\right) \cdots d \mu_{-q^{l}}\left(x_{k}\right) .
\end{aligned}
$$

Therefore we obtain the following:
Theorem 4. (Distribution for $q$-Euler polynomials) For $l \in \mathbb{N}$ with $l \equiv 1(\bmod 2)$. Then we have

$$
\begin{align*}
E_{m, q}^{(h, k)}(l x)= & \frac{[l]_{q}^{m}}{[l]_{-q}^{k}} \sum_{i_{1},,_{k}=0}^{l-1} q^{h \sum_{j=1}^{k} i_{j}-\sum_{j=2}^{k}(j-1) i_{j}}(-1)^{\sum_{j=1}^{k} i_{j}} \\
& E_{m, q^{l}}^{(h, k)}\left(x+\frac{i_{1}+\cdots+i_{k}}{l}\right) . \tag{5.4}
\end{align*}
$$

It is interesting to consider the case $h=k$, which leads to the desired extension of the $q$-Euler numbers of higher order [1]. We shall denote the polynomials in this special case by $E_{m, q}^{(k)}(x):=E_{m, q}^{(k, k)}(x)$. Then we have

$$
\begin{equation*}
(q-1)^{m} E_{m, q}^{(k)}(x)=\sum_{j=0}^{m}\binom{m}{j}(-1)^{m-j} q^{j x} \frac{[2]_{q}^{k}}{\left(-q^{j+k}: q^{-1}\right)_{k}} \tag{5.5}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{m, q^{-1}}^{(k)}(k-x)=(-1)^{m} q^{m+\binom{k}{2}} E_{m, q}^{(k)}(x) . \tag{5.6}
\end{equation*}
$$

For $x=k$ in (5.6), we see that

$$
\begin{equation*}
E_{m, q^{-1}}^{(k)}(0)=(-1)^{m} q^{m+\binom{k}{2}} E_{m, q}^{(k)}(k) . \tag{5.7}
\end{equation*}
$$

From (5.2), we can derive the below formula:

$$
\begin{equation*}
q^{k} E_{m, q}^{(k)}(x+1)+E_{m, q}^{(k)}(x)=[2]_{q} E_{m, q}^{(k-1)}(x) . \tag{5.8}
\end{equation*}
$$

Putting $x=0$ in (5.1), we obtain

$$
\begin{equation*}
(q-1)^{m} E_{m, q}^{(k)}=\sum_{i=0}^{m}\binom{m}{i}(-1)^{m-i} \frac{[2]_{q}^{k}}{\left(-q^{i+k}: q^{-1}\right)_{k}} . \tag{5.9}
\end{equation*}
$$

Note that

$$
\begin{aligned}
& \sum_{i=0}^{m}\binom{m}{i}(q-1)^{i} \underbrace{\int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}}}_{k \text { times }}\left[x_{1}+\cdots+x_{k}\right]_{q}^{i} q^{\sum_{j=1}^{k-1}(k-j) x_{j}} d \mu_{-q}\left(x_{1}\right) \cdots d \mu_{-q}\left(x_{k}\right)= \\
& \frac{[2]_{q}^{k}}{\left(-q^{m+k}: q^{-1}\right)_{k}}
\end{aligned}
$$

From this, we can easily derive

$$
\begin{equation*}
\sum_{i=0}^{m}\binom{m}{i}(q-1)^{i} E_{i, q}^{(k)}=\frac{[2]_{q}^{k}}{\left(-q^{m+k}: q^{-1}\right)_{k}} \tag{5.10}
\end{equation*}
$$

and so it follows

$$
\begin{equation*}
E_{m, q}^{(k)}(x)=\left(q^{x} E_{q}^{(k)}+[x]_{q}\right)^{m}, \quad m \geq 1 \tag{5.11}
\end{equation*}
$$

where we use the technique method notation by replacing $\left(E_{q}^{(k)}\right)^{n}$ by $E_{n, q}^{(k)}$, symbolically. In particular, from (5.8), we have

$$
\begin{equation*}
q^{k}\left(q E_{q}^{(k)}+1\right)^{m}+E_{m, q}^{(k)}=[2]_{q} E_{m, q}^{(k-1)} \tag{5.12}
\end{equation*}
$$

It is easy to see that

$$
\underbrace{\int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}}}_{k \text { times }} q^{(k-1) x_{1}+\cdots+x_{k-1}} d \mu_{-q}\left(x_{1}\right) \cdots d \mu_{-q}\left(x_{k}\right)=\frac{[2]_{q}^{k}}{\left(-q^{k}: q^{-1}\right)_{k}}
$$

Thus, we note that $E_{0, q}^{(k)}=\frac{[2]_{q}^{k}}{\left(-q^{k}: q^{-1}\right)_{k}}$.

## 6 Generating function for $q$-Euler polynomials

An obvious generating function for $q$-Euler polynomials is obtained, from (5.1), by

$$
\begin{equation*}
[2]_{q}^{k} e^{\frac{t}{1-q}} \sum_{j=0}^{\infty} \frac{(-1)^{j}}{\left(-q^{j+h}: q^{-1}\right)_{k}} q^{j x}\left(\frac{1}{1-q}\right)^{j} \frac{t^{j}}{j!}=\sum_{n=0}^{\infty} E_{n, q}^{(h, k)} \frac{t^{n}}{n!} \tag{6.1}
\end{equation*}
$$

From (5.1), we can also derive the below formula:

$$
\begin{equation*}
q^{h-k} E_{m, q}^{(h, k+1)}(x+1)=[2]_{q} E_{m, q}^{(h, k)}(x)-E_{m, q}^{(h, k+1)}(x) \tag{6.2}
\end{equation*}
$$

Again from (5.5) and (5.9), we get easily

$$
\begin{aligned}
& \underbrace{\int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}}}_{k \text { times }}\left[x+\sum_{j=1}^{k} x_{j}\right]_{q}^{m} q^{\sum_{j=1}^{k-1}(k-j) x_{j}} d \mu_{-q}\left(x_{1}\right) \cdots d \mu_{-q}\left(x_{k}\right)= \\
& \sum_{j=0}^{m}\binom{m}{j} q^{x j} \underbrace{\int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}}\left[x_{k}\right]_{q}^{j}\left[x+\sum_{j=1}^{k-1} x_{j}\right]_{q}^{n-j} q^{\sum_{l=1}^{k-1}(k+j-l) x_{l}} d \mu_{-q}\left(x_{1}\right) \cdots d \mu_{-q}\left(x_{k}\right) .}_{k \text { times }}
\end{aligned}
$$

Thus, we note that

$$
\begin{equation*}
E_{m, q}^{(k)}(x)=\sum_{j=0}^{m}\binom{m}{j} q^{x j} E_{j, q}^{(1)} E_{m-j, q}^{(k+j, k-1)}(x) . \tag{6.3}
\end{equation*}
$$

Take $x=0$ in (6.3), we have

$$
\begin{equation*}
E_{m, q}^{(k)}=\sum_{i=0}^{m}\binom{m}{i} E_{j, q}^{(1)} E_{m-j, q}^{(k+j, k-1)} . \tag{6.4}
\end{equation*}
$$

So, for $k=2$,

$$
E_{m, q}^{(2)}=\sum_{i=0}^{m}\binom{m}{i} E_{j, q} E_{m-j, q}^{(j+2,1)} .
$$

It is not difficult to show that

$$
\int_{\mathbb{Z}_{p}}[x]_{q}^{m} q^{h x} d \mu_{-q}(x)=\sum_{j=0}^{h}\binom{h}{j}(q-1)^{j} \int_{\mathbb{Z}_{p}}[x]_{q}^{m+j} d \mu_{-q}(x), \text { for } h \in \mathbb{N} .
$$

From this, we can derive the below:

$$
\begin{equation*}
E_{m, q}^{(h+1,1)}=\sum_{j=0}^{h}\binom{h}{j}(q-1)^{j} E_{m+j, q}, \quad h \in \mathbb{N} . \tag{6.5}
\end{equation*}
$$

By (6.4) and (6.5), we easily see that

$$
\begin{equation*}
E_{m, q}^{(2)}=\sum_{j=0}^{m}\binom{m}{j} E_{j, q} \sum_{i=0}^{j+1}\binom{j+1}{i}(q-1)^{i} E_{m-j+i, q} . \tag{6.6}
\end{equation*}
$$

By (6.6), for $q=1$, we note that

$$
E_{m}^{(2)}=\sum_{j=0}^{m}\binom{m}{j} E_{j} E_{m-j}, \text { where }\left(\frac{2}{e^{t}+1}\right)^{k}=\sum_{n=0}^{\infty} E_{n}^{(k)} \frac{t^{n}}{n!} .
$$

It is easy to show that

$$
\left[x+x_{1}+\cdots+x_{k}\right]_{q}^{m}=\sum_{j=0}^{m}\binom{m}{j}\left[x_{1}+x\right]_{q}^{m-j} q^{j\left(x_{1}+x\right)}\left[x_{2}+\cdots+x_{k}\right]_{q}^{j} .
$$

By using this, we get easily

$$
\begin{aligned}
& \underbrace{\int_{k \text { times }} \cdots \int_{\mathbb{Z}_{p}}}_{\mathbb{Z}_{p}}\left[x+\sum_{j=1}^{k} x_{j}\right]_{q}^{m} q^{\sum_{j=1}^{k-1}(k-j) x_{j}} d \mu_{-q}\left(x_{1}\right) \cdots d \mu_{-q}\left(x_{k}\right)= \\
& \sum_{j=0}^{m}\binom{m}{j} q^{j x} \int_{\mathbb{Z}_{p}}\left[x+x_{1}\right]_{q}^{m-j} q^{(k+j-1) x_{1}} d \mu_{-q}\left(x_{1}\right) \times \\
& \times \underbrace{\int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}}\left[x_{2}+\cdots+x_{k}\right]_{q}^{j} q^{\sum_{j=2}^{k-1}(k-j) x_{j}} d \mu_{-q}\left(x_{2}\right) \cdots d \mu_{-q}\left(x_{k}\right) .}_{k-1 \text { times }}
\end{aligned}
$$

Therefore we obtain the following:

Theorem 5. For $m, k \in \mathbb{N}$, we have

$$
\begin{equation*}
E_{m, q}^{(k)}(x)=\sum_{j=0}^{m}\binom{m}{j} q^{j x} E_{m-j, q}^{(k+j, 1)}(x) E_{j, q}^{(k-1)} \tag{6.7}
\end{equation*}
$$

Indeed for $x=0$,

$$
\begin{align*}
& E_{m, q}^{(k)}=\sum_{j=0}^{m}\binom{m}{j} E_{m-j, q}^{(k+j, 1)} E_{j, q}^{(k-1)}=  \tag{6.8}\\
& \sum_{j=0}^{m}\binom{m}{j} E_{j, q}^{(k-1)} \sum_{j=0}^{k+j}(q-1)^{i}\binom{k+j-1}{i} E_{m-j+i, q}^{(1)} \tag{6.9}
\end{align*}
$$

As for $q=1$, we get the below formula

$$
E_{m}^{(k)}=\sum_{j=0}^{m}\binom{m}{j} E_{j}^{(k-1)} E_{m-j}^{(1)}
$$

## $7 \quad q$-Euler zeta function in $\mathbb{C}$

In this section, we assume that $q \in \mathbb{C}$ with $|q|<1$. From section 4 , we note that

$$
\begin{equation*}
E_{m, q}^{(h, 1)}(x)=\frac{[2]_{q}}{(1-q)^{m}} \sum_{l=0}^{m}\binom{m}{l} q^{l x}(-1)^{l} \frac{1}{1+q^{l+h}}=[2]_{q} \sum_{n=0}^{\infty}(-1)^{n} q^{n h}[n+x]_{q}^{n} \tag{7.1}
\end{equation*}
$$

Thus, we can define $q$-Euler zeta function:
Definition 1. For $s, q \in \mathbb{C}$ with $|q|<1$, define

$$
\zeta_{E, q}^{h}(s, x)=[2]_{q} \sum_{n=0}^{\infty} \frac{(-1)^{n} q^{n h}}{[n+x]_{q}^{s}},
$$

where $x \in \mathbb{R}$ with $0<x \leq 1$.
Note that $\zeta_{E, q}^{h}(-m, x)=E_{m, q}^{(h, 1)}(x)$, for $m \in \mathbb{N}$. Let

$$
F_{q}(t, x)=\sum_{n=0}^{\infty} E_{n, q}^{(h, 1)}(x) \frac{t^{n}}{n!}
$$

Then we have

$$
F_{q}(t, x)=[2]_{q} e^{\frac{t}{1-q}} \sum_{n=0}^{\infty}(-1)^{n} q^{h n} e^{-\frac{q^{n+x}}{1-q} t}=[2]_{q} \sum_{n=0}^{\infty}(-1)^{n} q^{h n} e^{[n+x]_{q} t}, \quad \text { for } h \in \mathbb{Z}
$$

Therefore we obtain the following

Lemma 2. For $h \in \mathbb{Z}$, we have

$$
\begin{equation*}
F_{q}(t, x)=[2]_{q} \sum_{n=0}^{\infty}(-1)^{n} q^{h n} e^{[n+x]_{q} t}=\sum_{n=0}^{\infty} E_{n, q}^{(h, 1)}(x) \frac{t^{n}}{n!} . \tag{7.2}
\end{equation*}
$$

Let $\Gamma(s)$ be the gamma function. Then we easily see that

$$
\begin{equation*}
\frac{1}{\Gamma(s)} \int_{0}^{\infty} t^{s-1} F_{q}(-t, x) d t=\zeta_{E, q}^{h}(s, x), \quad \text { for } s \in \mathbb{C} \tag{7.3}
\end{equation*}
$$

From (7.2) and (7.3), we can also derive the below Eq. (7.4):

$$
\begin{equation*}
\zeta_{E, q}^{h}(-n, x)=E_{n, q}^{(h, 1)}(x), \quad \text { for } \quad n \in \mathbb{N} . \tag{7.4}
\end{equation*}
$$

## References

[1] Carlitz L, $q$-Bernoulli numbers and polynomials, Duke Math. J. 15 (1948), 987-1000.
[2] Carlitz L, $q$-Bernoulli and Eulerian numbers, Trans. Amer. Math. Soc. 76 (1954), 332-350.
[3] Cenkci M and Can M, Some results on $q$-analogue of the Lerch zeta function, Advan. Stud. Contemp. Math. 12 (2006), 212-223.
[4] Deeba E and Rodriguez D, Stirling's series and Bernoulli numbers, Amer. Math. Monthly 98 (1991), 423-426.
[5] Howard T, Applications of a recurrences formula for the Bernoulli numbers, J. Number Theory 52 (1995), 157-172.
[6] Kim T, Jang L C and Park H K, A note on $q$-Euler and Genocchi numbers, Proc. Japan Academy 77 (2001), 139-141.
[7] Kim T, Power series and asymptotic series associated with the $q$-analog of the two-variable p-adic L-function, Russ. J. Math. Phys. 12 (2005), 189-196.
[8] Kim T, Non-Arichimedean $q$-integrals associated with multiple Changhee $q$-Bernoulli polynomials, Russ. J. Math. Phys. 10 (2003), 91-98.
[9] Kim T, An invariant $p$-adic integral associated with Daehee numbers, Integral Transform. Spec. Funct. 13 (2002), 65-69.
[10] Kim T, On a $q$-analogue of the $p$-adic log gamma functions and related integrals, J. Number Theory 76 (1999), 320-329.
[11] Kim T, $q$-Volkenborn integration, Russ. J. Math. Phys. 9 (2002), 288-299.
[12] Kim T, A note on $q$-Volkenborn integration, Proc. Jangjeon Math. Soc. 8 (2005), 13-17.
[13] Kim T, On the $q$-extension of Euler and Genocchi numbers, J. Math. Anal. Appl., to appear.
[14] Satoh J, $q$-analogue of Riemann's $\zeta$-function and $q$-Euler numbers, J. Number Theory 31 (1989), 346-362.
[15] Simsek Y, Kim D and Rim S-H, On the two-variable Dirichlet $q$ - $L$-series, Advan. Stud. Contemp. Math. 10 (2005), 131-142.
[16] Shiratani J and Yamamoto S, On a p-adic interpolating function for the Euler numbers and its derivatives, Mem. Fac. Sci. Kyushu Univ. Math. 39 (1985), 113-125.

