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Abstract

Three third-order differential equations are obtained for the canonical
system. These equations are equivalent to the initial system and cha-
racterize its components. The first equation is Lipschitz continuous, the
second one has discontinuous right hand side and the third one is an equa-
tion with impulse action. The equation in variations which corresponds
to solutions of the first equation is investigated; analysis of its solutions
is given; conditions for presence of periodic solutions for Chua’s system
are discussed. The canonical form for the general system of Chua’s type
is obtained.

We will consider equations for the canonical Chua’s circuit [1]

dv1

dt
=

1
C1

[
v2 − v1

R
− f(v1)

]
,

dv2

dt
=

1
C2

[
v1 − v2

R
+ i3

]
,

di3
dt

=
1
L

[−v2 −R0i3], (1)

where f(v1) is a piesewice-linear function of the form
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f(v1) = Gbv1 +
1
2
(Ga −Gb)[|v1 + Bp| − |v1 −Bp|], (2)

C1, C2, L,R, R0, Ga, Gb, Bp are the constants of the circuit.
In terms of dimensionless variables equations (1) take the form

dx

dτ
= α[y − x− f(x)],

dy

dτ
= x− y + z,

dz

dτ
= −βy − γz, (3)

where

f(x) =


bx + a− b for x ≥ 1,

ax for |x| ≤ 1,
bx− a + b for x ≤ −1,

(4)

α, β, γ and a, b are the parameters of the system, τ is the dimensionless time.
All these parameters (including the time) are naturally connected with that
of Chua’s circuit.

Let us rewrite f(x) in the form

f(x) = ax + (b− a)f1(x),

where

f1(x) =


x− 1 for x ≥ 1,

0 for |x| ≤ 1,
x + 1 for x ≤ −1,

(5)

so system (3) will take the form

dx

dτ
= α[y − δx + mf1(x)],

dy

dτ
= x− y + z,

dz

dτ
= −βy − γz, (6)

where
δ = 1 + a, m = a− b. (7)

Variables v1, v2, i3 (respectively x, y, z) in equations (1) (respectively (6))
will be called the components of the canonical Chua’s circuit. For the case
γ = 0 system (6) is thoroughly studied (see [2–8]). For the case β = 0 the
equation for z is split up and system (6) is easily integrated on the invariant
manifold z = 0. For αm = 0 system (6) is linear so we will suppose that

αβm 6= 0. (8)

Under this assumption we will consider separately the equations for the com-
ponents of the canonical Chua’s circuit.

1. Differential equations

One can see from the form of system (6), that the solution x(t) =
(x(τ), y(τ), z(τ)) has components of different order of smoothness: x(τ) ∈
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C1(R), y(τ) ∈ C2(R), z(τ) ∈ C3(R), where Cr(R) stands for the space of r
times continuously differentiated on R functions. This implies specific charac-
ter of differential equations for the components of the circuit. Let us obtain
these equations.

Equation for z = −βz1

From (6) we have

y = ż1 + γz1
∆= l1(z1), x = ẏ + y + βz1 = z̈1 + (γ + 1)ż1 + (β + γ)z1 =

z̈1 + (γ + 1)ż1 + β1z1
∆= l(z1), (9)

where β1 = β + γ. This leads to the equation for z1

L[z1]
∆= l(ż1) + α[δl(z1)− l1(z1)] = αmf1(l(z)). (10)

Equation for y

From (6) we have

z = ẏ+y−x, ÿ+ ẏ−ẋ+βy+γ(ẏ+y−x) = 0, ẋ = α[y−δx+mf1(x)], (11)

that leads to the system of equations for x, y in the form

l(y) = l1(x) = αy + (γ − αδ)x + αmf1(x). (12)

Let us suppose that
γ1 = γ − αδ (13)

and let us consider the following cases.
CASE 1 Let us suppose that

γ1 6= 0, 1 +
αm

γ1
> 0. (14)

Then system (12) will take the form

l(y)− αy

γ1
=

l1(x)− αy

γ1
= x +

αm

γ1
f1(x). (15)

Taking one of equations from (15) one can obtain the expressions for x:

x =
l(y)− αy

γ1
for |x| ≤ 1, (16)

x =
(

1 +
αm

γ1

)−1 ( l(y)− αy

γ1
− 1

)
+ 1 for x ≥ 1, (17)
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x =
(

1 +
αm

γ1

)−1 [ l(y)− αy

γ1
+ 1

]
− 1 for x ≤ −1. (18)

After the substitution of (16) into another equation from (15) which we
will denote by (15∗) we obtain an equation for y:

l1

(
l(y)− αy

γ1

)
= l(y),

which is possible to transform to the following form

L[y] = 0 for | l(y)− αy

γ1
| ≤ 1. (19)

After the substitution of (17) into (15∗) we obtain the equation for y:

l1

[(
1 +

αm

γ1

)−1 ( l(y)− αy

γ1
− 1

)
+ 1

]
= l(y),

which is possible to transform to the following form

L[y] = αm(l(y)− γ) for
l(y)− αy

γ1
≥ 1. (20)

After the substitution of (18) into (15∗) we obtain the equation for y:

L[y] = αm(l(y) + γ) for
l(y)− αy

γ1
≤ −1. (21)

Thus the system of equations (15) is equivalent to the system of equations
(18) – (21). In order to obtain the equation for y from (18) – (21) we will con-
sider equations (18) – (21) as the formulas for the substitution which replace
variables ÿ for x in the corresponding domains |x| ≤ 1, x ≥ 1, x ≤ −1
of the phase space x, y, ẏ of system (15). Under this change the domain
|x| ≤ 1, x ≥ 1, x ≤ −1 of the space x, y, ẏ is transformed into the domain

| l(y)− αy

γ1
| ≤ 1,

l(y)− αy

γ1
≥ 1,

l(y)− αy

γ1
≤ −1 (22)

of the space of the variables y, ẏ, ÿ. Domains (22) are intersected by the planes
which correspond to boundaries

Γ−1 :
l(y)− αy

γ1
= −1 and Γ1 :

l(y)− αy

γ1
= 1. (23)

Exterior to these planes equations (19) – (21) uniquely define vector fields for
y, ẏ, ÿ . Equations (19) – (21) define two vector fields at the points Γ−1 and
Γ1. The right hand side of system (15) satisfies the Lipshits condition and
thus the vector fields at the points Γ−1 and Γ1 have the same direction with
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respect to Γ−1 and Γ1. Omitting one of the vector fields at Γ−1 and Γ1 we
can define uniquely the vector field for y, ẏ, ÿ in the hole space. Hence we will
get the following equation for y

L[y] = 0 for | l(y)−αy
γ1

| ≤ 1,

L[y] = αm(l(y)− γ) for l(y)−αy
γ1

> 1,

L[y] = αm(l(y) + γ) for l(y)−αy
γ1

< −1.

(24)

Let us denote by χ1 and σ1 the following functions:

χ1(x) =
{

1 for |x| > 1,
0 for |x| ≤ 1,

σ1(x) =


1 for x > 1,
0 for |x| ≤ 1,
−1 for x < −1.

Then equations (24) for y will take the form

L[y] = αm

[
χ1

(
l(y)− αm

γ1

)
− γσ1

(
l(y)− αy

γ1

)]
. (25)

CASE 2 Let us suppose that

γ1 6= 0, 1 +
αm

γ1
< 0. (26)

The system of equations (12) has the form of the system (15).
Formulas (16) – (18) express x in terms of y and define the equation for y

which is analogous to (19) – (21). Formula (16) being used as the change of
variables replacing x for ÿ transforms the domain x of the phase space x, y, ẏ
of the system (15) into the domain

| l(y)− αy

γ1
| ≤ 1 (27)

of the space y, ẏ, ÿ. Formula (17) being used as the change of variables replac-
ing x for ÿ transforms the domain x ≥ 1 of the phase space x, y, ẏ of system
(15) into the domain Π1

l(y)− αy

γ1
≤ 1 (28)

of the space y, ẏ, ÿ. Formula (18) transforms the domain x ≥ 1 into the domain
Π−1

l(y)− αy

γ1
≥ −1 (29)

of the space y, ẏ, ÿ. One can see from (27) – (29) that the domain Π0 is the
common part of the domains Π0,Π1,Π−1. We will construct a three-sheeted
domain of the space of y, ẏ, ÿ formed by sewing together of the domains Π−1

and Π0 with the help of the plane Γ−1, and the domains Π1 and Π0 with the
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help of the plane Γ1. According to (24) the differential equation for y in this
domain takes the form

L[y] = 0 for | l(y)−αy
γ1

| ≤ 1,

L[y] = αm(l(y)− γ) for l(y)−αy
γ1

< 1,

L[y] = αm(l(y) + γ) for l(y)−αy
γ1

> −1.

(30)

Equations (30) define uniquely the vector field exterior to the domain Π0

along with three vector fields corresponding to each sheet. The motion starting
from the lower sheet (defined by the third equation (30)) to the upper sheet
(defined by the second equation (30)) will necessarily pass through the middle
sheet (defined by the first equation (30)). In the case under consideration the
trajectories of system (30) can form the mode in Π0.
CASE 3. Let us suppose that

αm

γ1
= −1. (31)

System of equations (15) takes the form

l(y)− αy

γ1
=

l1(x)− αy

γ1
= x− f1(x) =


1 for x ≥ 1,
x for |x| ≤ 1,
−1 for x ≤ −1

(32)

and in the domain Π0 leads to the equation

L[y] = 0 for | l(y)− αy

γ1
| ≤ 1. (33)

On the boundary of the domain Π0 we will have

l(y)− αy

γ1
= 1 on Γ1, (34)

l(y)− αy

γ1
= −1 on Γ−1. (35)

Since the vector field of the system defined on the planes Γ1 and Γ−1 belong
to these planes the sliding modes in the system are possible after the moment
than the solution reaches these planes [9]. To obtain the equation of motion
for y in this case we should add conditions for slopping of the sliding mode.
That means that we should add the conditions which will guarantee leaving
of the planes Γ1 and Γ−1 for the domain Π0. To obtain them we will use the
equations for x from system (32). This leads to the equations for y of the form

L[y] = 0 for | l(y)−αy
γ1

| < 1,
l(y)−αy

γ1
= 1 for Φ(y, ẏ, y0, ẏ0, c) ≥ 1,

l(y)−αy
γ1

= 1 for Φ(y, ẏ, y0, ẏ0, c) ≤ −1,

(36)
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where Φ is a known function; y0, ẏ0 are the values of y(τ), ẏ(τ) at the point
c = 1 in the moment τ = τ1 which corresponds to the instant at which the
trajectory will come out of the domain Π0 to the boundary Γ1 and for c = −1
to the boundary Γ−1; for c > 1 they will be the initial values of the trajectories
remaining on Γ1 for τ ∈ R (remaining on Γ1 for τ ∈ R, c < −1).
CASE 4 Let us suppose that

γ1 = 0. (37)

System (20) takes the form

l(y)− αy

αm
=

l1(x)− αy

αm
= f1(x) =


x− 1 for x ≥ 1,

0 for |x| ≤ 1,
x + 1 for x ≤ −1

(38)

and can be reduced to the equations in Π1 and Π−1 having the form

L[y] = αm(l(y)− γ) for l(y)−αy
αm ≥ 0,

L[y] = αm(l(y) + γ) for l(y)−αy
αm ≤ 0,

(39)

along with the equation l(y)−αy
αm = 0 on the boundary Γ0 of the domains Π1

and Π−1.
Analogously to Case 2 both equations (39) define the vector field on the

plane Γ0. We will form a three-sheeted domain of the space y, ẏ, ÿ by sewing
together of the domains Π1 and Π−1 with the help of the plane Γ0. In this
domain the differential equation for y takes the form

L[y] = α̇m(l(y)− γ) for l(y)−αy
αm > 0,

L[y] = αm(l(y) + γ) for l(y)−αy
αm < 0,

l(y)−αy
αm = 0 for |F (y, ẏ, y0, ẏ0, c)| ≤ 1

and the condition given by the function F has the same meaning as in Case
3.

We should note that all equations for y, except Case 3, are homogeneous
for γ = 0.

Equation for x

System (6) implies

y =
ẋ

α
+ δx−mf1(x), z =

ẍ + ẋ

α
+ δ(ẋ + x)− x+

(−m)[f1(x) + χ1(x)ẋ], ż = −βy − γz.

So for |x| 6= 1 we will get the equation for x of the form
...
x +ẍ

α
+ δ(ẍ + ẋ)− ẋ−mχ1(x)(ẍ + ẋ) +

γ

α
(ẍ + ẋ) + γδ(ẋ + x)−
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γx−mγ[f1(x) + χ1(x)ẋ] +
β

α
ẋ + β(δx−mf1(x)) = 0

and thus we obtain

L[y] = αm[χ1(x)l(x)− β1σ1(x)] for |x| 6= 1. (40)

We should add to equation (40) conditions for a jump of the function ẍ which
it will get passing through the value |x| = 1. To find these conditions we
obtain the equality

ẍ(τ) = α[ẏ(τ)− δẋ(τ) + mχ1(x(τ)ẋ(τ)] (41)

from which we find the value of the jump ∆ẍ|τ=τ1 = ẍ(τ1 + 0)− ẍ(τ1 − 0) for
x(τ1 − 0) < −1, x(τ1) = −1, x(τ1 + 0) > 1

∆ẍ|τ=τ1 = αmẋ(τ)[χ1(x(τ1 + 0))− χ1(x(τ1 − 0))] = −αmẋ(τ1). (42)

For x(τ1 − 0) > −1, x(τ1) = −1, x(τ1 + 0) < −1 (41) implies

∆ẍ|τ=τ1 = αmẋ(τ1). (43)

Since for the case (42) we have ẋ(τ1) ≥ 0 and for (43) conditions (42), (43)
will take the form

∆ẍ|x=−1 = (−1)αm|ẋ|, (44)

where ẋ stands for the value of the function ẋ(τ) at the point τ = τ1 such that
x(τ1) = −1.

For x(τ2 − 0) < 1, x(τ2) = 1, x(τ2 + 0) > 1 (41) implies

∆ẍ|τ=τ2 = αmẋ(τ2), (45)

for x(τ2 − 0) > 1, x(τ2) = 1, x(τ2 + 0) < 1 (41) implies

∆ẍ|τ=τ2 = −αmẋ(τ2). (46)

Taking into account the signs of ẋ(τ2) we can write conditions (53), (54) in
the form

∆ẍ|x=1 = αm|ẋ|, (47)

where ẋ stands for the value of the function ẋ(τ) at the point τ = τ2 such that
x(τ2) = 1.

One can combine the formulas (46), (47) into the condition

∆ẍ||x|=1 = αm|ẋ| sign x,

where variables x and ẋ have the meaning defined above.
In accordance with the notations of [10] we obtain for x the equation with

the impulse action – the dynamic system with an impulse action of the form

L[x] = αm[χ1(x)l(x)− β1σ1(x)] for |x| 6= 1,
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∆ẍ||x|=1 = αm|ẋ| sign x. (48)

Trajectories of this system have discontinuities on the planes |x| = 1 with
the jumps directed along the ẍ axis and with the values αm|ẋ|sign x at the
points of a discontinuity.

At the case β1 = 0 the equation for x is homogeneous.

2. Relationship between the coefficients and the roots
of the characteristic equation

A characteristic equation for the differential equation of components of the
canonical Chua’s circuit has the form:

in the strip Π0

L[λ]
∆=λl(λ) + α[δl(λ)− l1(λ)] = 0, (49)

exterior to this strip
L[µ] = αml(µ). (50)

Let us denote by p1, p2, p3 and q1, q2, q3 coefficients of the equations (49),
(50). Thus we obtain six equations for five parameters of the circuit:

p1 = γ + 1 + δ1, p2 = β1 + δ1(γ + 1)− α, p3 = β1δ1 − αγ1,

q1 = p1 −m1, q2 = p2 −m1(γ + 1), q3 = p3 −m1β1, (51)

where we denote
δ1 = αδ, m1 = αm.

These parameters satisfy condition (1.8) and this implies the inequality

p1 − q1 6= 0. (52)

In spite of the inequality (52) it is possible to solve (51) in the form

m1 = p1 − q1, γ + 1 =
p2 − q2

p1 − q1
, β1 =

p3 − q3

p1 − q1
,

δ1 = p1 −
p2 − q2

p1 − q1
, α = −p2 +

p2 − q2

p1 − q1

(
p1 −

p2 − q2

p1 − q1

)
+

p3 − q3

p1 − q1
, (53)

and we obtain the relationship between pv, qv:

p3 =
(

p1 + 1− 2
p2 − q2

p1 − q1

)
p3 − q3

p1 − q1
+
(

1− p2 − q2

p1 − q1

)
×

[
−p2 +

(
p1 −

p2 − q2

p1 − q1

)
p2 − q2

p1 − q1

]
. (54)
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For
p1 + 1 6= 2

p2 − q2

p1 − q1
(55)

(this condition is equivalent to the following inequality for α, β, γ γ1 = γ−
−αδ 6= 0), one can solve equation (54) with respect to q3. Otherwise relation
(54) is equivalent to the system of equalities

p2 − q2

p1 − q1
=

p1 + 1
2

, p3 =
p1 − 1

2

(
p2 +

1− p2
1

4

)
(56)

and equations (38) imply

λ1 = −γ, λ? = −γ + 1
2

±

√
(γ + 1)2

4
+ α− β.

Thus an arbitrary collection of parameters which satisfy conditions (52),
(54) defines the canonical Chua’s circuit.

Equality (54) can be used not only for the coefficients but for the roots
of characteristic equations λ = (λ1, λ2, λ3) and µ = (µ1, µ2, µ3). In that case
(54) has the form

α(µ1, µ3)µ3
1 + α(µ1, µ3)µ3

2 + α(µ1, µ2)µ3
3 + F (µ1, µ2, µ3) = 0, (57)

where F is a polynomial of degree less or equal to two with respect to µν , ν =
1, 3,

α(µ1, µ2) =
µ3

1 + µ3
2

2
+ µ2

1 + µ2
2 − 2µ1µ2(µ1 + µ2)− (p1 − 1)µ1µ2+

(p1 + p2)(µ1 + µ2) + (p2 + p3). (58)

Condition (52) is equivalent to the following one:

3∑
ν=1

(µν − λν) 6= 0. (59)

In the six-dimensional space of parameters λ, µ equation (57) defines a surface
each point of which determines parameters of the canonical Chua’s circuit
being subordinated to condition (59).

Under the condition

α(µ1, µ2) +
µ3

1 + µ3
2

2
6= 0, (60)

equation (58) is cubic with respect to µ3, so it defines real µ3 in terms of
λ, µ1, µ2 as well as the parameters of the circuit.
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3. Equation in variations

Differentiating the equation for z1 we obtain the equation in the form

L[ż1] = m1χ1(l(z1))l(ż1), (61)

that is the equation in variations for the solution z1 = z1(τ) if we consider z̈1

as a variation of z1(τ).
Let IT be a set of τ ∈ [0, T ] such that

|l(z1(τ))| ≤ 1 for τ ∈ IT , (62)

JT is the complement of IT with respect to the interval [0, T ],

I = lim
T→∞

IT , J = R+\I, R+ = [0,∞).

If I and J do not contain the interval τ > τ0 then I =
∞
∨

ν=1
Iν , where

I1 = [0, τ1], I2 = [τ1 + θ1, τ1 + θ1 + τ2],

Ip+1 =

[ p∑
ν=1

(τν + θν),
p∑

ν=1

(τν + θν) + τp+1

]
, ...

are intervals from R+; δν , θν are positive numbers,

J = R+\I =
∞
∨

ν=1
Jν ,

where

J1 = (τ1, τ1 + θ1), J2 = (τ1 + θ1 + τ2, τ1 + θ1 + τ2 + θ2), ...

..., Jp+1 =

 p∑
ν=1

(τν + θν) + τp+1,
p+1∑
ν=1

(τν + θν)

 ,

are intervals from R+, p ≥ 2.
Let us suppose that

χ(τ) =
{

0 for |l(ż1(τ))| ≤ 1,
1 for |l(ż1(τ))| > 1.

(63)

Using the function χ we rewrite equation (61) in the form

L[ż1] = m1χ(τ)l(ż1). (64)

The properties of the solution of (64) depend essentially on properties of the
set I connected with its distribution on R+. The following value serves as an
integral characteristic for the function χ(τ)

STν =
1
Tν

∫ Tν

0
χ(τ)dτ =

Tν − mes ITν

Tν
= 1− mes ITν

Tν
,
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which under a proper choice of Tν is equal to

Sp = 1−
∑p

ν=1 τν∑p
ν=1(τν + θν)

=
1

1 +
∑p

ν=1 τν/
∑p

ν=1 θν
. (65)

If Sp has a limit for p →∞
S = lim

p→∞
Sp (66)

then this limit can be interpreted as a probability of staying of the point
z1 = z1(τ), ż1 = ż1(τ), z̈1 = z̈1(τ) at the moment τ in the domain |l(z1)| > 1
of the phase space of system (10).

It is obvious that limit (66) exists for the periodic solution of equation (10)
as well as for the quasi-periodic solution of system (6). For the closed invariant
curve which contains a saddle point limit (66) is equal to 0 or 1, hence there
exist periodic motions in Chua’s system having values close to 0 and 1.

We will be interested in the existence of the limit (66) for the recurrent
solution of system (6).

The fundamental matrix of solutions of equation (61) is represented ex-
plicitly in terms of roots of the characteristic equations λ and µ. If these roots
are simple then the fundamental matrix of solutions of equation (61) has the
following form

Zτ
τ0 = eλ(τ−τ0)B−1(λ) for τ ∈ Ip+1, τ0 =

p∑
ν=1

(τν + θν)

and the matrix

Zτ
τ0 = eµ(τ−τ0)B−1(µ) for τ ∈ Jp+1, τ0 =

p∑
ν=1

(τν + θν) + τp+1 (Zτ0
τ0 = E),

where eλτ (eµτ ) stands for the Wronski matrix for the functions eλ1τ , eλ2τ , eλ3τ

(eµ1τ , eµ2τ , eµ3τ ); B(λ)(B(µ)) stands for the Vandermonde matrix of numbers
λ1, λ2, λ3 (µ1, µ2, µ3). Having in hand Zτ

τ0 one can easily write the fundamen-
tal matrix of solutions of equation (64):

Zτ
0 =

{
eλ(τ−tp)B−1(λ)Ztp

0 for τ ∈ Ip+1 = [tp, tp + τp+1],
eµ(τ−tp−τp+1)B−1(µ)Ztp+τp+1 for τ ∈ Jp+1 = (tp + τp+1, tp+1),

(67)

where tp =
p∑

ν=1
(τν + θν).

Let us suppose that

A1 =

 0 1 0
0 0 1
−p3 −p2 −p1

 , z(τ, z0)
∆=(z1(τ), ż1(τ)z̈(τ)),

z0
∆=(z1(0), ż1(0)z̈(0)).

Then ż(0, z0) = A1z0.
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So ż1(τ) is the solution of the equation in variations for z1(τ) (64), then
exists the equation

ż(τ, z0) = Zτ
0 A1z0. (68)

After integrating (68) we find the expression for z

z(τ, z0) = (E +
∫ τ

0
Zs

0dsA1)z0. (69)

Formula (69) gives the expression for the solution z1(τ) of equation (10)
in terms of the fundamental matrix of solutions of its equation in variations.

We would like to note that equation in variations (64) can be the same
for several solutions of equation (10). For example, it is true for a couple of
solutions of equation (10) z = z(τ1z0) and z = z(τ1 − z0) = −z(τ1z0) the
existence of which is guaranteed by the symmetry of the vector field of the
canonical Chua’s circuit with respect to the origin.

4. Necessary condition for the existence
of periodic solutions

Let us consider equation (64) for the periodic solution z = z(τ) with the
period T . Without the loss of generality we will assume that z0 = (z1(0),
ż1(0), z̈1(0)) satisfies the condition

|(l, z0)| = |z̈1(0) + (γ + 1)ż1(0) + β1z1(0)| = 1

and for small τ > 0, z = z(τ, z0) satisfies the inequality |(l, z(τ, z0))| < 1.
Then χ(τ) has a discontinuity at the point τ = 0 and

T =
p∑

ν=1

(τν + θν), p ≥ 1. (70)

Equations (67), (68) imply the conditions for periodicity of the solution z1 =
z1(τ) in the form

(ZT
0 − E)Az0 = 0,

∫ T

0
Zs

0dsA1z0 = 0. (71)

Matrix

ZT
0 =

p∏
ν=0

eµθν B−1(µ)eλτν B−1(λ) (72)

is a monodromy matrix for equation (64), the first its characteristic value is
equal to 1, other two will determine the character of its stability or the critical
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state (bifurcation). When λν 6= 0, µν 6= 0 (ν = 1, 2, 3) for integral (71) we
have an expression∫ T

0
Zs

0ds =
p∑

ν=1

[A−1
1 (eλτν B−1(λ)− E) + B−1

1 (eµθν B−1(µ)− E)×

eλτν B−1(λ)]
ν=1∏
j=0

eµθjB−1(µ)eλτjB−1(λ), (73)

where B1 = A1 + m1

(
0
l

)
, l = (β1, γ + 1, 1) is the vector, eµθ0B−1(µ)eλτ0×

B−1(λ) = E.
One can see from formulas (72), (73) that equations (71) are not reduced

to each other and determine necessary conditions for the existence of periodic
solutions for Chua’s circuit. For p = 1 condition (71) is equivalent to the
conditions

[eµθ1B−1(µ)eλτ1B−1(λ)− E]A1z0 = 0,

(B1 −A1)[eλτ1B−1(λ)− E]A1z0 = 0.

We would like to note that for p ≥ 1 the period T of the solution z = z1(τ)
can be multiple by the period of the function χ(τ). This always takes place
for the symmetric solution of Chua’s equation which is determined by the
condition z(T1, z0) = −z0. This solution is periodic with the period T =
2T but χ(τ) has the period T1. The inequality which connects the main
characteristics of the periodic solution s, p and ω = 2π/T with the parameters
of the equation can be obtained in the following way.

The solution of the equation in variations has the Lipshits continuous sec-
ond order derivative then the series

∑
k 6=0

|fk|k2 converges, where fk are Fourier

coefficients for the function ż1 = ż1(τ). For these coefficients the following
equality is valid

L[ikω]fk = m1

∑
k1=0

l(ik1ω)fk1χk−k1 , k 6= 0,

where χk are Fourier coefficients

χ0 = s, χk =
1
T

∫ T

0
χ(τ)e−ikωτdτ =

1
T

p∑
ν=1

∫
Jν

e−ikωτ =

1
Tk

p∑
ν=1

e−ikωτ |Jν

iω
=

1
πk

p∑
ν=1

e−ikωτ |Jν

2i
for k 6= 0.

The estimate
|χk| ≤

p

π|k|
for k 6= 0
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which is valid for χk implies∣∣∣∣L(ikω)
l(ikω)

∣∣∣∣ |l(ikω)fk| ≤ |m1|
∑
k1 6=0

|l(ik1ω)fk1 |sk1−k/|k − k1|,

where s0 = s, sk−k1 = p
π for k1 6= k. Then(

min
k 6=0

∣∣∣∣L(ikω)
l(ikω)

∣∣∣∣)2

|l(ikω)fk|2 ≤ 2|m1|2
∑
k1 6=0

|l(ikω)fk1 |2
s2
k−k1

(k − k1)2

and taking the sum over k one can obtain(
min
k 6=0

∣∣∣∣L(ikω)
l(ikω)

∣∣∣∣)2 ∑
k 6=0

|l(ikω)fk|2 ≤ 2m2
1

∑
k1 6=0

|l(ik1ω)fk1 |2
∑
k 6=0

s2
k−k1

(k − k1)2
.

The last inequality implies(
min
k 6=0

∣∣∣∣L(ikω)
l(ikω)

∣∣∣∣)2

≤ 2m2
1

(
s2 +

p2

π2

∞∑
l=1

2
l2

)
= 2m2

1(s
2 + p2/3)

and then the inequality takes place

min
k 6=0

∣∣∣∣L(ikω)
l(ikω)

∣∣∣∣ ≤ √2 |m1|

√
s2 +

p2

3
(74)

which gives the relationship between s, p, ω and parameters of Chua’s system.
Taking into account the expression for L(λ) we can rewrite inequality (74)

in the form:

min
k 6=0

∣∣∣∣ikω + δ1 − α
l1(ikω)
l(ikω)

∣∣∣∣ ≤ √2 |m1|

√
s2 +

p2

3
.

The general system of equations in the form

dx

dt
= ax+a1y+a2z+df1(x),

dy

dt
= b1x+by+b2z,

dz

dt
= c1x+c2y+cz, (75)

where a, a1, a2, b, b1, b2, c, c1, c2 and d are the parameters, f1(x) is function (5),
has the properties which are similar to the ones mentioned above.

By the linear transformation of the unknown functions x, y, z and the inde-
pendent variable t system (75) is reduced in the general case (except the cases
when system (75) is reduced to the form (75) with b1 = c1 = 0 or c1 = c2 = 0)
to the system in the following form:

dx

dτ
= αx + βy + γz + mf1(x),



40 A.SAMOILENKO and L.CHUA

dy

dτ
= x + δz,

dz

dτ
= y + ηz, (76)

where α, β, γ, δ, η and m are the new parameters.
It is obvious, that the canonical Chua’s circuit can be obtained from system

(76) for
β + γ = 0 (77)

and that the general properties of system (76) are analogous to the general
properties of the canonical Chua’s circuit.
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