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Abstract

The main purpose of this paper is to present a systemic study of some families of
multiple q-Euler numbers and polynomials. In particular, by using the q-Volkenborn
integration on Zp, we construct p-adic q-Euler numbers and polynomials of higher
order. We also define new generating functions of multiple q-Euler numbers and
polynomials. Furthermore, we construct Euler q-Zeta function.

1 Introduction

For any complex number z, it is well known that the familiar Euler polynomials En(z) are
defined by means of the following generating function, see Refs. [3, 5, 6, 9, 13]:

F (z, t) =
2

et + 1
ezt =

∞∑

n=0

En(z)
tn

n!
, (|t| < π). (1.1)

We note that, by substituting z = 0 into (1.1), En(0) = En is the familiar n-th Euler
number defined by [4, 5]

G(t) = F (0, t) =
2

et + 1
=

∞∑

n=0

En
tn

n!
, (|t| < π).

By the meaning of the generalization of En, Frobenius-Euler numbers and polynomials
are also defined by [16]

1− u

et − u
=

∞∑

n=0

Hn(u)
tn

n!
, and

1− u

et − u
ext =

∞∑

n=0

Hn(u, x)
tn

n!
(u ∈ C with |u| > 1).

Over five decades ago, Calitz [2, 3] defined q-extension of Frobenius-Euler numbers
and polynomials and proved properties analogous to those satisfied Hn(u) and Hn(u, x).
Recently, Satoh [14, 15] used these properties, especially the so-called distribution relation
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for the q-Frobenius-Euler polynomials, in order to construct the corresponding q-extension
of the p-adic measure and to define a q-extension of p-adic l-function lp,q(s, u).

Let p be a fixed odd prime in this paper. Throughout this paper, the symbols Z,
Zp, Qp, C and Cp, denote the ring of rational integers, the ring of p-adic integers, the
field of p-adic numbers, the complex number field, and the completion of the algebraic
closure of Qp, respectively. Let νp(p) be the normalized exponential valuation of Cp

with |p|p = p−νp(p) = p−1. When one speaks of q-extension, q can be regarded as an
indeterminate, a complex number q ∈ C, or a p-adic number q ∈ Cp; it is always clear
from the context. If q ∈ C, then one usually assumes that |q| < 1. If q ∈ Cp, then one

usually assumes that |q − 1|p < p
− 1

p−1 , and hence qx = exp(x log q) for x ∈ Zp. In this
paper, we use the below notation [6, 7, 8, 9, 10, 11, 14]

[x]q =
1− qx

1− q
, (a : q)n = (1− a)(1− aq) · · · (1− aqn−1).

Note that limq→1[x]q = x for any x with |x|p ≤ 1 in the p-adic case. For a fixed positive
integer d with (p, d) = 1, set

X = Xd = lim
←−
N

Z/dpN , X1 = Zp, X
∗ =

⋃

0<a<dp
(a,p)=1

a + dpZp,

a + dpNZp = {x ∈ X|x ≡ a (mod pN )},

where a ∈ Z satisfies the condition 0 ≤ a < dpN , (see Refs. [10, 11]). We say that f is a
uniformly differentiable function at a point a ∈ Zp, and write f ∈ UD(Zp), if the difference

quotients Ff (x, y) = f(x)−f(y)
x−y

have a limit f ′(a) as (x, y) → (a, a) [11]. For f ∈ UD(Zp),
let us begin with the expression [7, 8, 9, 11]

1

[pN ]q

∑

0≤j<pN

qjf(j) =
∑

0≤j<pN

f(j)µq(j + pNZp),

which represents a q-analogue of Riemann sums for f . The integral of f on Zp is defined
as the limit of those sums(as n → ∞) if this limit exists. The q-Volkenborn integral of a
function f ∈ UD(Zp) is defined by

Iq(f) =

∫

X

f(x)dµq(x) =

∫

Xd

f(x)dµq(x) = lim
N→∞

1

[dpN ]q

dpN−1
∑

x=0

f(x)qx.

Recently, we considered another construction of a q-Eulerian numbers, which are different
than Carlitz’s q-Eulerian numbers as follows [6, 12, 13]:

Fq(x, t) = [2]q

∞∑

n=0

(−1)nqne[n+x]qt =

∞∑

n=0

En,q(x)
tn

n!
.

Thus we have

En,q = En,q(0) =
[2]q

(1− q)n

n∑

l=0

(
n

l

)
(−1)l

1 + ql+1
, En,q(x) =

[2]q
(1− q)n

n∑

l=0

(
n

l

)
(−1)l

1 + ql+1
qlx,
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where
(
n
l

)
is a binomial coefficient [13].

Note that limq→1 En,q = En and limq→1 En,q(x) = En(x). In Ref. [12], we also proved
that q-Eulerian polynomial En,q(x) can be represented by q-Volkenborn integral as follows:

∫

Xd

[x + x1]
k
qdµ−q(x1) =

∫

Zp

[x + x1]
k
qdµ−q(x) = Ek,q(x), for k, d ∈ N,

where µ−q(x + pNZp) =
qx[2]q

1+qpN (−1)x.

The purpose of this paper is to present a systemic study of some families of multiple
q-Euler numbers and polynomials. In particular, by using the q-Volkenborn integration
on Zp, we construct p-adic q-Euler numbers and polynomials of higher order. We also
define new generating function of these q-Euler numbers and polynomials of higher order.
Furthermore, we construct Euler q-ζ-function. From section 2 to section 5, we assume

that q ∈ Cp with |1− q|p < p
− 1

p−1 .

2 q-Euler numbers and polynomials associated with an in-

variant p-adic q-integrals on Zp

Let h ∈ Z, k ∈ N = {1, 2, 3, · · · }, and let us consider the extended higher-order q-Euler
numbers as follows:

E(h,k)
m,q =

∫

Zp

· · ·

∫

Zp
︸ ︷︷ ︸

k times

[x1 + x2 + · · ·+ xk]
m
q qx1(h−1)+···+xk(h−k)dµ−q(x1) · · · dµ−q(xk).

Then we have

E(h,k)
m,q =

[2]kq
(1− q)m

m∑

l=0

(
m

l

)
(−1)l

(−qh+l : q−1)k

.

From the definition of E
(h,k)
m,q , we can easily derive the below:

E(h,k)
m,q = E(h−1,k)

m,q + (q − 1)E
(h−1,k)
m+1,q , (m ≥ 0).

It is easy to show that
∫

Zp

· · ·

∫

Zp
︸ ︷︷ ︸

k+1 times

q
∑k+1

j=1
(m−j)xjdµ−q(x1) · · · dµ−q(xk+1) =

m∑

j=1

(
m

j

)

(q − 1)j

∫

Zp

· · ·

∫

Zp
︸ ︷︷ ︸

k+1 times

[
k+1∑

l=1

xl]
j
q q−

∑k
j=1

jxjdµ−q(x1) · · · dµ−q(xk+1), (2.1)

and we also get
∫

Zp

· · ·

∫

Zp
︸ ︷︷ ︸

k+1 times

q
∑k+1

j=1
(m−j)xjdµ−q(x1) · · · dµ−q(xk+1) =

[2]k+1
q

(−qm : q−1)k+1
. (2.2)

From (2) and (2.2), we can derive the below proposition.
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Proposition 1. For m, k ∈ N, we have

m∑

j=0

(
m

j

)

(q − 1)jE
(0,k+1)
j,q =

[2]k+1
q

(−qm : q−1)k+1
, E(h,k)

m,q =

[2]kq
(1− q)m

m∑

l=0

(
m

l

)
(−1)l

(−qh+l : q−1)k

.

Remark. Note that E
(1,1)
n,q = En,q, where En,q are the q-Euler numbers (see Ref. [13]).

From the definition of E
(h,k)
n,q , we can derive

i∑

j=0

(
i

j

)

(q − 1)jE
(h−1,k)
m−i+j,q =

i−1∑

j=0

(
i− 1

j

)

(q − 1)jE
(h,k)
m+j−i,q

for m ≥ i. By simple calculation, we easily see that

m∑

j=0

(
m

j

)

(q − 1)jE
(h,1)
j,q =

∫

Zp

qmxq(h−1)xdµ−q(x) =
[2]q

[2]qm+h

.

Furthermore, we can give the following relation for the q-Euler numbers, E
(0,h)
m,q ,:

m∑

j=0

(
m

j

)

(q − 1)jE
(0,k)
j,q =

[2]kq
(−qm : q−1)k

. (2.3)

3 Polynomials E
(0,k)
n,q (x)

We now define the polynomials E
(0,k)
n,q (x) (in qx) by

E(0,k)
n,q (x) =

∫

Zp

· · ·

∫

Zp
︸ ︷︷ ︸

k times

[x1 + x2 + · · ·+ xk]
m
q q

∑k
j=1

jxjdµ−q(x1) · · · dµ−q(xk).

Thus, we have

(q − 1)mE(0,k)
m,q (x) = [2]kq

m∑

j=0

(
m

j

)

qjx(−1)m−j 1

(−qj : q−1)k

. (3.1)

It is not difficult to show that
∫

Zp

· · ·

∫

Zp
︸ ︷︷ ︸

k times

q
∑m

j=1
(m−j)xj+mxdµ−q(x1) · · · dµ−q(xk) = qmx

[2]kq
(−qm : q−1)k

,

and
∫

Zp

· · ·

∫

Zp
︸ ︷︷ ︸

k times

q
∑m

j=1
(m−j)xj+mxdµ−q(x1) · · · dµ−q(xk) =

m∑

j=0

(
m

j

)

(q − 1)jE
(0,k)
j,q (x).

Therefore we obtain the following.



q-Euler numbers and polynomials associated with p-adic q-integrals 19

Lemma 1. For m, k ∈ N, we have

m∑

j=0

(
m

j

)

(q − 1)jE
(0,k)
j,q (x) =

qmx[2]kq
(−qm : q−1)k

, E(0,k)
m,q (x) =

[2]kq
(1− q)m

m∑

j=0

(
m

j

)

qjx(−1)j 1

(−qj : q−1)k

. (3.2)

Let l ∈ N with l ≡ 1 (mod 2). Then we get easily

∫

Zp

· · ·

∫

Zp
︸ ︷︷ ︸

k times



x +
k∑

j=1

xj





m

q

q−
∑k

j=1
jxjdµ−q(x1) · · · dµ−q(xk) =

[l]mq

[l]k−q

l−1∑

i1,··· ,ik=0

q−
∑k

j=2
(j−1)ij · (−1)

∑k
j=1

ij×

×

∫

Zp

· · ·

∫

Zp
︸ ︷︷ ︸

k times




x +

∑k
j=1 ij

l
+

k∑

j=1

xj





m

ql

q−l
∑k

j=1
jxjdµ−ql(x1) · · · dµ−ql(xk).

From this, we can derive the following “multiplication formula”:

Theorem 1. Let l be an odd positive integer. Then

E(0,k)
m,q (x) =

[l]mq

[l]k−q

l−1∑

i1,··· ,ik=0

q−
∑k

j=2
(j−1)ij (−1)

∑k
l=1

ilE
(0,k)

m,ql (
x + i1 + · · ·+ ik

l
). (3.3)

Moreover,

E(0,k)
m,q (lx) =

[l]mq

[l]k−q

l−1∑

i1,··· ,ik=0

q−
∑k

j=2
(j−1)ij (−1)

∑k
l=1

ilE
(0,k)

m,ql (x +
i1 + · · ·+ ik

l
). (3.4)

From (2.3) and (3.1), we can also derive the below expression for E
(0,k)
n,q (x):

E(0,k)
m,q (x) =

m∑

i=0

(
m

i

)

E
(0,k)
i,q [x]m−i

q qix, (3.5)

whence also

E(0,k)
m,q (x + y) =

m∑

j=0

(
m

j

)

[y]m−i
q qjyE

(0,k)
j,q (x). (3.6)
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4 Polynomials E
(h,1)
m,q (x)

Let us define

E(h,1)
m,q (x) =

∫

Zp

[x + x1]
m
q qx1(h−1)dµ−q(x1). (4.1)

Then we have

E(h,1)
m,q (x) =

[2]q
(1− q)m

m∑

l=0

(
m

l

)

(−1)lqlx 1

(1 + ql+h)
.

By simple calculation of q-Volkenvorn integral, we note that

qx

∫

Zp

[x + x1]
m
q qx1(h−1)dµ−q(x1) =

(q − 1)

∫

Zp

[x + x1]
m+1
q qx1(h−2)dµ−q(x1) +

∫

Zp

[x + x1]
m
q qx1(h−2)dµ−q(x1).

Thus, we have

qxE(h,1)
m,q (x) = (q − 1)E

(h−1,1)
m+1,q (x) + E(h−1,1)

m,q (x). (4.2)

It is easy to show that
∫

Zp

[x + x1]
m
q q(h−1)x1dµ−q(x1) =

m∑

j=0

(
m

j

)

[x]m−j
q qjx

∫

Zp

[x1]
j
qq

(h−1)x1dµ−q(x1).

This is equivalent to

E(h,1)
m,q (x) =

m∑

j=0

(
m

j

)

[x]m−j
q qjxE

(h,1)
j,q =

(

qxE(h,1)
q + [x]q

)m

, for m ≥ 1,

where we use the technique method notation by replacing (E
(h,1)
q )n by E

(h,1)
n,q , symbolically.

From (4.1), we can derive

qhE(h,1)
m,q (x + 1) + E(h,1)

m,q (x) = [2]q[x]mq . (4.3)

For x = 0 in (4.3), this gives

qh
(

qE(h,1)
m,q + 1

)m

+ E(h,1)
m,q = δ0,k, (4.4)

where δ0,k is Kronecker symbol. By the simple calculation of q-Volkenborn integration, we
easily see that

∫

Zp

qx1(h−1)dµ−q(x1) =
[2]q
[2]qh

.

Thus, we have E
(h,1)
0,q =

[2]q
[2]

qh
. From the definition of q-Euler polynomials, we can derive

∫

Zp

[1− x + x1]
m
q−1 q−x1(h−1)dµ−q(x1) = qm+h−1(−1)mE(h,1)

m,q (x).

Therefore we obtain the below “complementary formula”:
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Theorem 2. For m ∈ N, n ∈ Z, we have

E
(h,1)
m,q−1(1− x) = (−1)mqm+h−1E(h,1)

m,q (x). (4.5)

In particular, for x = 1, we see that

E
(h,1)
m,q−1(0) = (−1)mqm+h−1E(h,1)

m,q (1) = (−1)m−1qm−1E(h,1)
m,q , for m ≥ 1. (4.6)

For l ∈ N with l ≡ 1 (mod 2), we have

∫

Zp

q(h−1)x1 [x + x1]
m
q qx1(h−1)dµ−q(x1) =

[l]mq
[l]−q

l−1∑

i=0

qhi(−1)i

∫

Zp

[
x + i

l
+ x1

]m

ql

qx1(h−1)ldµ−ql(x1).

Thus, we can also obtain the following:

Theorem 3. (Multiplication formula) For l ∈ N with l ≡ 1 (mod 2), we have

[2]q
[2]ql

[l]mq

l−1∑

i=0

qhi(−1)iE
(h,1)

m,ql (
x + i

l
) = E(h,1)

m,q (x).

Furthermore,

[2]q
[2]ql

[l]mq

l−1∑

i=0

qhi(−1)iE
(h,1)

m,ql (x +
i

l
) = E(h,1)

m,q (lx).

5 Polynomials E
(h,k)
m,q (x) and h = k

It is now easy to combine the above results and define the new polynomials as follows:

E(h,k)
m,q (x) =

∫

Zp

· · ·

∫

Zp
︸ ︷︷ ︸

k times

[x + x1 + · · ·+ xk]
m
q q(h−1)x1+···+(h−k)xkdµ−q(x1) · · · dµ−q(xk).

Thus, we note that

(q − 1)mE(h,k)
m,q (x) =

m∑

j=0

(
m

j

)

(−1)m−jqxj
[2]kq

(−qj+h : q−1)k

. (5.1)

We may now mention the following formulas which are easy to prove.

qhE(h,k)
m,q (x + 1) + E(h,k)

m,q (x) = [2]qE
(h−1,k−1)
m,q (x), (5.2)

and

qxE(h+1,k)
m,q (x) = (q − 1)E

(h,k)
m+1,q(x) + E(h,k)

m,q (x). (5.3)
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Let l ∈ N with l ≡ 1 (mod 2). Then we note that

∫

Zp

· · ·

∫

Zp
︸ ︷︷ ︸

k times

[x +

k∑

j=1

xj ]
m
q q

∑k
j=1

(h−j)xjdµ−q(x1) · · · dµ−q(xk) =

[l]mq

[l]k−q

l−1∑

i1,··· ,ik=0

qh
∑k

j=1
ij−

∑k
j=2

(j−1)ij (−1)
∑k

j=1
ij×

×

∫

Zp

· · ·

∫

Zp
︸ ︷︷ ︸

k times




x +

∑k
j=1 ij

l
+

k∑

j=1

xj





m

ql

(ql)
∑k

j=1
(h−j)xjdµ−ql(x1) · · · dµ−ql(xk).

Therefore we obtain the following:

Theorem 4. ( Distribution for q-Euler polynomials) For l ∈ N with l ≡ 1 (mod 2). Then
we have

E(h,k)
m,q (lx) =

[l]mq

[l]k−q

l−1∑

i1,·,ik=0

qh
∑k

j=1
ij−

∑k
j=2

(j−1)ij (−1)
∑k

j=1
ij

E
(h,k)

m,ql

(

x +
i1 + · · ·+ ik

l

)

. (5.4)

It is interesting to consider the case h = k, which leads to the desired extension of the
q-Euler numbers of higher order [1]. We shall denote the polynomials in this special case

by E
(k)
m,q(x) := E

(k,k)
m,q (x). Then we have

(q − 1)mE(k)
m,q(x) =

m∑

j=0

(
m

j

)

(−1)m−jqjx
[2]kq

(−qj+k : q−1)k

, (5.5)

and

E
(k)
m,q−1(k − x) = (−1)mqm+(k

2)E(k)
m,q(x). (5.6)

For x = k in (5.6), we see that

E
(k)
m,q−1(0) = (−1)mqm+(k

2)E(k)
m,q(k). (5.7)

From (5.2), we can derive the below formula:

qkE(k)
m,q(x + 1) + E(k)

m,q(x) = [2]qE
(k−1)
m,q (x). (5.8)

Putting x = 0 in (5.1), we obtain

(q − 1)mE(k)
m,q =

m∑

i=0

(
m

i

)

(−1)m−i
[2]kq

(−qi+k : q−1)k

. (5.9)
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Note that
m∑

i=0

(
m

i

)

(q − 1)i

∫

Zp

· · ·

∫

Zp
︸ ︷︷ ︸

k times

[x1 + · · ·+ xk]
i
qq

∑k−1

j=1
(k−j)xjdµ−q(x1) · · · dµ−q(xk) =

[2]kq
(−qm+k : q−1)k

.

From this, we can easily derive

m∑

i=0

(
m

i

)

(q − 1)iE
(k)
i,q =

[2]kq
(−qm+k : q−1)k

(5.10)

and so it follows

E(k)
m,q(x) = (qxE(k)

q + [x]q)
m, m ≥ 1, (5.11)

where we use the technique method notation by replacing (E
(k)
q )n by E

(k)
n,q , symbolically.

In particular, from (5.8), we have

qk(qE(k)
q + 1)m + E(k)

m,q = [2]qE
(k−1)
m,q . (5.12)

It is easy to see that
∫

Zp

· · ·

∫

Zp
︸ ︷︷ ︸

k times

q(k−1)x1+···+xk−1dµ−q(x1) · · · dµ−q(xk) =
[2]kq

(−qk : q−1)k

.

Thus, we note that E
(k)
0,q =

[2]kq
(−qk:q−1)k

.

6 Generating function for q-Euler polynomials

An obvious generating function for q-Euler polynomials is obtained, from (5.1), by

[2]kqe
t

1−q

∞∑

j=0

(−1)j

(−qj+h : q−1)k

qjx

(
1

1− q

)j tj

j!
=

∞∑

n=0

E(h,k)
n,q

tn

n!
. (6.1)

From (5.1), we can also derive the below formula:

qh−kE(h,k+1)
m,q (x + 1) = [2]qE

(h,k)
m,q (x)− E(h,k+1)

m,q (x). (6.2)

Again from (5.5) and (5.9), we get easily

∫

Zp

· · ·

∫

Zp
︸ ︷︷ ︸

k times

[x +
k∑

j=1

xj ]
m
q q

∑k−1

j=1
(k−j)xjdµ−q(x1) · · · dµ−q(xk) =

m∑

j=0

(
m

j

)

qxj

∫

Zp

· · ·

∫

Zp
︸ ︷︷ ︸

k times

[xk]
j
q[x +

k−1∑

j=1

xj ]
n−j
q q

∑k−1

l=1
(k+j−l)xldµ−q(x1) · · · dµ−q(xk).



24 T Kim

Thus, we note that

E(k)
m,q(x) =

m∑

j=0

(
m

j

)

qxjE
(1)
j,q E

(k+j,k−1)
m−j,q (x). (6.3)

Take x = 0 in (6.3), we have

E(k)
m,q =

m∑

i=0

(
m

i

)

E
(1)
j,q E

(k+j,k−1)
m−j,q . (6.4)

So, for k = 2,

E(2)
m,q =

m∑

i=0

(
m

i

)

Ej,qE
(j+2,1)
m−j,q .

It is not difficult to show that
∫

Zp

[x]mq qhxdµ−q(x) =

h∑

j=0

(
h

j

)

(q − 1)j

∫

Zp

[x]m+j
q dµ−q(x), for h ∈ N .

From this, we can derive the below:

E(h+1,1)
m,q =

h∑

j=0

(
h

j

)

(q − 1)jEm+j,q, h ∈ N. (6.5)

By (6.4) and (6.5), we easily see that

E(2)
m,q =

m∑

j=0

(
m

j

)

Ej,q

j+1
∑

i=0

(
j + 1

i

)

(q − 1)iEm−j+i,q. (6.6)

By (6.6), for q = 1, we note that

E(2)
m =

m∑

j=0

(
m

j

)

EjEm−j , where

(
2

et + 1

)k

=
∞∑

n=0

E(k)
n

tn

n!
.

It is easy to show that

[x + x1 + · · ·+ xk]
m
q =

m∑

j=0

(
m

j

)

[x1 + x]m−j
q qj(x1+x)[x2 + · · ·+ xk]

j
q.

By using this, we get easily

∫

Zp

· · ·

∫

Zp
︸ ︷︷ ︸

k times

[x +
k∑

j=1

xj ]
m
q q

∑k−1

j=1
(k−j)xjdµ−q(x1) · · · dµ−q(xk) =

m∑

j=0

(
m

j

)

qjx

∫

Zp

[x + x1]
m−j
q q(k+j−1)x1dµ−q(x1)×

×

∫

Zp

· · ·

∫

Zp
︸ ︷︷ ︸

k−1 times

[x2 + · · ·+ xk]
j
qq

∑k−1

j=2
(k−j)xjdµ−q(x2) · · · dµ−q(xk).

Therefore we obtain the following:
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Theorem 5. For m, k ∈ N, we have

E(k)
m,q(x) =

m∑

j=0

(
m

j

)

qjxE
(k+j,1)
m−j,q (x)E

(k−1)
j,q . (6.7)

Indeed for x = 0,

E(k)
m,q =

m∑

j=0

(
m

j

)

E
(k+j,1)
m−j,q E

(k−1)
j,q = (6.8)

m∑

j=0

(
m

j

)

E
(k−1)
j,q

k+j
∑

j=0

(q − 1)i

(
k + j − 1

i

)

E
(1)
m−j+i,q. (6.9)

As for q = 1, we get the below formula

E(k)
m =

m∑

j=0

(
m

j

)

E
(k−1)
j E

(1)
m−j .

7 q-Euler zeta function in C

In this section, we assume that q ∈ C with |q| < 1. From section 4, we note that

E(h,1)
m,q (x) =

[2]q
(1− q)m

m∑

l=0

(
m

l

)

qlx(−1)l 1

1 + ql+h
= [2]q

∞∑

n=0

(−1)nqnh[n + x]nq . (7.1)

Thus, we can define q-Euler zeta function:

Definition 1. For s, q ∈ C with |q| < 1, define

ζh
E,q(s, x) = [2]q

∞∑

n=0

(−1)nqnh

[n + x]sq
,

where x ∈ R with 0 < x ≤ 1.

Note that ζh
E,q(−m, x) = E

(h,1)
m,q (x), for m ∈ N. Let

Fq(t, x) =
∞∑

n=0

E(h,1)
n,q (x)

tn

n!
.

Then we have

Fq(t, x) = [2]qe
t

1−q

∞∑

n=0

(−1)nqhne
−

qn+x

1−q
t
= [2]q

∞∑

n=0

(−1)nqhne[n+x]qt, for h ∈ Z.

Therefore we obtain the following
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Lemma 2. For h ∈ Z, we have

Fq(t, x) = [2]q

∞∑

n=0

(−1)nqhne[n+x]qt =

∞∑

n=0

E(h,1)
n,q (x)

tn

n!
. (7.2)

Let Γ(s) be the gamma function. Then we easily see that

1

Γ(s)

∫ ∞

0
ts−1Fq(−t, x)dt = ζh

E,q(s, x), for s ∈ C. (7.3)

From (7.2) and (7.3), we can also derive the below Eq. (7.4):

ζh
E,q(−n, x) = E(h,1)

n,q (x), for n ∈ N. (7.4)
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