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Abstract

It is shown how pseudoconstants of the Liouville-type equations can be exploited as a
tool for construction of the Backlund transformations. Several new examples of such
transformations are found. In particular we obtained the Bécklund transformations
for a pair of three-component analogs of the dispersive water wave system, and auto-
Béacklund transformations for coupled three-component KdV-type systems.

1 Introduction

Since the discovery of integrability of the KdV equation several methods for classifying
equations bearing the same property have been developed. The most well-known and
fruitful of them are Painlevé test [16] and symmetry approach [12]. The common feature
of these methods is that they provide only with necessary conditions of the integrability,
though it appears that equations having passed these tests are integrable. This commonly
can be proved by constructing the Lax representations or the Backlund transformations.
One should mention that these two fundamental objects of soliton theory may be derived
via truncation of Painlevé expansions, however, the calculations involved can be very
tedious.

The method presented in this paper can be successfully applied to constructing the
Backlund transformation when the equation under consideration has a pair of hyperbolic
Liouville-type equations [10, 19] as negative commuting flows. The well known example
is given by the hierarchy of sinh-Gordon—-mKdV equations, used below to clarify the idea
of the method. The method relies on the connection between the Miura and Béacklund
transformations on one hand, and the Miura transformations and the Liouville-type equa-
tions on the other. Thus the proposed method will complement existing approaches (see
e.g. [13, 14, 17, 2, 9, 11]).

The paper is organized as follows. Below we rederive two well-known results due to
Wahlquist, Estabrook [16], and Fordy [8] concerned the Bécklund transformations for
the KdV, Sawada-Kotera, and Kupershimidt equations. In section 2 we construct the
auto-Backlund transformations for several coupled KdV-type systems recently presented
in [7].
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The auto-Béacklund transformation for the KdV equation in the potential form

3

is given by the relation [16]

R 1 .
9%+¢w=—1W—¢F+2x (1.2)

Here @, ¢ are solutions of equation (1.1), and A is an arbitrary parameter usually called
”Bécklund parameter”. Equation (1.1) is related to the potential mKdV equation

Ur = Uggy — —U (1.3)

by any of the Miura transformations

wz/MM,éz—/ﬂM, (1.4)

where

1 N 1
P = Ugy — §ui, p:um—i—iui. (1.5)
Excluding variables u;, u, from (1.4) we obtain the auto-Bécklund transformation for
(1.1) in the form

. 1 .
Pz + Pz = _7(80_90)2- (16)

4
A Bécklund parameter can be introduced into relation (1.6) by applying the transformation
o(z,7) — xX + @(x + 3A7,7) + 3/27)% corresponding to the classical symmetry o) =
x + 37¢, admitted by equation (1.1).
The crucial point here is the way we get a couple of different Miura transformations
relating equations (1.1) and (1.3). First, we note that evolution equation (1.3) is the first
higher symmetry (commuting flow) of the sinh-Gordon equation

Uyt = ae® +be ", (1.7)

where a, b are arbitrary constants. Setting b = 0 or a = 0 we obtain the following couple
of Liouville equations

Ugpr = ae®, Uy = be (1.8)

for which functions (1.5) appear to be the simplest pseudoconstants, i.e. on solutions of
corresponding equation (1.8) they satisfy the characteristic equation

,01}:0.

On the other hand a pseudoconstant of a Liouville-type equation determines a Miura
transformation (see e.g. [15, 19]) for its higher symmetries.
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As it is evident from this example one need not make any assumptions on the order or
the structure of the transformation to be found. Applying this method we usually go in
opposite direction: we start from an integrable hyperbolic equation, for example (1.7), find
all its degenerate counterparts — the Liouville type equations, and then find hierarchies
of evolution equations related by theirs pseudoconstants. On the last step we construct
(auto-)Bécklund transformation excluding variables w;. It is important for applicability of
the method to have a couple of the Liouville-type equations generated by initial hyperbolic
equation.

Of course considered example is not a single case where the suggested procedure works.
However, for some equations we get Backlund-type transformations without a parameter.
One of such examples is related to Tzitzeica equation

Uy = ae® + be 2%, (1.9)
Its first higher symmetry (commuting flow) has the form

Ur = Ugzzzr + D (Upzalier — Ugzztls — Ugti2,) + UuD. (1.10)
Setting b =0, and a = 0 in (1.9) we obtain the couple of Liouville equations

Ugt = ae®, Uy = be 2Y (1.11)

having the following pseudoconstants correspondingly

w:um—gui, O = Ugg + U2, (1.12)

On the solutions of equation (1.10) functions

wz/wdx, cﬁ:/d)d:c (1.13)

satisfy the Kaup-Kupershmidt and Sawada-Kotera equations in potential form

15 20
R R . . 9 .3
Pr = Prrzzz + 5‘~sz:v§0x + 2 (115)

3

Excluding variables uy, u;, from (1.13) we obtain the Backlund transformation for solu-
tions of (1.14) and (1.15) in the form [§]

P+ $u = —2 (9~ $/2* (1.16)

We must finally state that a Backlund parameter cannot be introduced into transformation
(1.16), and by this reason in the sequel we restrict ourselves to sinh-Gordon like equations.
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2 New examples

In this section we consider Lagrangian systems 0L /du’ = 0 with

L= gyupiad + f(u). 2.1)
2%

where g;; is the metric tensor of the configurational space with the coordinates u®. Systems
with Lagrangian of the form (2.1) are usually called c—models. They play an important
role in quantum field theory and in the theory of magnetics. In paper [4] (see also [5, 6, 7])
a classification of Lagrangians (2.1) in the three-dimensional reducible Riemann space such
that corresponding field systems admit higher polynomial symmetries is given. Below we
consider the subclass of systems with

L = uguy /2 + Yogwy + avPe M + puke M, (2.2)

where ¥ = 1/(vw + ¢), and ¢, \, k,a,b = const. It is assumed that ¢ # 0, otherwise
the configurational space is flat, and the problem reduces to the well-investigated case
L= Z 5iju§;ug + f(u), where d;; is the Kronecker’s symbol. The choice of subclass (2.2) is
motivated by the fact that in this case the suggested procedure leads to a derivation of the
auto-Backlund transformation with the Backlund parameter. There are three integrable
cases in (2.2):

A=v2, k=1, (2.3)
A=k=1, (2.4)
A=k=2 (2.5)

Note that the sinh-Gordon—mKdV hierarchy is a reduction of hierarchies considered here
for v = const, w = const. It is shown in [7] that hyperbolic systems corresponding to
(2.3)-(2.5) under condition a = 0 or b = 0 are of the Liouville-type. Corresponding sets
of pseudoconstants are given ibidem. Using the method presented in the introduction it
is easy to compute the Bécklund transformations for all these cases. Below we give a
detailed derivation of the Bécklund transformation for case (2.3). Calculations for cases
(2.4), (2.5) are similar, but slightly more complicated, and we omit them presenting the
final result only.

Case (2.3). Hyperbolic system corresponding to (2.3) and its simplest higher symmetry
are

Uzt = V2(aveV? — bwe V),

(2.6)
var = be V2T 4 Yoo, wer = ae¥ YT+ wpwwd,
Ur = \/iwvxwarv Ur = Ugx — 2’U¢'U$'LU3; + \/iuxvcca (2 7)
Wy = —Wgy + 2WYPV W, + V2uw,. '
If b = 0, then the complete set of pseudoconstants of (2.6) is given by
p=(V2uUzz — u2 — 20,w,1) /6, (2.8)
0 = vgvy b+ @ Uy — YW, (2.9)

Y = ¢’Um(wxm — VgpWzhw — \/iuxwx) (210)
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It follows from the form of Lagrangian (2.2) that pseudoconstants corresponding to the case
a = 0 can be obtained from (2.8)-(2.10) by the substitution u; — —u;, v; — w;, w; — v;.
They are of the form

p=—(V2Uyy + u + 20,w,1)) /6, (2.11)
é = wl’xw;1 - ? Uy — ¢7}xw7 (212)
o= wwx(vxx — VpWePv + ﬁuxvx) (213)

Relations (2.8)-(2.10) and (2.11)-(2.13) determine differential substitutions of system (2.6
into the following systems correspondingly

mr = %QD, my = _%957
Ny = Ngg + 12 + 3my, iy = —Agy — N2 — 317y, (2.14)
Pr = —Paz T 2(n:v§0):ca Or = Pz — 2(ﬁx§5)xa

where m, = p,n, = 6. It is easy to see that systems (2.14) are related by the discrete
transformation 7 — —7. The integrability of (2.14) was established in [7] by constructing
its bi-Hamiltonian structure. There it was also pointed out that (2.14) can be obtained
from the Yajima-Oikawa system [18] in the same way as the dispersive water wave system
(the Kaup-Broer system) from the NLS equation. Thus systems (2.14) can be regarded
as three-component analogs of the dispersive water wave system.

To obtain the Backlund transformation for (2.14) we exclude variables w;, v;, w; from
relations (2.8)-(2.10) and (2.11)-(2.13). From relations (2.8), (2.11) we obtain

w =5 [o=pi. (2.15)

Y Uz Wy = —;(ﬁ+p) - Z(/(p“—p)dx)Q-

On the other hand, it follows from (2.9), (2.12) that

Y VW, = exp (/(9 + G)daz). (2.16)

Thus the first relation of the sought transformation is

. 2 - 3 . 2
p—i—p:—gexp(/(G—l—H)dx)—2</(,0—p)dac) . (2.17)
By expressing v,, from relation (2.9) and substituting it into (2.13) we get

V2

b=~ Paws (V20 + up). (2.18)

Substituting expressions (2.15) and (2.16) into (2.18), we obtain

o= (v+ 2/(p — p)da ) exp (/(9 +0)de). (2.19)
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Similarly from relations (2.10), (2.12), (2.15) and (2.16) we have

o= (0-3 [(o-pras)exp [0+ 0)iz). (2:20)

Thus relations (2.17), (2.19) and (2.20) represent the Bécklund transformation for solutions

of systems (2.14). Passing on to potentials (p,0) — (my,ng), (p,0) — (1, N,) we bring
the Backlund transformation to the form

N

Mg = —1y — 3(m —m)? — 2" 4 A,

5 A A . . 5 (2.21)
ng =35(m—m)+@e " =", + 3(m —m)).

Here the parameter A is injected into (2.21) by applying the transformations
m— —zA+m(x+ A7) = A2/2, n— =3tA+n(@+\71), ©— pl@+T1),
m— aA+m(r+A\T)+A2/2, 2 — =3tA+alz+\7), ¢— plx+A\T),
generated by the classical symmetries of (2.14)
m)\:mx_xa n)\:nx‘_STa SO)\Zgoxa
my = Mg +x, M) =Ny — 3T, P = Pg-
Case (2.4). The hyperbolic system corresponding to the case (2.4) takes the form
2 e—2u

Uy = 2av%e2% — 2bw

)

2.22
Vi = 2bw e 2 pw v vy, Wip = 2av e + v wp wy. ( )

In the degenerate cases a = 0 or b = 0 system (2.22) possesses complete sets of pseudo-
constants. In particular if b = 0 then the pseudoconstants are

2 -1
p=uz —ui — 201w, 0 =wvov; +u —vywi,

0= —3w(20fw1w2¢2 — 2”(/)’11)71)2’1)% + Yvwiwovy — 2¢vvlfw%u1 (2.23)
—21/11)%10% — 2viwiug + 2voujwy — vows — 4dwouqi vy + 4vlw1u% .
+Hwpviwiug + viws).

In the case a = 0 we have
p=—u— u% — 2v1w1, é = wmcwm_l — Uy — WYPV1,
¢ = 73w(2w§v102¢2 — 21/)2}1)210% + Ywvivowy + 2¢ww1v%u1 (2.24)

—2¢v%w% + 2viwiug + 2woui vy — vawsg + 4dvouiwi + 4v1w1u%

—4vpwiviug + wivs).

The latter is obtained from (2.23) by the substitution u; — —u;,v; — w;, w; — v;. The
simplest higher symmetry of (2.22) is of the third order and have the following explicit
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form

1
Ur = JUzzz — %(wm:c’l):c - Uma:w;r)w + %(wvx - vwaﬁ)vfwiwa
+3Pugvwy — %ui’

Vr = VUgga + 3Uszp(Uy — W) + %umvx + 3v2vwiep? — 3viwap (2.25)
+3v,u2 — 6V v WY, '
Wr = Waygy — 3Was (Uy + WUzY) — %umwx + 3w?w,vip? — 3wl

—i—%wxug + WUz v W

Sets of pseudoconstants (2.23) and (2.24) determine the Miura transformations of system
(2.25) into the system

mr = tmge, + 3m2 + ¢,
Ny = Nggs + %(2ngmm + ngmyg) +nd + %mm, (2.26)

Pr = Praz + (Spnaza: — NgPy + 90713; =+ ‘me)x - %Soxmcca
where m, = p,n, = 6. The auto-Bécklund transformation for system (2.26) is therefore

My = —Mhy — 3(m —m)? — 4™ + ),

Ngy = 3T — %gb e i(m —1m)?

+3(h —m — 2ng)(ng — fg) + My — A/2, (2.27)
0= _%(m _ m)26n+ﬁ _ 3e2n+2n
— 3" 21y + 21y + (Rg — Rig) (M — 1 — 2005) — ).

Case (2.5). The hyperbolic system takes the form

J— u —U
Uty = ave’ —bwe Y,

(2.28)

Uiz = b e ™ Fpwup vy, Wi = ath et 4+ v ws wy.

Setting b = 0 in (2.28) we get the Liouville-type system with the pseudoconstants
p=2Uzy — U?g - vaw$¢7 0 = Ua:acU;1 - wwi + Uy,
© = Ve (~Wazr — 20YP2 W02 — VWPV W2 + 2V WV Wy — 2wWeu (2.29)

_3¢wvxwxux + %ww?gvx + U”W)mwx + Wy gy + 3uxwxz)

The other possibility a = 0 gives us a system with the following pseudoconstants
p=—2uUpz — U% — 2, we Y, é = wxxw;I — Vp WY — Ug,
@ = W (—Vazz — 2022 0w2 — VWY WLV + 2VVW Ve — Vs (2.30)

+3YYvw vty + %wvgwx 4+ VY WirVy — 3ULVgy — QUxug).
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The simplest higher symmetry of system (2.28) is

1 3 1,3 9
Ur = _QUx:va; + 2 1/}<Uac:cwac - U:cwa:x) + Zugc + 2 ¢umvxwx

—i—% 2w, (Vpw — vwy),

Vr = Upge + %umvx + vz (uy — YVW,) + %ugvx — 6Y VUL VLW,
+3 9wy (Yoiw, — %vw),

Wr = Wezy — 3 UpaWy — 3Wea(Uy + YO,w) + § uFw,

+6Y WUV W + 3PVvpws (Ywvg — %wx)

(2.31)

Miura transformations (2.29) and (2.30) relate system (2.31) with the system

mr = _%ma:xm + 6 — %mia Ny = Nggg + 3NgNgy + %mxnz + n%7 (2 32)

Or = Paza + 3 (n%QO - nm()@x)x + %meDx

where m, = p,n, = 0. Excluding variables u;, v;, w; from relations (2.29) and (2.30) we
obtain the auto-Bécklund transformation for system (2.32)

Mg = —My — §(m —1m)? — 4e" T — 4,
Ngy = 5nx(m —m)—n2 —pe " 4 %e”“‘ﬁ + A, (2.33)
p = €22 4 e (Lhg(m — 1) — A2 — Ngz + A)

where X is the Backlund parameter.

One of applications of the Béklund transformations is generation of exact solutions
from a given ones. Consider for example the simplest case: system (2.14) and its Backlund
transformation (2.21). Take m = n = ¢ = 0 as a seed solution, then relations (2.21) yield
the following system of ordinary differential equations

2 N 3
m = _gﬁx, @ = 0p€™, figy — N2 — e+ SA=0.
Solving this system we get expressions for functions m, 1, ¢ containing two arbitrary func-
tions of time, the latter can be found after substituting these expressions into the second
system (2.14). This gives one soliton solution of (2.14) which can be represented as

2 Ky eMAT2D) o0 oAt

m= 3 K eMNIAF2T) o0 eA?t | Qe

= Az — log (26“ + Ry A2 HzeAQt) +log(2)%), (2.34)
(,{le/\(t/\—i-?x) + /{26/\21&) e

¢ = 2)3

2 )
(r1eX(tr+20) — FipeMt 4 2¢)7)

where k1, ko = const.
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3 Concluding remarks

In this paper we have presented the method which allowed us to construct Backlund
transformations for several three-component evolution systems presented in [7]. One of
these systems is closely related to the Yajima-Oikawa system, the Backlund transformation
for which was discussed in [3] from the viewpoint of Lax pair. We would like to point out
that the Lax pairs for (2.26) and (2.32) are of the fourth order and have quite complicated
structure [6], so it would be difficult to find corresponding Bécklund transformations if we
tried to do that using methods previously known.
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and to Prof. Q.P. Liu for pointing out the reference [3].
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