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Abstract

The main purpose of this paper is to present a systemic study of some families of
multiple g-Euler numbers and polynomials. In particular, by using the ¢-Volkenborn
integration on 7Z,, we construct p-adic ¢-Euler numbers and polynomials of higher
order. We also define new generating functions of multiple g-Euler numbers and
polynomials. Furthermore, we construct Euler ¢-Zeta function.

1 Introduction

For any complex number z, it is well known that the familiar Euler polynomials E,,(z) are
defined by means of the following generating function, see Refs. [3, 5, 6, 9, 13]:

F(z,t) = = ZEn(z)g, (t| < m). (1.1)
n=0 :

We note that, by substituting z = 0 into (1.1), E,(0) = E,, is the familiar n-th Euler
number defined by [4, 5]

G(t) = F(0,t) =

ZE (|| < ).

By the meaning of the generalization of F,, Frobenius-Euler numbers and polynomials
are also defined by [16]

1— 1—
“ ZH ,and Y eat ZH (u, x) ] (ueCwith\ul>1).

Over five decades ago, Calitz [2, 3] defined g-extension of Frobenius-Euler numbers
and polynomials and proved properties analogous to those satisfied H,(u) and H,(u,x).
Recently, Satoh [14, 15] used these properties, especially the so-called distribution relation
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for the ¢-Frobenius-Euler polynomials, in order to construct the corresponding g-extension
of the p-adic measure and to define a g-extension of p-adic I-function {, 4(s, u).

Let p be a fixed odd prime in this paper. Throughout this paper, the symbols Z,
Zyp, Qp, C and C,, denote the ring of rational integers, the ring of p-adic integers, the
field of p-adic numbers, the complex number field, and the completion of the algebraic
closure of Q,, respectively. Let v,(p) be the normalized exponential valuation of C,
with [p|, = p~»®) = p=1. When one speaks of g-extension, ¢ can be regarded as an
indeterminate, a complex number ¢ € C, or a p-adic number ¢ € C,; it is always clear
from the context. If ¢ € C, then one usually assumes that |¢| < 1. If ¢ € C,, then one
usually assumes that |¢ — 1], < pip%l, and hence ¢* = exp(zloggq) for x € Z,. In this
paper, we use the below notation [6, 7, 8, 9, 10, 11, 14]

o= 5T, @0 = -0 —ag) (- ag" )

Note that lim,_,;[z]; = = for any = with |z|, < 1 in the p-adic case. For a fixed positive
integer d with (p,d) =1, set

X =Xg=limZ/dp", Xy = Z,, X* = LJ a -+ dpZ,,

N 0<a<dp
(a,p)=1

a+dpNZ,={x € X|zx=a (modp")},

where a € Z satisfies the condition 0 < a < dp”, (see Refs. [10, 11]). We say that f is a

uniformly differentiable function at a point a € Z,,, and write f € UD(Z,), if the difference
quotients Fy(x,y) = [ 2«75( Y have a limit f'(a) as (z,y) — (a,a) [11]. For f € UD(Z,),

let us begin with the expression [7, 8, 9, 11]

[p;] YA =D DG +pVZy),

T o<j<pV 0<j<pVN

which represents a g-analogue of Riemann sums for f. The integral of f on Z, is defined
as the limit of those sums(as n — oo) if this limit exists. The g-Volkenborn integral of a
function f € UD(Z,) is defined by

= [ redugta /f 2)dpg( ol

Recently, we considered another construction of a g-Eulerian numbers, which are different
than Carlitz’s ¢-Eulerian numbers as follows [6, 12, 13]:

QZ nn [n+:p ZEnq

Thus we have

- ) 2y <~ (7 (-1
E,,=FE, E E, — q Iz
q ,q( ]-_Qn < >1+ql+17 (fE) (1_(])11 0<l>1+ql+1q )

=0
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where () is a binomial coefficient [13].
Note that limy 1 E, ¢ = E, and limg_ B, 4(z) = Ep(x). In Ref. [12], we also proved
that ¢g-Eulerian polynomial E,, ,(z) can be represented by g-Volkenborn integral as follows:

/ [z + xl]’;d,u_q(ml) = / [z + :cl]];du_q(x) = By q4(x), fork,deN,
X4 z

D

N _ qa°[2]
where p_q(z +p"Zy) = ﬁ(—l)z.
The purpose of this paper is to present a systemic study of some families of multiple

g-Fuler numbers and polynomials. In particular, by using the ¢-Volkenborn integration
on Zj, we construct p-adic g-Euler numbers and polynomials of higher order. We also
define new generating function of these g-Euler numbers and polynomials of higher order.
Furthermore, we construct Eul?r g-C-function. From section 2 to section 5, we assume

that ¢ € C, with |1 —g¢|, <p 7.

2 ¢-Euler numbers and polynomials associated with an in-
variant p-adic g¢-integrals on Z,

Let h € Z, k € N ={1,2,3,---}, and let us consider the extended higher-order g-Euler
numbers as follows:

ET(rfLL:éf) = / .. / [21 + 20+ + xk]gnqm(h71)+...+mk(hfk)d,u_q(x1) e dpg (k).
Zp ZP
k times
Then we have

Ek) — —.

=0
From the definition of Ey(n’q), we can easily derive the below:

— h—1,k
B0 = Bl 4 (g - DESY ) (m > 0).

It is easy to show that
[ [ SO ) digfonin) =
ZP Zp

k+1 times
k+1

Z( >q_1 /Zp /Z Ei (1) - dpg (i), (2.1)

P [=1
k—l—l times
and we also get
k+1
[2lg

/ ZJ  (m— D5y g(x1) - dp_g(zi1) = (2.2)
zp Zp

(=q™:q Vry1
k+1 times

From (2) and (2.2), we can derive the below proposition.
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Proposition 1. For m,k € N, we have

m k+1
= J 2,9 (_qm . q_l)k+1 »q

o (e

Remark. Note that E(1 D= E, 4, where E, , are the g-Euler numbers (see Ref. [13]).
From the definition of Egl,}k), we can derive
~ (i -1ty _ (i1 (k)
h—1k -
Z (j>(q 1)jEm z—i—jq_z < ] )( 1)JEm+] —1,q
j=0 j=0

for m > ¢. By simple calculation, we easily see that

m

m i m(h, m -1z 2
Z( ’>(q_ EG" _/ q" g dpg (@) = [2][ .
=0 Vi Zp qmth

Furthermore, we can give the following relation for the ¢-Euler numbers, E,(,? g ),

m k

m Ok 2]5

(g —1)E; —_ 2.3

Y (3 = iy, 3)

. k
3 Polynomials Eé?g] )(x)
We now define the polynomials Eﬁg&k) (z) (in ¢*) by
ko
p P

k times

Thus, we have

(q—V)"ERD (« ’q“i ( >q” *j%. (3.1)

7=0
It is not difficult to show that

/ qZ}’;l(mfj)rﬁmxdufq(xl) coedp_g(Tg) = ¢
Zyp Z,p

k times

and

m mi‘ €T mx = m 1 k)
P '3

k times

Therefore we obtain the following.
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Lemma 1. For m,k € N, we have
m mx 91k
m i (0,k) q [2}q (0,k)
: —1)E; )= —"" — B (g) =
jz; (]><q PEia 0= Ty e @
i( ) ;1 (3.2)
1—qm (—qﬂ:q* )k

Let [ € N with I =1 (mod 2). Then we get easily

k m
koo
/ / T+ § xj q_zj:”x]du—q(xl)"'dli—q($k) =
Zp Zp

—
J q
k times

[[ll]]lg Z Zg o(G—1)i; | (_1)Z§:1ijx

—q 4y e i =0

m

T+ ij j
/ / Z] 17 Zx q*lzﬁﬂﬂjdu_qz (z1) - du_g(zk).
zp Zp

1
7= q
k times

From this, we can derive the following “multiplication formula
Theorem 1. Let | be an odd positive integer. Then

m -1 '
q Z —Z§:2(j—1)i( )zl luE(Ok)(ﬂﬁ-i-Zl-i- i

9 (w) = 1

m )-
q 4y, ip=0 q l
Moreowver,
(0.5) 07§y Sl i gOR) oy T
B (ZJU)_W E q <=2 I(=1)z="E ’ ) (x +7

From (2.3) and (3.1), we can also derive the below expression for E(?’k) (x):

- m .k m—1i 1T
Eﬁs;m:}:(i)@g ey,
=0

whence also

m

EOR (3 4 y) = Z() iV B ().

j=0

).
m,q!
q 41, ,ip=0 l

(3.3)

(3.4)

(3.5)
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: h,1
4 Polynomials Eﬁl,q) (x)
Let us define

D@ = [ ooy ¢ V(o). (1)

P

Then we have
2] " (m 1
El"(jbl,l) ) = [ q < > -1 lqll‘ .
o 7) (1—g)m ; A (1+q"*h)

By simple calculation of g-Volkenvorn integral, we note that

¢ [ ol @O w) =

P

(q_l)/z [:E—I—wﬂgl""l q“(h‘Q)duq(m)Jr/ [l,+x1]gz q.Tl(h—Q)d'uiq(:L‘l).

P Zp

Thus, we have

x h—1,1 _
¢ B8 (@) = (¢ = VBN (@) + B (@), (4.2)

It is easy to show that

/Z [z + ml];n q(h—l)zlduiq(ml) — Z <m> [x];n—jqjm/z [m]gq(h_l)mduiq(m)‘
. ,

P

This is equivalent to

m

m s A1 m

B (e) =3 ( ; ) aly T Bl = (B +[a)y) ", form =1,
§=0

where we use the technique method notation by replacing (E(gh’l))" by Eglq’l), symbolically.

From (4.1), we can derive

"B (z+ 1) + EPD(2) = [2], ] (4.3)
For x = 0 in (4.3), this gives
7" (qEﬁi‘;{}) + 1) + B = 6o, (4.4)

where dg j, is Kronecker symbol. By the simple calculation of ¢g-Volkenborn integration, we
easily see that

- 2
/ qxl(h Ud,u_q(l'l) _ [ ]q ]
Zyp

Thus, we have Eéigl) = [[22]]‘1 . From the definition of g-Euler polynomials, we can derive
) q h

/Z 1—z+z]0y ¢ Vdp_ (1) = ¢ (-1)"ELD ().

P

Therefore we obtain the below “complementary formula”:
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Theorem 2. Form € N, n € Z, we have

E®D (1 —2) = (~1)"¢™ " EDD (). (4.5)

m?q_

In particular, for x =1, we see that

Byl (0) = (—1)"qm M EQD(1) = (1)l LY, formz 1 (46)

For | € Nwith [ =1 (mod 2), we have

/Z gh—Dm [z + z1]" qxl(h’l)du_q(ml) =
P

m

0" S i +i
1=0 Ly

[ —q q
Thus, we can also obtain the following:

Theorem 3. (Multiplication formula) Forl € N with [ =1 (mod 2), we have

2]q 1m = Y (h1), T+ (h,1)
[2]ql [l]q Zq (_1) Em7ql ( I ) = Em;q (.T)
=0
Furthermore,

-1 .
2 m i i ma(h, L
0 VD = B

5 Polynomials Eﬁ,? ’;)(:c) and h =k

It is now easy to combine the above results and define the new polynomials as follows:

E'%l’v;) (z) = / .. / [ZC +x1 4+ + $k]gnq(h—1)x1+...+(h—k)a:kd'u_q(xl) .. dﬂ—q(xk)-
ZP ZP

k times

Thus, we note that

(- V"B () = f: <m> (=)™ g

=0

P 5.1
(=gt g )i (51)

We may now mention the following formulas which are easy to prove.

B8P (2 +1) + BIEH (2) = (2], B D (@), (5.2)

m7q

and

FELT (@) = (g — DEMY (@) + ESP (@), (5.3)

m’q
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Let [ € N with { =1 (mod 2). Then we note that

/ / x_i_Zx] ] 1h J)-Z’]dlul ( ) du_q(ajk>:
ZP ZP ] 1
k times
-1
z] Z WS BT SNV VIR S AT

T + ij j
/ / Za 1% Z zj (ql)2§:1(h—y)xj d,u,qz (z1)-- -d,u,qz (k).
L

ql
k times

Therefore we obtain the following:

Theorem 4. ( Distribution for g-Euler polynomials) Forl € N with I =1 (mod 2). Then
we have

U

EhR) (1) = Z th,’leij—Zfzz(j—l)ij(_l)E'f:lij
mg %
[”_q 21,,0x=0
B <x+ 21+l+lk> ' (5.4)

It is interesting to consider the case h = k, which leads to the desired extension of the
g-Euler numbers of higher order [1]. We shall denote the polynomials in this special case

by E (k) q(z) = Er(r]f:(f) (). Then we have

(¢ = D" ERy () = ]Z:% (T) (—1>qujx(_qj+[f]?ql)k, (5.5)
and

E® (k- ) = (~1)"q"™ G EW), (). (5.6)
For x = k in (5.6), we see that

EY (0) = (- 1)mgm G EW (k). (5.7)
From (5.2), we can derive the below formula:

" EQ) (x4 1)+ BY) (2) = 2B,V (). (5.8)

Putting x = 0 in (5.1), we obtain

o (m L 20
_1\ymp(k) _ _1\ym—i q
a0 e, =3 (7)) O 5.9)
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Note that

" (m ; R Sl T
( '><q— 1) /Z /Z 1+ -+ ap)ig== F DA () - dpg () =
=0 P P

k times

[2]5
(—gmF g7tk

From this, we can easily derive

m k
m i (k) [Q]q
e =1)'E; ) = 5.10
and so it follows
EQ (@) = (¢"EY + [2])™, m>1, (5.11)

where we use the technique method notation by replacing (E(gk))” by ngg, symbolically.

In particular, from (5.8), we have

¢"(qE® + 1) + B, = 2], EE Y. (5.12)
It is easy to see that

/ ' / g DTty () - dpg(ay) = &.

L Zyp (=% : ¢
——
k times
(k) _ (215

Thus, we note that Ey, = m.

6 Generating function for ¢-Euler polynomials

An obvious generating function for g-Euler polynomials is obtained, from (5.1), by

N (1) of 1YV & ¢
2)keTa . ¢ ( > - = Bk Z_ 6.1
2Lz (=g ig ) \1—-q) J! nz;) " nl (61)

From (5.1), we can also derive the below formula:

¢"FEQ T (@ 1) = [20,ELy) (2) - BNy (). (6.2)
Again from (5.5) and (5.9), we get easily
k
k=1 (Vs
/ h / [z + Z xj];nqzjzl(k 7 Tdp—q(w1) - - dp—g(g) =
ZP ZP

j=1

k times

Z( ) z]/ / ) :c+Z:r:g" JqR i =Dy () - dpg ().
ZP

k times
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Thus, we note that
= P k+j,k—
EW (z)=3" (;) IES BRI (), (6.3)

Take z = 0 in (6.3), we have

k) _ o (m (1) pk+ik=1)
m =3 () mimis 04

m
2) _ m - o(+2,1)
Ev(n,)q - Z < i >E3v‘1Em—j7q ’
i=0
It is not difficult to show that
h

/Z 2]y " dpg(x) = <?> (g —1) / 2] dp_y (), for h € N .

P j=0 Zp
From this, we can derive the below:
h

h ,
Eﬁ;u):§:<g>@_1yEmﬂw h € N. (6.5)

j=0
y (6.4) and (6.5), we easily see that

EQD = i( ) ]q§< ) ~ 1) B jrig (6.6)

7=0
By (6.6), for ¢ = 1, we note that

@ _\~(m 2\t
E® — E,E, . wh B N
=3 ()t mhere (57 =3B

n=0

It is easy to show that

m
[+ 21+ -+ ]y Z( )x1+xm3 IEHD) [0 + - gl
7=0

By using this, we get easﬂy

/ / x_i_Zx] ] 1 k ])xjd/’L ( ) dﬂ_q(xk):
Z,, Zp st

k times
> (j )qm/ [+ 1]y g (1) %
=0 Zp
. k—1 N
Zp Ly
——
k—1 times

Therefore we obtain the following:
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Theorem 5. For m,k € N, we have

3 - 2 (kg ) (o e(E—1)
E( Z( ) SN @) By

Jj=0

Indeed for x =0,
B _ N () ki) 1) _
Em,q - Z <j>Em—j,q E] q
" ’m (k 1)k+j (k+j—1 (1)
> () e a0 (T B

=0 =0
As for g = 1, we get the below formula

ER =3 <m) EFVED

=0 7

7 g-Euler zeta function in C

In this section, we assume that ¢ € C with |g| < 1. From section 4, we note that

[e.9]

E(h»ql)( 1_q mz ( ) 1+1ql+h [2]‘1 Z(_l)

n=0
Thus, we can define g-Euler zeta function:

Definition 1. For s,q € C with |¢| < 1, define

o0 (_1)nqnh
(Balsm) =20 Y

1 7;) [n+ 3
where x € R with 0 < 2 < 1.

Note that (gq(—m,m) = Eéﬁ’;)(x), for m € N. Let

> t
=2 Bl @)
n=0

Then we have

00 z 0

_t _a"t
Fy(t,) = 2geT0 Y (=1)"g"e™ 0" = [2], Yy (1) g""elm o,

Therefore we obtain the following

(7.1)
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Lemma 2. For h € Z, we have

> n_ hn _[n+x G "
Fy(t,2) = 2 3 (~ 1) et = 3™ Bl () (72)
n=0 n=0 ’

Let I'(s) be the gamma function. Then we easily see that

1 > s—1 _ h
F(s)/o t* Fy(—t,x)dt = (g ,(s,x), forseC. (7.3)

From (7.2) and (7.3), we can also derive the below Eq. (7.4):

Cho(—n,2) = E,ggm(x), for neN. (7.4)
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