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Abstract

Ansatzes for the Navier-Stokes field are described. These ansatzes reduce
the Navier-Stokes equations to system of differential equations in three,
two, and one independent variables. The large sets of exact solutions of
the Navier-Stokes equations are constructed.

1 Introduction

The Navier-Stokes equations (NSEs)

~ut + (~u · ~∇)~u−4~u+ ~∇p = ~0,

div~u = 0
(1.1)

which describe the motion of an incompressible viscous fluid are the basic
equations of modern hydrodynamics. In (1.1) and below ~u = {ua(t, ~x)}
denotes the velocity field of a fluid, p = p(t, ~x) denotes the pressure, ~x = {xa},
∂t = ∂/∂t, ∂a = ∂/∂xa, ~∇ = {∂a}, 4 = ~∇· ~∇ is the Laplacian, the kinematic
coefficient of viscosity and fluid density are set equal to unity. Repead indices
denote summation whereby we consider the indices a, b to take on values in
{1, 2, 3} and the indices i, j to take on values in {1, 2}.

The problem of finding exact solutions of non-linear equations (1.1) is
an important but rather complicated one. There are some ways to solve it.
Considerable progress in this field can be achieved by means of making use of a
symmetry approach. Equations (1.1) have non-trivial symmetry properties. It
was known long ago [37, 2] that they are invariant under the eleven-parametric
extended Galilei group. Let us denote it by G1(1, 3). This group includes the
Galilei group and scale transformations. The Lie algebra AG1(1, 3) of G1(1, 3)
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is generated by the operators

P0, Jab, D, Pa, Ga,

where

P0 = ∂t, D = 2t∂t + xa∂a − ua∂ua − 2p∂p,

Jab = xa∂b − xb∂a + ua∂ub − ub∂ua , a 6= b,

Ga = t∂a + ∂ua , Pa = ∂a.

Relatively recently it was found by means of the Lie method [8, 5, 26] that
the maximal Lie invariance algebra (MIA) of the NSEs (1.1) is the infinite-
dimensional algebra A(NS) with the basis elements

∂t, D, Jab, R(~m), Z(χ), (1.2)

where

R(~m) = R(~m(t)) = ma(t)∂a +ma
t (t)∂ua −ma

tt(t)xa∂p, (1.3)

Z(χ) = Z(χ(t)) = χ(t)∂p, (1.4)

ma = ma(t) and χ = χ(t) are arbitrary smooth functions of t (degree of their
smoothness is discussed in Note A.1).

The algebra AG1(1, 3) is a subalgebra of A(NS). Indeed, setting
ma = δab, where b is fixed, we obtain R(~m) = ∂b, and if ma = δabt then
R(~m) = Gb . Here δab is the Kronecker symbol ( δab = 1 if a = b, δab = 0 if
a 6= b ).

Operators (1.2) generate the following invariance transformations of system
(1.1):

∂t : ~̃u(t, ~x) = ~u(t+ ε, ~x), p̃(t, ~x) = p(t+ ε, ~x)

(translations with respect to t),

Jab : ~̃u(t, ~x) = B~u(t, BT~x), p̃(t, ~x) = p(t, BT~x)

(space rotations),

D : ~̃u(t, ~x) = eε~u(e2εt, eε~x), p̃(t, ~x) = e2εp(e2εt, eε~x)

(scale transformations),

R(~m) : ~̃u(t, ~x) = ~u(t, ~x− ~m(t)) + ~mt(t),

p̃(t, ~x) = p(t, ~x− ~m(t))− ~mtt · ~x− 1
2 ~m · ~mtt

(these transformations include the space translations

and the Galilei transformations),

Z(χ) : ~̃u(t, ~x) = ~u(t, ~x), p̃(t, ~x) = p(t, ~x) + χ(t).

(1.5)
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Here ε ∈ R, B = {βab} ∈ O(3), i.e. BBT = {δab}, BT is the transposed
matrix.

Besides continuous transformations (1.5) the NSEs admit discrete trans-
formations of the form

t̃ = t, x̃a = xa, a 6= b, x̃b = −xb,

p̃ = p, ũa = ua, a 6= b, ũb = −ub,
(1.6)

where b is fixed. Invariance under transformations (1.5) and (1.6) means that
(~̃u, p̃) is a solution of (1.1) if (~u, p) is a solution of (1.1).

A complete review of exact solutions found for the NSEs before 1963 is
contained in [1]. We should like also to mark more modern reviews [16, 7, 36]
despite their subjects slightly differ from subjects of our investigations. To
find exact solutions of (1.1), symmetry approach in explicit form was used in
[2, 31, 32, 6, 20, 21, 4, 17, 15, 12, 10, 11, 30]. This article is a continuation and
a extention of our works [15, 12, 10, 11, 30]. In it we make symmetry reduction
of the NSEs to systems of PDEs in three and two independent variables and
to systems of ODEs, using subalgebraic structure of A(NS). We investigate
symmetry properties of the reduced systems of PDEs and construct exact
solutions of the reduced systems of ODEs when it is possible. As a result,
large classes of exact solutions of the NSEs are obtained.

The reduction problem for the NSEs is to describe ansatzes of the form
[9]:

ua = fab(t, ~x)vb(ω) + ga(t, ~x), p = f0(t, ~x)q(ω) + g0(t, ~x) (1.7)

that reduce system (1.1) in four independent variables to systems of differential
equations in the functions va and q depending on the variables ω = {ωn} (n =
1, N), where N takes on a fixed value from the set {1, 2, 3}. In formulas (1.7)
fab, ga, f0, g0, and ωn are smooth functions to be described. In such a general
formulation the reduction problem is too complex to solve. But using Lie
symmetry, some ansatzes (1.7) reducing the NSEs can be obtained. According
to the Lie method, first a complete set of A(NS)-inequivalent subalgebras of
dimension M = 4 − N is to be constructed. For N = 3, N = 2, and N = 1
such sets are given in Subsections A.2, A.3, and A.4, correspondingly. Knowing
subalgebraic structure of A(NS), one can find explicit forms for the functions
fab, ga, f0, g0, and ωn and obtain reduced systems in the functions vk and q.
This is made in Sec. 2 (N = 3), Sec. 3 (N = 2) and Sec. 4 (N = 1). Moreover,
in Subsec. 2.3 symmetry properties of all reduced systems of PDEs in three
independent variables are investigated, and in Subsec. 4.3 exact solutions of
the reduced systems of ODEs are constructed. Symmetry properties and exact
solutions of some reduced systems of PDEs in two independent variables are
discussed in Sections 5 and 6. In Sec. 7 we make symmetry reduction of a
some reduced system of PDEs in three independent variables.

In conclusion of the section, for convenience, we give some abbreviations,
notations, and default rules used in this article.
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Abbreviations:

the NSEs: the Navier-Stokes equations

the MIA: the maximal Lie invariance algebra (of either a some equation or
a some system of equations)

a ODE: a ordinary differential equation

a PDE: a partial differential equation

Notations:

C∞((t0, t1),R): the set of infinite-differentiable functions from (t0, t1) into R,
where −∞ ≤ t0 < t1 ≤ +∞

C∞((t0, t1),R3): the set of infinite-differentiable vector-functions from (t0, t1)
into R3, where −∞ ≤ t0 < t1 ≤ +∞

∂t = ∂/∂t, ∂a = ∂/∂xa , ∂ua = ∂/∂ua , . . .

Default rules:
Repead indices denote summation whereby we consider the indices a, b to

take on values in {1, 2, 3} and the indices i, j to take on values in {1, 2}.
All theorems on the MIAs of PDEs are proved by means of the standard

Lie algorithm.
Subscripts of functions denote differentiation.

2 Reduction of the Navier-Stokes equations to sys-
tems of PDEs in three independent variables

2.1 Ansatzes of codimension one

In this subsection we give ansatzes that reduce the NSEs to systems of PDEs
in three independent variables. The ansatzes are constructed with the subal-
gebraic analysis of A(NS) ( see Subsec.A.2 ) by means of the method discribed
in Sec.B .

1. u1 = |t|−1/2(v1 cos τ − v2 sin τ) + 1
2x1t

−1 − κx2t
−1,

u2 = |t|−1/2(v1 sin τ + v2 cos τ) + 1
2x2t

−1 + κx1t
−1,

u3 = |t|−1/2v3 + 1
2x3t

−1,

p = |t|−1q + 1
2κ2t−2r2 + 1

8 t
−2xaxa,

(2.1)

where

y1 = |t|−1/2(x1 cos τ + x2 sin τ), y2 = |t|−1/2(−x1 sin τ + x2 cos τ),
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y3 = |t|−1/2x3, κ ≥ 0, τ = κ ln |t|.

Here and below va = va(y1, y2, y3), q = q(y1, y2, y3), r = (x2
1 + x2

2)
1/2.

2. u1 = v1 cos κt− v2 sin κt− κx2,

u2 = v1 sin κt+ v2 cos κt+ κx1,

u3 = v3,

p = q + 1
2κ2r2,

(2.2)

where

y1 = x1 cos κt+ x2 sin κt, y2 = −x1 sin κt+ x2 cos κt,

y3 = x3, κ ∈ {0; 1}.

3. u1 = x1r
−1v1 − x2r

−1v2 + x1r
−2,

u2 = x2r
−1v1 + x1r

−1v2 + x2r
−2,

u3 = v3 + η(t)r−1v2 + ηt(t) arctanx2/x1,

p = q − 1
2ηtt(t)(η(t))−1x2

3 − 1
2r

−2 + χ(t) arctanx2/x1,

(2.3)

where

y1 = t, y2 = r, y3 = x3 − η(t) arctanx2/x1, η, χ∈C∞((t0, t1),R).

Note 2.1 The expression for the pressure p from ansatz (2.3) is indeterminate
in the points t ∈ (t0, t1) where η(t) = 0. If there are such points t, we will
consider ansatz (2.3) on the intervals (tn0 , t

n
1 ) that are contained in the interval

(t0, t1) and that satisfy one of the conditions:

a) η(t) 6= 0 ∀t ∈ (tn0 , t
n
1 );

b) η(t) = 0 ∀t ∈ (tn0 , t
n
1 ).

In the last case we consider ηtt/η := 0.

4. ~u = vi~ni + (~m · ~m)−1v3 ~m+ (~m · ~m)−1(~m · ~x)~mt − yi~n
i
t,

p = q − 3
2(~m · ~m)−1((~mt · ~ni)yi)2 − (~m · ~m)−1(~mtt · ~x)(~m · ~x)+

+1
2(~mtt · ~m)(~m · ~m)−2(~m · ~x)2,

(2.4)

where

yi = ~ni · ~x, y3 = t, ~m,~ni ∈ C∞((t0, t1),R3).

~ni · ~m = ~n1 · ~n2 = ~n1
t · ~n2 = 0, |~ni| = 1. (2.5)
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Note 2.2 There exist vector-functions ~ni which satisfy conditions (2.5). They
can be constructed in the following way: let us fix the vector-functions
~ki = ~ki(t) such that ~ki · ~m = ~k1 · ~k2 = 0, |~ki| = 1, and set

~n1 = ~k1 cosψ(t)− ~k2 sinψ(t),

~n2 = ~k1 sinψ(t) + ~k2 cosψ(t).
(2.6)

Then ~n1
t · ~n2 = ~k1

t · ~k2 − ψt = 0 if ψ =
∫
(~k1

t · ~k2)dt.

2.2 Reduced systems

1–2. Substituting ansatzes (2.1) and (2.2) into the NSEs (1.1), we obtain
reduced systems of PDEs with the same general form

vav1
a − v1

aa + q1 + γ1v
2 = 0,

vav2
a − v2

aa + q2 − γ1v
1 = 0,

vav3
a − v3

aa + q3 = 0,

va
a = γ2.

(2.7)

Hereafter subscripts 1, 2, and 3 of functions denote differentiation with respect
to y1, y2, and y3, accordingly. The constants γi take the values

1. γ1 = −2κ, γ2 = −3
2 if t > 0, γ1 = 2κ, γ2 = 3

2 if t < 0.

2. γ1 = −2κ, γ2 = 0.

For ansatzes (2.3) and (2.4) the reduced equations have the form

3. v1
1 + v1v1

2 + v3v1
3 − y−1

2 v2v2 − (v1
22 + (1 + η2y−2

2 )v1
33)−

−2ηy−2
2 v2

3 + q2 = 0,

v2
1 + v1v2

2 + v3v2
3 + y−1

2 v1v2 − (v2
22 + (1 + η2y−2

2 )v2
33)+

+2ηy−2
2 v1

3 + 2y−2
2 v2 − ηy−1

2 q3 + χy−1
2 = 0,

v3
1 + v1v3

2 + v3v3
3 − (v3

22 + (1 + η2y−2
2 )v3

33)− 2η2y−3
2 v1

3+

+2η1y
−1
2 v2 + 2ηy−1

2 (y−1
2 v2)2 + (1 + η2y−2

2 )q3−
−η11η

−1y3 − χηy−2
2 = 0,

y−1
2 v1 + v1

2 + v3
3 = 0.

(2.8)

4. vi
3 + vjvi

j − vi
jj + qi + ρi(y3)v3 = 0,

v3
3 + vjv3

j − v3
jj = 0,

vi
i + ρ3(y3) = 0,

(2.9)
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where

ρi = ρi(y3) = 2(~m · ~m)−1(~mt · ~ni),

ρ3 = ρ3(y3) = (~m · ~m)−1(~mt · ~m).
(2.10)

2.3 Symmetry of reduced systems

Let us study symmetry properties of systems (2.7), (2.8), and (2.9). All results
of this subsection are obtained by means of the standard Lie algorithm [28, 27].
First, let us consider system (2.7).

Theorem 2.1 The MIA of system (2.7) is the algebra

a) < ∂a, ∂q, J
1
12 > if γ1 6= 0;

b) < ∂a, ∂q, J
1
ab > if γ1 = 0, γ2 6= 0;

c) < ∂a, ∂q, J
1
ab, D

1
1 > if γ1 = γ2 = 0.

Here J1
ab = ya∂b − yb∂a + va∂vb − vb∂va ,

D1
1 = ya∂a − va∂va − 2q∂q .

Note 2.3 All Lie symmetry operators of (2.7) are induced by operators from
A(NS): The operators J1

ab and D1
1 are induced by Jab and D. The operators

ca∂a (ca = const) and ∂q are induced by either

R(|t|1/2(c1 cos τ − c2 sin τ, c1 sin τ + c2 cos τ, c3)), Z(|t|−1),

where τ = κ ln |t|, for ansats (2.1) or

R(c1 cos κt− c2 sin κt, c1 sin κt+ c2 cos κt, c3), Z(1)

for ansatz (2.2), respectively. Therefore, Lie reductions of system (2.7) give
only solutions that can be obtained by reducing the NSEs with two- and three-
dimensional subalgebras of A(NS).

Let us continue to system (2.8). We denote Amax as the MIA of (2.8).
Studying symmetry properties of (2.8), one has to consider the following cases:

A. η, χ ≡ 0. Then

Amax =< ∂1, D1
2, R1(ψ(y1)), Z1(λ(y1)) >,

where D1
2 = 2y1∂1 + y2∂2 + y3∂3 − va∂va − 2q∂q ,

R1(ψ(y1)) = ψ∂3 + ψ1∂v3 − ψ11y3∂q, Z1(λ(y1)) = λ(y1)∂q.

Here and below ψ = ψ(y1) and λ = λ(y1) are arbitrary smooth functions of
y1 = t.

B. η ≡ 0, χ 6≡ 0. In this case an extension of Amax exists for
χ = (C1y1 + C2)−1, where C1, C2 = const. Let C1 6= 0. We can make C2
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vanish by means of equivalence transformation (A.6), i.e., χ = Cy−1
1 , where

C = const. Then

Amax =< D1
2, R1(ψ(y1)), Z1(λ(y1)) > .

If C1 = 0, χ = C = const and

Amax =< ∂1, R1(ψ(y1)), Z1(λ(y1)) > .

For other values of χ, i.e., when χ11χ 6= χ1χ1,

Amax =< R1(ψ(y1)), Z1(λ(y1)) > .

C. η 6= 0. By means of equivalence transformation (A.6) we make χ = 0.
In this case an extension of Amax exists for η = ±|C1y1 + C2|1/2, where
C1, C2 = const. Let C1 6= 0. We can make C2 vanish by means of equiv-
alence transformation (A.6), i.e., η = C|y1|1/2, where C = const. Then

Amax =< D1
2, R2(|y1|1/2), R2(|y1|1/2 ln |y1|), Z1(λ(y1)) >,

where R2(ψ(y1)) = ψ∂3 + ψ1∂v3 . If C1 = 0, i.e., η = C = const,

Amax =< ∂1, ∂3, y1∂3 + ∂v3Z1(λ(y1)) > .

For other values of η, i.e., when (η2)11 6= 0,

Amax =< R2(η(y1)), R2(η(y1)
∫
(η(y1))−2dy1), Z1(λ(y1)) > .

Note 2.4 In all cases considered above the Lie symmetry operators of (2.8)
are induced by operators from A(NS): The operators ∂1, D1

2, and Z1(λ(y1))
are induced by ∂t, D, and Z(λ(t)), respectively. The operator R(0, 0, ψ(t))
induces the operator R1(ψ(y1)) for η ≡ 0 and the operator R2(ψ(y1)) (if
ψ11η − ψη11 = 0) for η 6= 0. Therefore, the Lie reduction of system (2.8)
gives only solutions that can be obtained by reducing the NSEs with two- and
three-dimentional subalgebras of A(NS).

When η = χ = 0, system (2.8) describes axially symmetric motion of a
fluid and can be transformed into a system of two equations for a stream
function Ψ1 and a function Ψ2 that are determined by

Ψ1
3 = y2v

1, Ψ1
2 = −y2v

3, Ψ2 = y2v
2.

The transformed system was studied by L.V. Kapitanskiy [20, 21].
Consider system (2.9). Let us introduce the notations

t = y3, ρ = ρ(t) =
∫
ρ3(t)dt,

R3(ψ1(t), ψ2(t)) = ψi∂yi + ψi
t∂vi − ψi

ttyi∂q,

Z1(λ(t)) = λ(t)∂q, S = ∂v3 − ρi(t)yi∂q,

E(χ(t)) = 2χ∂t + χtyi∂yi + (χttyi − χtv
i)∂vi − (2χtq + 1

2χtttyjyj)∂q,

J1
12 = y1∂2 − y2∂1 + v1∂v2 − v2∂v1 .
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Theorem 2.2 The MIA of(2.9) is the algebra

1) < R3(ψ1(t), ψ2(t)), Z1(λ(t)), S, E(χ1(t)), E(χ2(t)), v3∂v3 , J1
12 >,

where χ1 = e−ρ(t)
∫
eρ(t)dt and χ2 = e−ρ(t), if ρi = 0;

2) < R3(ψ1(t), ψ2(t)), Z1(λ(t)), S, E(χ(t))+2a1v
3∂v3 +2a2J

1
12 >, where

a1, a2, and a3 are fixed constants, χ = e−ρ(t)
(∫

eρ(t)dt+ a3

)
, if

ρ1 = e
3
2
ρρ̂−

3
2
−a1

(
C1 cos(a2 ln ρ̂)− C2 sin(a2 ln ρ̂)

)
,

ρ2 = e
3
2
ρρ̂−

3
2
−a1

(
C1 sin(a2 ln ρ̂) + C2 cos(a2 ln ρ̂)

)
with ρ̂ = ρ̂(t) = |

∫
eρ(t)dt+ a3|, C1, C2 = const, (C1, C2) 6= (0, 0);

3) < R3(ψ1(t), ψ2(t)), Z1(λ(t)), S, E(χ(t))+2a1v
3∂v3 +2a2J

1
12 >, where

a1 and a2 are fixed constants, χ = e−ρ(t), if

ρ1 = e
3
2
ρ−a1ρ̂

(
C1 cos(a2ρ̂)− C2 sin(a2ρ̂)

)
,

ρ2 = e
3
2
ρ−a1ρ̂

(
C1 sin(a2ρ̂) + C2 cos(a2ρ̂)

)
with ρ̂ = ρ̂(t) =

∫
eρ(t)dt, C1, C2 = const, (C1, C2) 6= (0, 0);

4) < R3(ψ1(t), ψ2(t)), Z1(λ(t)), S > in all other cases.

Here ψi = ψi(t), λ = λ(t) are arbitrary smooth function of t = y3.

Note 2.5 If functions ρb are determined by (2.10), then eρ(t) = C|~m(t)|,
where C = const, and the condition ρi = 0 implies that ~m = |~m(t)|~e, where
~e = const and |~e| = 1.

Note 2.6 The vector-functions ~ni from Note 2.2 are determined up to the
transformation

~n1 = ~n1 cos δ − ~n2 sin δ, ~n2 = ~n1 sin δ + ~n2 cos δ,

where δ = const. Therefore, δ can be chosen such that C2 = 0 (then C1 6= 0).

Note 2.7 The operators R3(ψ1, ψ2)+αS and Z1(λ) are induced by R(~l)+Z(χ)
and Z(λ), respectively. Here ~l = ψi~ni + ψ3 ~m, ψ3

t (~m · ~m) + 2ψi(~ni
t · ~m) = α,

χ− 3
2(~m · ~m)−1((~mt · ~ni)ψi)2 − 1

2(~mtt · ~ni)ψ3ψi + 1
2(~ltt · ~ni)ψi = 0.

If ~m = |~m|~e, where ~e = const and |~e| = 1, the operator J1
12 is induced

by e1J23 + e2J31 + e3J12.
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For

~m = β3e
σt(β2 cos τ, β2 sin τ, β1)T

with τ = κt + δ and βa = const, where β2
1 + β2

2 = 1, the operator ∂t + κJ12

induces the operator ∂y3 − β1κJ1
12 + σv3∂v3 if the following vector-functions

~ni are chosen:

~n1 = ~k1 cosβ1τ + ~k2 sinβ1τ, ~n2 = −~k1 sinβ1τ + ~k2 cosβ1τ, (2.11)

where ~k1 = (− sin τ, cos τ, 0)T and ~k2 = (β1 cos τ, β1 sin τ,−β2)T .
For

~m = β3|t+ β4|σ+1/2(β2 cos τ, β2 sin τ, β1)T

with τ = κ ln |t+ β4|+ δ and βa, β4 = const, where β2
1 + β2

2 = 1, the operator
D + 2β4∂t + 2κJ12 induces the operator

D1
3 + 2β4∂y3 − 2β1κJ1

12 + 2σv3∂v3 ,

where D1
3 = yi∂yi +2y3∂y3−vi∂vi−2q∂q, if the vector-functions ~ni are chosen

in form (2.11). In all other cases the basis elements of the MIA of (2.9) are
not induced by operators from A(NS).

Note 2.8 The invariance algebras of systems of form (2.9) with different
parameter-functions ρ3 = ρ3(t) and ρ̃3 = ρ̃3(t) are similar . It suggests that
there exists a local transformation of variables which make ρ3 vanish. So, let
us transform variables in the following way:

ỹi = yie
1
2
ρ(t), ỹ3 =

∫
eρ(t)dt,

ṽi =
(
vi + 1

2yiρ
3(t)

)
e−

1
2
ρ(t), ṽ3 = v3,

q̃ = qe−ρ(t) + 1
8yiyi

(
(ρ3(t)2)− 2ρ3

t (t)
)
e−ρ(t).

(2.12)

As a result, we obtain the system

ṽi
3 + ṽj ṽi

j − ṽi
jj + q̃i + ρ̃i(ỹ3)ṽ3 = 0,

ṽ3
3 + ṽjv3

j − ṽ3
jj = 0,

ṽi
i = 0

for the functions ṽa = ṽa(ỹ1, ỹ2, ỹ3) and q̃ = q̃(ỹ1, ỹ2, ỹ3). Here subscripts
1, 2, and 3 denote differentiation with respect to ỹ1, ỹ2, and ỹ3, accordingly.

Also ρ̃i(ỹ3) = ρi(t)e−
3
2
ρ(t).
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3 Reduction of the Navier-Stokes equations to sys-
tems of PDEs in two independent variables

3.1 Ansatzes of codimension two

In this subsection we give ansatzes that reduce the NSEs to systems of PDEs
in two independent variables. The ansatzes are constructed with the subalge-
brical analysis of A(NS) ( see Subsec. A.3 ) by means of the method discribed
in Sec. B .

1. u1 = (rR)−1((x1 − κx2)w1 − x2w
2 + x1x3r

−1w3),

u2 = (rR)−1((x2 + κx1)w1 + x1w
2 + x2x3r

−1w3),

u3 = x3(rR)−1w1 −R−1w3,

p = R−2s,

(3.1)

where z1 = arctanx2/x1 − κ lnR, z2 = arctan r/x3, κ ≥ 0.
Here and below wa = wa(z1, z2), s = s(z1, z2), r = (x2

1 + x2
2)

1/2,
R = (x2

1 + x2
2 + x2

3)
1/2, κ, ε, σ, µ, and ν are real constants.

2. u1 = |t|−1/2r−1(x1w
1 − x2w

2) + 1
2 t
−1x1 + x1r

−2,

u2 = |t|−1/2r−1(x2w
1 + x1w

2) + 1
2 t
−1x2 + x2r

−2,

u3 = |t|−1/2w3 + κr−1w2 + 1
2 t
−1x3,

p = |t|−1s− 1
2r

−2 + 1
8 t
−2R2 + ε|t|−1 arctanx2/x1,

(3.2)

where z1 = |t|−1/2r, z2 = |t|−1/2x3 − κ arctanx2/x1, κ ≥ 0, ε ≥ 0.

3. u1 = r−1(x1w
1 − x2w

2) + x1r
−2,

u2 = r−1(x2w
1 + x1w

2) + x2r
−2,

u3 = w3 + κr−1w2,

p = s− 1
2r

−2 + ε arctanx2/x1,

(3.3)
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where z1 = r, z2 = x3 − κ arctanx2/x1, κ ∈ {0; 1}, ε ≥ 0 if κ = 1
and ε ∈ {0; 1} if κ = 0.

4. u1 = |t|−1/2(µw1 + νw3) cos τ − |t|−1/2w2 sin τ+

+νξt−1 cos τ + 1
2 t
−1x1 − κt−1x2,

u2 = |t|−1/2(µw1 + νw3) sin τ + |t|−1/2w2 cos τ+

+νξt−1 sin τ + 1
2 t
−1x2 + κt−1x1,

u3 = |t|−1/2(−νw1 + µw3) + µξt−1 + 1
2 t
−1x3,

p = |t|−1s− 1
2 t
−2ξ2 + 1

8 t
−2R2 + 1

2κ2t−2r2+

+ε|t|−3/2(νx1 cos τ + νx2 sin τ + µx3),

(3.4)

where

z1 = |t|−1/2(µx1 cos τ + µx2 sin τ − νx3),

z2 = |t|−1/2(x2 cos τ − x1 sin τ),

ξ = σ(νx1 cos τ + νx2 sin τ + µx3) + 2κν(x2 cos τ − x1 sin τ),

τ = κ ln |t|, κ > 0, µ ≥ 0, ν ≥ 0, µ2 + ν2 = 1, σε = 0, ε ≥ 0.

5. u1 = |t|−1/2w1 + 1
2 t
−1x1,

u2 = |t|−1/2w2 + 1
2 t
−1x2,

u3 = |t|−1/2w3 + (σ + 1
2)t−1x3,

p = |t|−1s− 1
2σ

2t−2x2
3 + 1

8 t
−2R2 + ε|t|−3/2x3,

(3.5)

where

z1 = |t|−1/2x1, z2 = |t|−1/2x2, σε = 0, ε ≥ 0.

6. u1 = (µw1 + νw3) cos t− w2 sin t+ νξ cos t− x2,

u2 = (µw1 + νw3) sin t+ w2 cos t+ νξ sin t+ x1,

u3 = (−νw1 + µw3) + µξ,

p = s− 1
2ξ

2 + 1
2r

2 + ε(νx1 cos t+ νx2 sin t+ µx3),

(3.6)
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where

z1 = (µx1 cos t+ µx2 sin t− νx3),

z2 = (x2 cos t− x1 sin t),

ξ = σ(νx1 cos t+ νx2 sin t+ µx3) + 2ν(x2 cos t− x1 sin t),

µ ≥ 0, ν ≥ 0, µ2 + ν2 = 1, σε = 0, ε ≥ 0.

7. u1 = w1, u2 = w2, u3 = w3 + σx3,

p = s− 1
2σ

2x2
3 + εx3,

(3.7)

where

z1 = x1, z2 = x2, σε = 0, ε ∈ {0; 1}.

8. u1 = x1w
1 − x2r

−2(w2 − χ(t)),

u2 = x2w
1 + x1r

−2(w2 − χ(t)),

u3 = (ρ(t))−1(w3 + ρt(t)x3 + ε arctanx2/x1),

p = s− 1
2ρtt(t)(ρ(t))−1x2

3 + χt(t) arctanx2/x1,

(3.8)

where

z1 = t, z2 = r, ε ∈ {0; 1}, χ, ρ ∈ C∞((t0, t1),R).

9. ~u = ~w + λ−1(~ni · ~x)~mi
t − λ−1(~k · ~x)~kt,

p = s− 1
2λ

−1(~mi
tt · ~x)(~ni · ~x)− 1

2λ
−2(mi

tt · ~k)(~ni · ~x)(~k · ~x),
(3.9)

where

z1 = t, z2 = (~k · ~x), ~mi ∈ C∞((t0, t1),R3),

~m1
tt · ~m2 − ~m1 · ~m2

tt = 0, ~k = ~m1 × ~m2, ~n1 = ~m2 × ~k,

~n2 = ~k × ~m1, λ = λ(t) = ~k · ~k 6= 0 ∀t ∈ (t0, t1).
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3.2 Reduced systems

Substituting ansatzes (3.1)–(3.9) into the NSEs (1.1), we obtain the following
systems of reduced equations:

1. w2w1
1 + w3w1

2 − w1w3 cot z2 − (w1)2 − (w2 + κw1)2 sin2 z2−
−(w3)2 − ((κ2 + sin−2 z2)w1

11 + w1
22 − κw1

1 − 2w3
2 − 2w2

1−
−2w1) sin z2 + w1

2 cos z2 − w1 sin−1 z2 − (2s+ κs1) sin2 z2 = 0,

w2w2
1 + w3w2

2 + w3(w2 + 2κw1) cot z2−
−κ((w1)2 + (w3)2 + (w2 + κw1)2 sin2 z2)−
−((κ2 + sin−2 z2)w2

11 + w2
22 + 3κw2

1 + 2κ(w3
2 + κw1

1 + w1))·
· sin z2 + (2w1

1 + 2w3
1 cot z2 − w2 − 2κw1) sin−1 z2−

−(w2
2 + 2κw1

2) cos z2 + 2κs sin2 z2 + (1 + κ2 sin2 z2)s1 = 0,

w2w3
1 + w3w3

2 − (w3)2 cot z2 − (w2 + κw1)2 sin z2 cos z2−
−((κ2 + sin−2 z2)w3

11 + w3
22 + κw3

1 + 2w1
2) sin z2+

+(2w1 + w3
2 + w2

1 + κw1
1) cos z2 + s2 sin2 z2 = 0,

w1 + w2
1 + w3

2 = 0.

(3.10)

Hereafter numeration of the reduced systems corresponds to that of the
ansatzes in Subsec. 3.1. Subscripts 1 and 2 denote differentiation with respect
to the variables z1 and z2, accordingly.

2–3. w1w1
1 + w3w1

2 − z−1
1 w2w2 − (w1

11 + (1 + κ2z−2
1 )w1

22)−
−2κz−2

1 w2
2 + s1 = 0,

w1w2
1 + w3w2

2 + z−1
1 w1w2 − (w2

11 + (1 + κ2z−2
1 )w2

22)+

+2κz−2
1 w1

2 + 2z−2
1 w2 − κz−1

1 s2 + εz−1
1 = 0,

w1w3
1 + w3w3

2 − 2κz−2
1 w1w2 − (w3

11 + (1 + κ2z−2
1 )w3

22)+

+2κ(z−2
1 w2)1 − 2κ2z−3

1 w1
2 + (1 + κ2z−2

1 )s2 − εκz−2
1 = 0,

w1
1 + w3

2 + z−1
1 w1 + γ = 0,

(3.11)

where γ = ±3/2 for ansatz (3.2) and γ = 0 for ansatz (3.3). Here and below
the upper and lower sign in the symbols ”±” and ”∓” are associated with
t > 0 and t < 0, respectively.
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4–7.For ansatzes (3.4)–(3.7) the reduced equations can be written in the
form

wiw1
i − w1

ii + s1 + α2w
2 = 0,

wiw2
i − w2

ii + s2 − α2w
1 + α1w

3 = 0,

wiw3
i − w3

ii + α4w
3 + α5 = 0,

wi
i = α3

(3.12)

where the constants αn (n = 1, 5), take on the values

4. α1 = ±2κν, α2 = ∓2κµ, α3 = ∓(σ + 3/2), α4 = ±σ, α5 = ε.
5. α1 = 0, α2 = 0, α3 = ∓(σ + 3/2), α4 = ±σ, α5 = ε.
6. α1 = 2ν, α2 = −2µ, α3 = −σ, α4 = σ, α5 = ε.
7. α1 = 0, α2 = 0, α3 = −σ, α4 = σ, α5 = ε.

8. w1
1 + (w1)2 − z−4

2 (w2 − χ)2 + z2w
1w1

2 − w1
22−

−3z2w1
2 + z−1

2 s2 = 0,
(3.13)

w2
1 + z2w

1w2
2 − w2

22 + z−1
2 w2

2 = 0, (3.14)

w3
1 + z2w

1w3
2 − w3

22 − z−1
2 w3

2 + z−2
2 (w2 − χ) = 0, (3.15)

2w1 + z2w
1
2 + ρ1/ρ = 0. (3.16)

9. ~w1 − λ~w22 + s2~k + λ−1(~ni · ~w)~mi
t + z2~e = ~0, (3.17)

~k · ~w2 = 0, (3.18)

where y1 = t and

~e = ~e(t) = 2λ−2(~m1
t · ~m2 − ~m1 · ~m2

t )~kt × ~k + λ−2(2~kt · ~kt − ~ktt · ~k).

Let us study symmetry properties of reduced systems (3.10) and (3.11).

Theorem 3.1 The MIA of (3.10) is given by the algebra < ∂1 >.

Theorem 3.2 The MIA of (3.11) is given by the following algebras:

a) < ∂2, ∂s, D
2
1 = zi∂i − wa∂wa − 2s∂s > if γ = κ = ε = 0;

b) < ∂2, ∂s > if (γ,κ, ε) 6= (0, 0, 0).

All the Lie symmetry operators of systems (3.10) and (3.11) are induced
by elements of A(NS). So, for system (3.10) the operator ∂1 is induced by
J12. For system (3.11), when γ = 0 (γ = ±3/2), the operators D2

1, ∂2, and
∂s (∂2 and ∂s) are induced by D, R(0, 0, 1), and Z(1) (R(0, 0, |t|−1/2) and
Z(|t|−1)), accordingly. Therefore, the Lie reductions of systems (3.10) and
(3.11) give only solutions that can be obtained by reducing the NSEs with
three-dimensional subalgebras of A(NS) immediately to ODEs.

Investigation of reduced systems (3.13)–(3.16), (3.17)–(3.18), and (3.12) is
given in Sec. 5 and 6.
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4 Reduction of the Navier-Stokes equations to or-
dinary differential equations

4.1 Ansatzes of codimension three

By means of subalgebraic analysis of A(NS) (see Subsec. A.3) and the method
described in Sec. B one can obtain the following ansatzes that reduce the NSEs
to ODEs:

1. u1 = x1R
−2ϕ1 − x2(Rr)−1ϕ2 + x1x3r

−1R−2ϕ3,

u2 = x2R
−2ϕ1 + x1(Rr)−1ϕ2 + x2x3r

−1R−2ϕ3,

u3 = x3R
−2ϕ1 − rR−2ϕ3,

p = R−2h,

(4.1)

where ω = arctan r/x3. Here and below ϕa = ϕa(ω), h = h(ω),
r = (x2

1 + x2
2)

1/2, R = (x2
1 + x2

2 + x2
3)

1/2.

2. u1 = r−2(x1ϕ
1 − x2ϕ

2), u2 = r−2(x2ϕ
1 + x1ϕ

2),

u3 = r−1ϕ3, p = r−2h,
(4.2)

where ω = arctanx2/x1 − κ ln r, κ ≥ 0.

3. u1 = x1|t|−1ϕ1 − x2r
−2ϕ2 + 1

2x1t
−1,

u2 = x2|t|−1ϕ1 + x1r
−2ϕ2 + 1

2x2t
−1,

u3 = |t|−1/2ϕ3 + (σ + 1
2)x3t

−1 + ν|t|1/2t−1 arctanx2/x1,

p = |t|−1h+ 1
8 t
−2R2 − 1

2σ
2x2

3t
−2+

+ε1|t|−1 arctanx2/x1 + ε2x3|t|−3/2,

(4.3)

where ω = |t|−1/2r, νσ = 0, ε2σ = 0, ε1 ≥ 0, ν ≥ 0.

4. u1 = x1ϕ
1 − x2r

−2ϕ2,

u2 = x2ϕ
1 + x1r

−2ϕ2,

u3 = ϕ3 + σx3 + ν arctanx2/x1,

p = h− 1
2σ

2x2
3 + ε1 arctanx2/x1 + ε2x3,

(4.4)
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where ω = r, νσ = 0, ε2σ = 0, and for σ = 0 one of the conditions

ν = 1, ε1 ≥ 0; ν = 0, ε1 = 1, ε2 ≥ 0; ν = ε1 = 0, ε2 ∈ {0; 1}

is satisfied.
Two ansatzes are described better in the following way:
5. The expressions for ua and p are determined by (2.1), where

v1 = a1ϕ
1 + a2ϕ

3 + b1iωi,

v2 = ϕ2 + b2iωi,

v3 = a2ϕ
1 − a1ϕ

3 + b3iωi,

p = h+ c1iωi + c2iωωi + 1
2dijωiωj .

(4.5)

In formulas (4.5) we use the following definitions:

ω1 = a1y1 + a2y3, ω2 = y2, ω = ω3 = a2y1 − a1y3;

ai = const, a2
1 + a2

2 = 1; a2 = 0 if γ1 = 0;

γ1 = −2κ, γ2 = −3
2 if t > 0 and γ1 = 2κ, γ2 = 3

2 if t < 0.

bai, Bi, cij , and dij are real constants that satisfy the equations

b1i = a1Bi, b3i = a2Bi, c2i + a2γ1b2i = 0,

b21Bi + b22b2i − γ1a1Bi + d2i = 0,

B1Bi +B2b2i + γ1a1Bi + d1i = 0,

(B1 + b22)(B2 + a1γ1 − b21) = 0.

(4.6)

6. The expressions for ua and p have form (2.2), where va and q are
determined by (4.5), (4.6), and γ1 = −2κ, γ2 = 0.

Note 4.1 Formulas (4.5) and (4.6) determine an ansatz for system (2.7),
where equations (4.6) are the necessary and sufficient condition to reduce sys-
tem (2.7) by means of an ansatz of form (4.5).

7. u1 = ϕ1 cosx3/η
3 − ϕ2 sinx3/η

3 + x1θ
1(t) + x2θ

2(t),

u2 = ϕ1 sinx3/η
3 + ϕ2 cosx3/η

3 − x1θ
2(t) + x2θ

1(t),

u3 = ϕ3 + η3
t (η

3)−1x3,

p = h− 1
2η

3
tt(η

3)−1x2
3 − 1

2η
j
ttη

j(ηiηi)−1r2,

(4.7)
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where ω = t,

ηa ∈ C∞((t0, t1),R), η3 6= 0, ηiηi 6= 0, η1
t η

2 − η1η2
t ∈ {0; 1

2},

θ1 = ηi
tη

i(ηjηj)−1, θ2 = (η1
t η

2 − η1η2
t )(η

jηj)−1.

8. ~u = ~ϕ+ λ−1(~na · ~x)~ma
t ,

p = h− λ−1(~ma
tt · ~x)(~na · ~x)+

+1
2λ

−2(~mb
tt · ~ma)(~na · ~x)(~nb · ~x),

(4.8)

where ω = t, ~ma ∈ C∞((t0, t1),R), ~ma
tt · ~mb − ~ma · ~mb

tt = 0,

λ = λ(t) = (~m1 × ~m2) · ~m3 6= 0 ∀t ∈ (t0, t1),

~n1 = ~m2 × ~m3, ~n2 = ~m3 × ~m1, ~n3 = ~m1 × ~m2.

4.2 Reduced systems

Substituting the ansatzes 1–8 into the NSEs (1.1), we obtain the following
systems of ODE in the functions ϕa and h:

1. ϕ3ϕ1
ω − ϕaϕa − ϕ1

ωω − ϕ1
ω cotω − 2h = 0,

ϕ3ϕ2
ω + ϕ2ϕ3 cotω − ϕ2

ωω − ϕ2
ω cotω + ϕ2 sin−2 ω = 0,

ϕ3ϕ3
ω − ϕ2ϕ2 cotω − ϕ3

ωω − ϕ3
ω cotω + ϕ3 sin−2 ω+

−2ϕ1
ω + hω = 0,

ϕ1 + ϕ3
ω + ϕ3 cotω = 0.

(4.9)

2. (ϕ2 − κϕ1)ϕ1
ω − (1 + κ2)ϕ1

ωω − ϕ1ϕ1 − ϕ2ϕ2 − κhω − 2h = 0,

(ϕ2 − κϕ1)ϕ2
ω − (1 + κ2)ϕ2

ωω − 2(κϕ2
ω + ϕ1

ω) + hω = 0,

(ϕ2 − κϕ1)ϕ3
ω − (1 + κ2)ϕ3

ωω − ϕ1ϕ3 − ϕ3 − 2κϕ3
ω = 0,

ϕ2
ω − κϕ1

ω = 0.

(4.10)

3–4. ϕ1ϕ1 − ω−4ϕ2ϕ2 + ωϕ1ϕ1
ω − ϕ1

ωω − 3ω−1ϕ1
ω + ω−1hω = 0,

ωϕ1ϕ2
ω − ϕ2

ωω + ω−1ϕ2
ω + ε1 = 0,

ωϕ1ϕ3
ω + σ1ϕ

3 + νω−2ϕ2 − ϕ3
ωω − ω−1ϕ3

ω + ε2 = 0,

2ϕ1 + ωϕ1
ω + σ2 = 0,

(4.11)
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where

3. σ1 = σ, σ2 = (σ + 3
2) if t > 0,

σ1 = −σ, σ2 = −(σ + 3
2) if t < 0.

4. σ1 = σ2 = σ.

5–6. ϕ3ϕ1
ω − ϕ1

ωω − µ1iϕ
i + c11 + c21ω = 0,

ϕ3ϕ2
ω − ϕ2

ωω − µ2iϕ
i + c12 + c22ω + γ2a2ϕ

3 = 0,

ϕ3ϕ3
ω − ϕ3

ωω + γ1a2ϕ
2 + hω = 0,

ϕ3
ω = σ,

(4.12)

where µ11 = −B1, µ12 = −B2 − γ1a1, µ21 = −b21 + γ1a1, µ22 = −b22,
σ = γ1 −B1 − b22.

7. ϕ1
ω + θ1ϕ1 + θ2ϕ2 − (η3)−1ϕ3ϕ2 + (η3)−2ϕ1 = 0,

ϕ2
ω − θ2ϕ1 + θ1ϕ2 + (η3)−1ϕ3ϕ1 + (η3)−2ϕ2 = 0,

ϕ3
ω + η3

t (η
3)−1ϕ3 = 0,

2θ1 + η3
t (η

3)−1 = 0.

(4.13)

8. ~ϕω + λ−1(~nb · ~ϕ)~mb
t = 0,

~na · ~ma
t = 0.

(4.14)

4.3 Exact solutions of the reduced systems

1. Ansatz (4.1) and system (4.9) determine the class of solutions of the NSEs
(1.1) that are called the steady axially symmetric conically similar flows of
a viscous fluid in hydrodynamics. This class of solutions was studied in a
number of works (for example, see references in [16]). For ϕ2 = 0 it was
shown, by N.A.Slezkin [34], that system (4.9) is reduced to a Riccati equation.
The general solution of this equation was expressed in terms of hypergeomet-
ric functions. Later similar calculations were made by V.I.Yatseev [38] and
H.B.Squire [35]. The particular case in the class of solutions with ϕ2 = 0 is
formed by the Landau jets [24]. For swirling flows, where ϕ2 6= 0, the order
of system (4.9) can be reduced too. For example [33], an arbitrary solution of
(4.9) satisfies the equation

ϕ2ϕ2 sin2 ω − sinω(Φω sin−1 ω)ω + 2Φω cotω + 2Φ = const,
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where Φ = (ϕ3
ω − 1

2ϕ
3ϕ3) sin2 ω − ϕ3 cosω sinω, and the Yatseev results [38]

are completely extended to the case ϕ2 sinω = const.
2. System (4.10) implies that

ϕ2 = κϕ1 + C1,

h = κ(1 + κ2)ϕ1
ω + (2κ2 + 2− κC1)ϕ1 + C2,

(1 + κ2)ϕ1
ωω + (4κ− C1)ϕ1

ω + ϕ1ϕ1 + 4ϕ1+

+(1 + κ2)−1(C2
1 + 2C2) = 0,

(1 + κ2)ϕ3
ωω − (C1 − 2κ)ϕ3

ω + (1 + ϕ1)ϕ3 = 0.

(4.15)

If ϕ3 = 0, the solution determined by ansatz (4.10) and formulas (4.15)
coincides with the Hamel solution [18, 23]. In Sec. 6 we consider system
(6.14) which is more general than system (4.10).

3–4. Let us integrate the last equation of system (4.11), i.e.,

ϕ1 = C1ω
−2 − 1

2σ2. (4.16)

Taking into account the integration result, the other equations of system (4.11)
can be written in the form

hω = ω−3ϕ2ϕ2 + C2
1ω

−3 − 1
4σ

2
2ω,

ϕ2
ωω − ((C1 + 1)ω−1 − 1

2σ2ω)ϕ2
ω = ε1,

ϕ3
ωω − ((C1 − 1)ω−1 − 1

2σ2ω)ϕ3
ω − σ1ϕ

3 = νω−2ϕ2 + ε2. (4.17)

Therefore,

h =
∫
ω−3ϕ2ϕ2dω − 1

2C
2
1ω

−2 − 1
8σ

2
2ω

2, (4.18)

ϕ2 = C2 + C3
∫
|ω|C1+1e−

1
4
σ2ω2

dω+

+ε1
∫
|ω|C1+1e−

1
4
σ2ω2

(∫
|ω|−C1−1e

1
4
σ2ω2

dω
)
dω.

(4.19)

If σ1 = 0, it follows that

ϕ3 = C4 + C5
∫
|ω|C1−1e−

1
4
σ2ω2

dω+

+
∫
|ω|C1−1e−

1
4
σ2ω2

(∫
|ω|−C1+1e

1
4
σ2ω2

(ε2 + νω−2ϕ2)dω
)
dω.

(4.20)

Let σ1 6= 0 (and, therefore, ν = 0). Then, if σ2 6= 0, the general solution of
equation (4.17) is expressed in terms of Whittaker functions:

ϕ3 = |ω|
1
2
C1−1e−

1
8
σ2ω2

W (−σ1σ
−1
2 + 1

4C1 − 1
2 ,

1
4C1,

1
4σ2ω

2),
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where W (κ, µ, τ) is the general solution of the Whittaker equation

4τ2Wττ = (τ2 − 4κτ + 4µ2 − 1)W. (4.21)

If σ2 = 0, the general solution of equation (4.16) is expressed in terms of
Bessel functions:

ϕ3 = |ω|
1
2
C1Z 1

2
C1

((−σ1)1/2ω),

where Zν(τ) is the general solution of the Bessel equation

τ2Zττ + τZτ + (τ2 − ν2)Z = 0. (4.22)

Note 4.2 If σ2 = 0, all quadratures in formulas (4.18)–(4.20) are easily
integrated. For example,

ϕ2 =


C2 + C3 ln |ω|+ 1

4ε1ω
2 if C1 = −2,

C2 + C3
1
2ω

2 + 1
2ε1ω

2(lnω − 1
2) if C1 = 0,

C2 + C3(C1 + 2)−1|ω|C1+2 − 1
2ε1C

−1
1 ω2 if C1 6= −2, 0.

5–6. Let σ = 0. Then the last equation of system (4.12) implies that
ϕ3 = C0 = const. The other equations of system (4.12) can be written in the
form

h = −γ1a2
∫
ϕ2(ω)dω,

ϕi
ωω − C0ϕ

i
ω + µijϕ

j = ν1i + ν2iω, (4.23)

where ν11 = c11, ν21 = c21, ν12 = c12 +γ2a2C0, ν22 = c22. System (4.23) is a
linear nonhomogeneous system of ODEs with constant coefficients. The form
of its general solution depends on the Jordan form of the matrix M = {µij}.
Now let us transform the dependent variables

ϕi = eijψ
j ,

where the constants eij are determined by means of the system of linear alge-
braic equations

eijµ̃jk = µijejk (i, j, k = 1, 2)

with the condition det{eij} 6= 0. Here M̃ = {µ̃ij} is the real Jordan form of
the matrix M. The new unknown functions ψi have to satisfy the following
system

ψi
ωω − C0ψ

i
ω + µ̃ijψ

j = ν̃1i + ν̃2iω, (4.24)

where ν1i = eij ν̃1j , ν2i = eij ν̃2j . Depending on the form of M̃, we consider
the following cases:
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A. det M̃ = 0 (this is equivalent to the condition det M = 0 ).

i. M̃ =

(
0 ε
0 0

)
, where ε ∈ {0; 1}. Then

ψ2 = C1 + C2e
C0ω − 1

2 ν̃22C
−1
0 ω2 − (ν̃12 − ν̃22C

−1
0 )C−1

0 ω, (4.25)

ψ1 = C3 + C4e
C0ω − 1

2 ν̃21C
−1
0 ω2 − (ν̃11 − ν̃21C

−1
0 )C−1

0 ω+

+ε
(
−1

6 ν̃22C
−2
0 ω3 − 1

2(ν̃12 − 2ν̃22C
−1
0 )C−2

0 ω2+

+(C1 + (ν̃21 − 2ν̃22C
−1
0 )C−2

0 )C−1
0 ω − C2C

−1
0 ωeC0ω

)
for C0 6= 0, and

ψ2 = C1 + C2ω + 1
6 ν̃22ω

3 + 1
2 ν̃12ω

2, (4.26)

ψ1 = C3 + C4ω + 1
6(ν̃21 − C2)ω3 + 1

2(ν̃11 − C1)ω2−

− 1
120 ν̃22ω

5 − 1
24 ν̃12ω

4

for C0 = 0.

ii. M̃ =

(
κ1 0
0 0

)
, where κ1 ∈ R\{0}. Then the form of ψ2 is given

either by formula (4.25) for C0 6= 0 or by formula (4.26) for C0 = 0. The form
of ψ1 is given by formula (4.28) (see below).

B. det M̃ 6= 0 (this is equivalent to the condition det M 6= 0).

i. M̃ =

(
κ1 0
0 κ2

)
, where κi ∈ R\{0}. Then

ψ2 = ν̃22κ−1
2 ω + (ν̃12 − C0ν̃22κ−1

2 )κ−1
2 + C1θ

21(ω) + C2θ
22(ω), (4.27)

ψ1 = ν̃21κ−1
1 ω + (ν̃11 − C0ν̃21κ−1

1 )κ−1
1 + C3θ

11(ω) + C4θ
12(ω), (4.28)

where

θi1(ω) = exp(1
2(C0 −

√
Di)ω), θi2(ω) = exp(1

2(C0 +
√
Di)ω)

if Di = C2
0 − 4κi > 0,

θi1(ω) = e
1
2
C0ω cos(1

2

√
−Diω), θi2(ω) = e

1
2
C0ω sin(1

2

√
−Diω)

if Di < 0,

θi1(ω) = e
1
2
C0ω, θi2(ω) = ωe

1
2
C0ω

if Di = 0.
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ii. M̃ =

(
κ2 1
0 κ2

)
, where κ2 ∈ R\{0}. Then the form of ψ2 is given

by formula (4.27), and

ψ1 = (ν̃11 − (ν̃12 − C0ν̃22κ−1
2 )κ−1

2 − C0(ν̃21 − ν̃22κ−1
2 )κ−1

2 )κ−1
2 +

+(ν̃21 − ν̃22κ−1
2 )κ−1

2 ω + C3θ
21(ω) + C4θ

22(ω)− Ciη
i(ω),

where

ηj(ω) = D−1
2 ω(2θ2j

ω (ω)− C0θ
2j(ω)) if D2 6= 0,

η1(ω) = 1
2ω

2e
1
2
C0ω, η2(ω) = 1

6ω
3e

1
2
C0ω if D2 = 0.

iii. M̃ =

(
κ1 −κ2

κ2 κ1

)
, where κi ∈ R, κ2 6= 0. Then

ψ1 = (κiκi)−1(ν̃21κ1 + ν̃22κ2)ω + (κiκi)−1(ν̃11κ1 + ν̃12κ2)−

−C0(κiκi)−2(ν̃21(κ2
2 − κ2

1)− ν̃222κ1κ2) + Cnθ
1n(ω),

ψ2 = (κiκi)−1(−ν̃21κ2 + ν̃22κ1)ω + (κiκi)−1(−ν̃11κ2 + ν̃12κ1)−

−C0(κiκi)−2(ν̃212κ1κ2 + ν̃22(κ2
2 − κ2

1)) + Cnθ
2n(ω),

where n = 1, 4,

γ =
√

(C2
0 − 4κ1)2 + (4κ2)2,

β1 = 1
4

√
2(γ + C2

0 − 4κ1), β2 = 1
4
|κ2|
κ2

√
2(γ − C2

0 + 4κ1),

θ11(ω) = θ22(ω) = exp((1
2C0 − β1)ω) cosβ2ω,

− θ21(ω) = θ12(ω) = exp((1
2C0 − β1)ω) sinβ2ω,

θ13(ω) = θ24(ω) = exp((1
2C0 + β1)ω) cosβ2ω,

θ23(ω) = − θ14(ω) = exp((1
2C0 + β1)ω) sinβ2ω.

If σ 6= 0, the last equation of system (4.12) implies that ψ3 = σω
(translating ω, the integration constant can be made to vanish). The other
equations of system (4.12) can be written in the form

h = −γ1a2
∫
ϕ2(ω)dω − 1

2σ
2ω2,

ϕi
ωω − σωϕi

ω + µijϕ
j = ν1i + ν2iω, (4.29)
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where ν11 = c11, ν21 = c21, ν12 = c12, ν22 = c22 + γ2a2σ. The form of the
general solution of system (4.29) depends on the Jordan form of the matrix
M = {µij}. Now, let us transform the dependent variables

ϕi = eijψ
j ,

where the constants eij are determined by means of the system of linear alge-
braic equations

eijµ̃jk = µijejk (i, j, k = 1, 2)

with the condition det{eij} 6= 0. Here M̃ = {µ̃ij} is the real Jordan form of
the matrix M. The new unknown functions ψi have to satisfy the following
system

ψi
ωω − σωψi

ω + µ̃ijψ
j = ν̃1i + ν̃2iω, (4.30)

where ν1i = eij ν̃1j , ν2i = eij ν̃2j . Depending on the form of M̃, we consider
the following cases:

A. det M̃ = 0 (this is equivalent to the condition det M = 0 ).

i. M̃ =

(
0 ε
0 0

)
, where ε ∈ {0; 1}. Then

ψ2 = C1 + C2
∫
e

1
2
σω2

dω − σ−1ν̃22ω+

+ν̃12
∫
e

1
2
σω2

(
∫
e−

1
2
σω2

dω)dω,
(4.31)

ψ1 = C3 + C4
∫
e

1
2
σω2

dω − σ−1ν̃21ω+

+
∫
e

1
2
σω2

(
∫
e−

1
2
σω2

(ν̃11 − εψ2)dω)dω.

ii. M̃ =

(
σ 0
0 0

)
. Then the form of ψ2 is given by formula (4.31), and

ψ1 = C3ω + C4(ω
∫
e

1
2
σω2

dω − σ−1e
1
2
σω2

) + σ−1ν̃11+

+σ−1ν̃21(σω
∫
e

1
2
σω2

λ1(ω)dω − e
1
2
σω2

λ1(ω)),

where λ1(ω) =
∫
e−

1
2
σω2

dω.

iii. M̃ =

(
κ1 0
0 0

)
, where κ1 ∈ R\{0;σ}. Then ψ2 is determited by

(4.31), and the form of ψ1 is given by (4.33) (see below).
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B. det M̃ 6= 0, det{µ̃ij − σδij} = 0 (this is equivalent to the conditions
det M 6= 0, det{µij − σδij} = 0; here δij is the Kronecker symbol).

i. M̃ =

(
σ ε
0 σ

)
, where ε ∈ {0; 1}. Then

ψ2 = C1ω + C2(ω
∫
e

1
2
σω2

dω − σ−1e
1
2
σω2

) + σ−1ν̃12+

+σ−1ν̃22(σω
∫
e

1
2
σω2

λ1(ω)dω − e
1
2
σω2

λ1(ω)),
(4.32)

ψ1 = C3ω + C4(ω
∫
e

1
2
σω2

dω − σ−1e
1
2
σω2

) + σ−1ν̃11+

+σω
∫
e

1
2
σω2

λ2(ω)dω − e
1
2
σω2

λ2(ω) + σ−1(ν̃21ω − εψ2),

where λ1(ω) =
∫
e−

1
2
σω2

dω, λ2(ω) = σ−1
∫
e−

1
2
σω2

(ν̃21 − εψ2
ω)dω.

ii. M̃ =

(
κ1 0
0 σ

)
, where κ1 ∈ R\{0;σ}. In this case ψ2 is determined

by (4.32), and the form of ψ1 is given by (4.33) (see below).

C. det M̃ 6= 0, det{µ̃ij − σδij} 6= 0 (this is equivalent to the condition
det M 6= 0, det{µij − σδij} 6= 0: here δij is the Kronecker symbol).

i. M̃ =

(
κ1 0
0 κ2

)
, where κi ∈ R\{0;σ}. Then

ψ1 = κ−1
1 ν̃11 + (κ1 − σ)−1ν̃21ω + |ω|−1/2e

1
4
σω2 ·

·
(
C3M(1

2κ1σ
−1 + 1

4 ,
1
4 ,

1
2σω

2) + C4M(1
2κ1σ

−1 + 1
4 ,−

1
4 ,

1
2σω

2)
)
,

(4.33)

ψ2 = κ−1
2 ν̃12 + (κ2 − σ)−1ν̃22ω + |ω|−1/2e

1
4
σω2 ·

·
(
C1M(1

2κ2σ
−1 + 1

4 ,
1
4 ,

1
2σω

2) + C2M(1
2κ2σ

−1 + 1
4 ,−

1
4 ,

1
2σω

2)
)
,

(4.34)

where M(κ, µ, τ) is the Whittaker function:

M(κ, µ, τ) = τ
1
2
+µe−

1
2
τ
1F1(1

2 + µ− κ, 2µ+ 1, τ), (4.35)

and 1F1(a, b, τ) is the degenerate hypergeometric function defined by means
of the series:

1F1(a, b, τ) = 1 +
∞∑

n=1

a(a+ 1) . . . (a+ n− 1)
b(b+ 1) . . . (b+ n− 1)

τn

n!
,

b 6= 0,−1,−2, . . ..
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ii. M̃ =

(
κ1 −κ2

κ2 κ1

)
, where κi ∈ R, κ2 6= 0. Then

ψ1 = (κjκj)−1(κ1ν̃11 + κ2ν̃12)+

+((κ1 − σ)2 + κ2
2)
−1((κ1 − σ)ν̃21 + κ2ν̃22)ω+

+C1Reη1(ω)− C2Imη1(ω) + C3Reη2(ω)− C4Imη2(ω),

ψ2 = (κjκj)−1(−κ2ν̃11 + κ1ν̃12)+

+((κ1 − σ)2 + κ2
2)
−1(−κ2ν̃21 + (κ1 − σ)ν̃22)ω+

+C1Imη1(ω) + C2Reη1(ω) + C3Imη2(ω) + C4Reη2(ω),

where

η1(ω) = M(1
2(κ1 + κ2i)σ−1 + 1

4 ,
1
4 ,

1
2σω

2),

η2(ω) = M(1
2(κ1 + κ2i)σ−1 + 1

4 ,−
1
4 ,

1
2σω

2), i2 = −1.

iii. M̃ =

(
κ2 1
0 κ2

)
, where κ2 ∈ R\{0;σ}. Here the form of ψ2 is

given by (4.34), and

ψ1 = (ν̃11 − ν̃12κ−1
2 )κ−1

2 + (ν̃21 − ν̃22(κ2 − σ)−1)(κ2 − σ)−1ω+

+|ω|−1/2e
1
4
σω2
(
C3θ

1(τ) + C4θ
2(τ)− σ−1θ1(τ)

∫
τ−1θ2(τ)Ciθ

i(τ)dτ+

+σ−1θ2(τ)
∫
τ−1θ1(τ)Ciθ

i(τ)dτ
)
,

where τ = 1
2σω

2,

θ1(τ) = M(1
2κ2σ

−1 + 1
4 ,

1
4 , τ), θ2(τ) = M(1

2κ2σ
−1 + 1

4 ,−
1
4 , τ).

Note 4.3 The general solution of the equation

ψωω − σωψω − (n+ 1)σψ = 0,

where n is an integer and n ≥ 0, is determined by the formula

ψ =
(
dn

dωn
e

1
2
σω2
)(

C1 + C2

∫
e

1
2
σω2

(
dn

dωn
e

1
2
σω2
)−2

dω

)
.
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Note 4.4 If function ψ satisfies the equation

ψωω − σωψω + κψ = 0 (κ 6= −σ),

then
∫
ψ(ω)dω = (κ + σ)−1(σωψ − ψω) + C1.

7. The last equation of system (4.13) is the compatibility condition of the
NSEs (1.1) and ansatz (4.7). Integrating this equation, we obtain that

η3 = C0(ηiηi)−1, C0 6= 0.

As ϕ3
ω = −η3

ω(η3)−1ϕ3 = 2θ1ϕ3, ϕ3 = C3η
iηi. Then system (4.13) is reduced

to the equations

ϕ1
ω = χ1(ω)ϕ1 − χ2(ω)ϕ2,

ϕ2
ω = χ2(ω)ϕ1 + χ1(ω)ϕ2,

(4.36)

where χ1 = −C−2
0 (ηiηi)2 − θ1 and χ2 = θ2 − C3C

−1
0 (ηiηi)2. System (4.36)

implies that

ϕ1 = exp(
∫
χ1(ω)dω)

(
C1 cos(

∫
χ2(ω)dω)− C2 sin(

∫
χ2(ω)dω)

)
,

ϕ2 = exp(
∫
χ1(ω)dω)

(
C1 sin(

∫
χ2(ω)dω) + C2 cos(

∫
χ2(ω)dω)

)
.

8. Let us apply the trasformation generated by the operator R(~k(t)), where

~kt = λ−1(~nb · ~k)~mb
t − ~ϕ,

to ansatz (4.8). As a result we obtain an ansatz of the same form, where the
functions ~ϕ and h are replaced by the new functions ~̃ϕ and h̃:

~̃ϕ = ~ϕ− λ−1(~na · ~k)~ma
t + ~kt = 0,

h̃ = h− λ−1(~ma
tt · ~k)(~na · ~k) + 1

2λ
−2(~mb

tt · ~ma)(~na · ~k)(~nb · ~k).

Let us make h̃ vanish by means of the transformation generated by the operator
Z(−h̃(t)). Therefore, the functions ϕa and h can be considered to vanish. The
equation (~na · ~ma

t ) = 0 is the compatibility condition of ansatz (4.8) and the
NSEs (1.1).

Note 4.5 The solutions of the NSEs obtained by means of ansatzes 5–8 are
equivalent to either solutions (5.1) or solutions (5.5).

5 Reduction of the Navier-Stokes equations to lin-
ear systems of PDEs

Let us show that non-linear systems 8 and 9, from Subsec. 3.2, are reduced
to linear systems of PDEs.
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5.1 Investigation of system (3.17)–(3.18)

Consider system 9 from Subsec. 3.2, i.e., equations (3.17) and (3.18). Equation
(3.18) integrates with respect to z2 to the following expression:

~k · ~w = ψ(t).

Here ψ = ψ(t) is an arbitrary smooth function of z1 = t. Let us make the
transformation from the symmetry group of the NSEs:

~̃u(t, ~x) = ~u(t, ~x−~l) +~lt(t),

p̃(t, ~x) = p(t, ~x−~l)−~ltt(t) · ~x,

where ~ltt · ~mi −~l · ~mi
tt = 0 and

~k · (~lt − λ−1(~ni ·~l)mi
t + λ−1(~k ·~l)~kt) + ψ = 0.

This transformation does not modify ansatz (3.9), but it makes the function
ψ(t) vanish, i.e., ~k · ~̃w = 0. Therefore, without loss of generality we may
assume, at once, that ~k · ~w = 0.

Let f i = f i(z1, z2) = ~mi · ~w. Since ~m1
tt · ~m2− ~m1 · ~m2

tt = 0, it follows that
~m1

t · ~m2 − ~m1 · ~m2
t = C = const. Let us multiply the scalar equation (3.17)

by ~mi and ~k. As a result we obtain the linear system of PDEs with variable
coefficients in the functions f i and s:

f i
1 − λf i

22 + Cλ−1((~mi · ~m2)f1 − (~mi · ~m1)f2)−

−2Cλ−2((~k × ~kt) · ~mi)z2 = 0,

s2 = 2λ−2(~ni · ~kt)f i + λ−2(~ktt · ~k − 2~kt · ~kt)z2.

Consider two possible cases.
A. Let C = 0. Then there exist functions gi = gi(τ, ω), where τ =

∫
λ(t)dt

and ω = z2, such that f i = gi
ω and gi

τ − gi
ωω = 0. Therefore,

~u = λ−1(gi
ω(τ, ω) + ~mi

t · ~x)~ni − λ−1(~kt · ~x)k,

p = 2λ−2(~ni · ~kt)gi(τ, ω) + 1
2λ

−2(~ktt · ~k − 2~kt · ~kt)ω2−

−1
2λ

−1(~ni · ~x)(~mi
tt · ~x)− 1

2λ
−2(~k · ~mi

tt)(~n
i · ~x)(~k · ~x),

(5.1)

where ~m1
t · ~m2 − ~m1 · ~m2

t = 0, ~k = ~m1 × ~m2, ~n1 = ~m2 × ~k, ~n2 = ~k × ~m1,
λ = |~k|2, ω = ~k · ~x, τ =

∫
λ(t)dt, and gi

τ − gi
ωω = 0.

For example, if ~m = (η1(t), 0, 0) and ~n = (0, η2(t), 0) with ηi(t) 6= 0, it
follows that

u1 = (η1)−1(f1 + η1
t x1), u2 = (η2)−1(f2 + η2

t x2),
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u3 = −(η1η2)t(η1η2)−1x3,

p = −1
2η

1
tt(η

1)−1x2
1 − 1

2η
2
tt(η

2)−1x2
2+

+
(

1
2(η1η2)tt(η1η2)−1 − ((η1η2)t(η1η2)−1)2

)
x2

3,

where f i = f i(τ, ω), f i
τ − f i

ωω = 0, τ =
∫
(η1η2)2dt, and ω = η1η2x3. If

~m1 = (η1(t), η2(t), 0) and ~m2 = (0, 0, η3(t)) with η3(t) 6= 0 and ηi(t)ηi(t) 6= 0,
we obtain that

u1 = (ηiηi)−1
{
η1(gω + ηi

txi)− η2(η3
t (η

3)−2ω + η2
t x1 − η1

t x2)
}
,

u2 = (ηiηi)−1
{
η2(gω + ηi

txi) + η1(η3
t (η

3)−2ω + η2
t x1 − η1

t x2)
}
,

u3 = (η3)−1(f + η3
t x3),

p = 2(η3)−1(η1η2
t − η1

t η
2)(ηiηi)−2g + 1

2λ
−1·

·
{
λ−1((η3

ttη
3 − 2η3

t η
3
t )η

iηi − 2η3η3
t η

iηi
t − 2(η3)2ηi

tη
i
t)ω

2+

+(η3)2((η2η2
tt − η1η1

tt)(x
2
1 − x2

2)− 2(η1
ttη

2 + η1η2
tt)x1x2)−

−ηiηiη3η3
ttx

2
3

}
.

Here f = f(τ, ω), fτ − fωω = 0, g = g(τ, ω), gτ − gωω = 0, τ =
∫
(η3)2ηiηidt,

ω = η3(η2x1 − η1x2), and λ = (η3)2ηiηi.

Note 5.1 The equation

~m1
t · ~m2 − ~m1 · ~m2

t = 0 (5.2)

can easily be solved in the following way: Let us fix arbitrary smooth vector-
functions ~m1,~l ∈ C∞((t0, t1),R3) such that ~m1(t) 6= ~0, ~l(t) 6= ~0, and
~m1(t) ·~l(t) = 0 for all t ∈ (t0, t1). Then the vector-function ~m2 = ~m2(t) is
taken in the form

~m2(t) = ρ(t)~m1 +~l(t). (5.3)

Equation (5.2) implies

ρ(t) =
∫
(~m1 · ~m1)−1(~m1

t ·~l − ~m1 ·~lt)dt. (5.4)
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B. Let C 6= 0. By means of the transformation ~mi → aij ~m
j , where

aij = const and det{aij} = C, we make C = 1. Then we obtain the following
solution of the NSEs (1.1)

~u = λ−1
(
θij(t)gj

ω(τ, ω) + θi0(t)ω + ~mi
t · ~x− λ−1((~k× ~mi)·~x)

)
~ni−

−λ−1(~kt · ~x)~k,

p = 2λ−2(~ni · ~kt)(θij(t)gi(τ, ω) + 1
2θ

i0(t)ω2)+

+1
2λ

−2(~ktt · ~k − 2~kt · ~kt)ω2 − 1
2λ

−1(~ni · ~x)(~mi
tt · ~x)−

−1
2λ

−2(~k · ~mi
tt)(~n

i · ~x)(~k · ~x).

(5.5)

Here ~m1
t · ~m2 − ~m1 · ~m2

t = 1, ~k = ~m1 × ~m2, ~n1 = ~m2 × ~k, ~n2 = ~k × ~m1,
λ = |~k|2, ω = ~k ·~x, τ =

∫
λ(t)dt, and gi

τ − gi
ωω = 0. (θ1i(t), θ2i(t)) (i = 1, 2)

are linearly independent solutions of the system

θi
t + λ−1(~mi · ~m2)θ1 − λ−1(~mi · ~m1)θ2 = 0, (5.6)

and (θ10(t), θ20(t)) is a particular solution of the nonhomogeneous system

θi
t + λ−1(~mi · ~m2)θ1 − λ−1(~mi · ~m1)θ2 = 2λ−2((~k × ~kt) · ~mi). (5.7)

For example, if ~m1 = (η cosψ, η sinψ, 0) and ~m2 = (−η sinψ, η cosψ, 0),
where η = η(t) 6= 0 and ψ = −1

2

∫
(η)−2dt (therefore, ~m1

t · ~m2 − ~m1 · ~m2
t = 1),

we obtain

u1 = η−1(f1 cosψ − f2 sinψ + ηtx1 − 1
2η

−1x2),

u2 = η−1(f1 sinψ + f2 cosψ + ηtx2 + 1
2η

−1x1),

u3 = −2ηtη
−1x3,

p = (ηttη − 3ηtηt)η−2x2
3 − 1

2(ηttη
−1 − 1

4η
−4)xixi.

Here f i = f i(τ, ω), f i
τ − f i

ωω = 0, τ =
∫
(η)4dt, and ω = (η)2x3.

Note 5.2 As in the case C = 0, the solutions of the equation

~m1
t · ~m2 − ~m1 · ~m2

t = 1 (5.8)

can be sought in form (5.3). As a result we obtain that

ρ(t) =
∫
|~m1|−2(~m1

t ·~l − ~m1 ·~lt − 1)dt. (5.9)
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Note 5.3 System (5.6) can be reduced to a second-order homogeneous differ-
ential equation either in θ1, i.e.,(

λ|~m1|−2θ1
t

)
t
+
(
((~m1 · ~m2)|~m1|−2)t + |~m1|−2

)
θ1 = 0 (5.10)

(then θ2 = |~m1|−2(λθ1
t + (~m1 · ~m2)θ1)), or in θ2, i.e.,(

λ|~m2|−2θ2
t

)
t
+
(
−((~m1 · ~m2)|~m2|−2)t + |~m2|−2

)
θ2 = 0 (5.11)

(then θ1 = |~m2|−2(−λθ2
t + (~m1 · ~m2)θ2)). Under the notation of Note 5.1

equation (5.10) has the form:

((~l ·~l)θ1
t )t + |~m1|−2(~m1

t ·~l − ~m1 ·~lt)θ1 = 0. (5.12)

The vector-functions ~m1 and ~l are chosen in such a way that one can
find a fundamental set of solutions for equation (5.12). For example, let
~m× ~mt 6= 0 ∀t ∈ (t0, t1). Let us introduce the notation ~m := ~m1 and put
~l = η(t)~m× ~mt, where η ∈ C∞((t0, t1),R), η(t) 6= 0 ∀t ∈ (t0, t1). Then

~m ·~l = 0, ~mt ·~l − ~m ·~lt = 0, ~m2 = −(
∫
|~m|−2dt)~m+ η~m× ~mt,

~k = η~m× (~m× ~mt), λ = (η)2|~m|2|~m× ~mt|−2,

~n2 = η|~m|2 ~m× ~mt, ~n1 = (
∫
|~m|−2dt)~n2 + (η)2|~m× ~mt|−2 ~m,

θ11(t) =
∫
(η)−2|~m× ~mt|−2dt, θ21(t) = 1− θ11

∫
|~m|−2dt,

θ12(t) = 1, θ22(t) = −
∫
|~m|−2dt,

θ10(t) = 2
∫
(((~m× ~mt) · ~mtt)|~m× ~mt|−2 +

∫
η−1|~m|−4dt)·

· η−2|~m× ~mt|−2dt,

θ20(t) = −θ10(t)
∫
|~m|−2dt+ 2

∫
η−1|~m|−4dt.

Consider the following cases: ~m × ~mt ≡ ~0, i.e., ~m = χ(t)~a, where
χ(t) ∈ C∞((t0, t1),R), χ(t) 6= 0 ∀t ∈ (t0, t1), ~a = const, and |~a| = 1.
Let us put

~l(t) = η1(t)~b+ η2(t)~c,

where η1, η2 ∈ C∞((t0, t1),R), (η1(t), η2(t)) 6= (0, 0) ∀t ∈ (t0, t1), ~b = const,
|~b| = 1, ~a ·~b = 0, and ~c = ~a×~b. Then

~m2 = −(χ
∫
χ−2dt)~a+ η1~b+ η2~c, ~k = χη1~c− χη2~b,

λ = (χ)2ηiηi, ~n2 = (χ)2(η1~b+ η2~c), ~n1 = (
∫
χ−2dt)~n2 + χηiηi~a,

θ11 =
∫
(ηiηi)−1dt, θ21 = 1− θ11

∫
χ−2dt,

θ12 = 1, θ22 = −
∫
χ−2dt,

θ10 = 2
∫
(η2

t η
1 − η2η1

t )χ
−1(ηiηi)−1dt, θ20 = −θ10

∫
χ−2dt.
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Note 5.4 In formulas (5.1) and (5.5) solutions of the NSEs (1.1) are ex-
pressed in terms of solutions of the decomposed system of two linear one-
dimensional heat equations (LOHEs) that have the form:

gi
τ = gi

ωω. (5.13)

The Lie symmetry of the LOHE are known. Large sets of its exact solu-
tions were constructed [27, 3]. The Q-conditional symmetries of LOHE were
investigated in [14]. Moreover, being decomposed system (5.13) admits trans-
formations of the form

g̃1(τ ′, ω′) = F 1(τ, ω, g1(τ, ω)), τ ′ = G1(τ, ω), ω′ = H1(τ, ω),

g̃2(τ ′′, ω′′) = F 2(τ, ω, g2(τ, ω)), τ ′′ = G2(τ, ω), ω′′ = H2(τ, ω),

where (G1,H1) 6= (G2,H2), i.e. the independent variables can be transformed
in the functions g1 and g2 in different ways. A similar statement is true for
system (5.19)–(5.20) (see below) if ε = 0.

Note 5.5 It can be proved that an arbitrary Navier-Stokes field (~u, p), where

~u = ~w(t, ω) + (~ki(t) · ~x)~li(t)

with ~ki,~li ∈ C∞((t0, t1),R3), ~k1×~k2 6= 0, and ω = (~k1×~k2) ·~x, is equivalent
to either a solution from family (5.1) or a solution from family (5.5). The
equivalence transformation is generated by R(~m) and Z(χ).

5.2 Investigation of system (3.13)–(3.16)

Consider system 8 from Subsec. 3.2, i.e., equations (3.13)–(3.16). Equation
(3.16) immediately gives

w1 = −1
2ρtρ

−1 + (η − 1)z−2
2 , (5.14)

where η = η(t) is an arbitrary smooth function of z1 = t. Substituting (5.14)
into remaining equations (5.13)–(5.15), we get

q2 = 1
2((ρtρ

−1)t − 1
2(ρtρ

−1)2)z2 − ηtz
−1
2 − (η − 1)2z−3

2 +

+(w2 − χ)2z−3
2 ,

(5.15)

w2
1 − w2

22 + (ηz−1
2 − 1

2ρtρ
−1z2)w2

2 = 0, (5.16)

w3
1 − w3

22 + (ηz−1
2 − 1

2ρtρ
−1z2)w3

2 + ε(w2 − χ)z−2
2 = 0. (5.17)

Recall that ρ = ρ(t) and χ = χ(t) are arbitrary smooth functions of t;
ε ∈ {0; 1}. After the change of the independent variables

τ =
∫
|ρ(t)|dt, z = |ρ(t)|1/2z2 (5.18)
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in equations (5.16) and (5.17), we obtain a linear system of a simpler form:

w2
τ − w2

zz + η̂(τ)z−1w2
z = 0, (5.19)

w3
τ − w3

zz + (η̂(τ)− 2)z−1w3
z + ε(w2 − χ̂(τ))z−2 = 0, (5.20)

where η̂(τ) = η(t) and χ̂(τ) = χ(t). Equation (5.15) implies

q = 1
4((ρtρ

−1)t − 1
2(ρtρ

−1)2)z2
2 − ηt ln |z2|−

−1
2(η − 1)2z−2

2 +
∫
(w2(τ, z)− χ̂(τ))2z−3

2 dz2.
(5.21)

Formulas (5.14), (5.18)–(5.21), and ansatz (3.8) determine a solution of the
NSEs (1.1).

If ε = 0 system (5.19)–(5.20) is decomposed and consists of two transla-
tional linear equations of the general form

fτ + η̃(τ)z−1fz − fzz = 0, (5.22)

where η̃ = η̂ (η̃ = η̂ − 2) for equation (5.19) ((5.20)). Tilde over η is omitted
below. Let us investigate symmetry properties of equation (5.22) and construct
some of its exact solutions.

Theorem 5.1 The MIA of (5.22) is given by the following algebras

a) L1 =< f∂f , g(τ, z)∂f > if η(τ) 6= const;

b) L2 =< ∂τ , D̂, Π, f∂f , g(τ, z)∂f > if η(τ) = const, η 6∈ {0;−2};

c) L3 =< ∂τ , D̂, Π, ∂z + 1
2ηz

−1f∂f , G = 2τ∂τ − (z − ηz−1τ)f∂f , f∂f ,

g(τ, z)∂f > if η ∈ {0;−2}.

Here D̂ = 2τ∂τ + z∂z, Π = 4τ2∂τ + 4τz∂z − (z2 + 2(1− η)τ)f∂f ; g = g(τ, z)
is an arbitrary solution of (5.22).

When η = 0, equation (5.22) is the heat equation, and, when η = −2, it is
reduced to the heat equation by means of the change f̃ = zf .

For the case η = const equation (5.22) can be reduced by inequivalent
one-dimensional subalgebras of L2. We construct the following solutions:

For the subalgebra < ∂τ + af∂f >, where a ∈ {−1; 0; 1}, it follows that

f = e−τzν(C1Jν(z) + C2Yν(z)) if a = −1,

f = eτzν(C1Iν(z) + C2Kν(z)) if a = 1,

f = C1z
η+1 + C2 if a = 0 and η 6= −1,

f = C1 ln z + C2 if a = 0 and η = −1.
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Here Jν and Yν are the Bessel functions of a real variable, whereas Iν and Kν

are the Bessel functions of an imaginary variable, and ν = 1
2(η + 1).

For the subalgebra < D̂ + 2af∂f >, where a ∈ R, it follows that

f = |τ |ae−
1
2
ω|ω|

1
2
(η−1)W (1

4(η − 1)− a, 1
4(η + 1), ω)

with ω = 1
4z

2τ−1. Here W (κ, µ, ω) is the general solution of the Whittaker
equation

4ω2Wωω = (ω2 − 4κω + 4µ2 − 1)W.

For the subalgebra < ∂τ + Π + af∂f >, where a ∈ R, it follows that

f = (4τ2 + 1)
1
4
(η−1) exp(−τω + 1

2a arctan 2τ)ϕ(ω)

with ω = z2(4τ2 + 1)−1. The function ϕ is a solution of the equation

4ωϕωω + 2(1− η)ϕω + (ω − a)ϕ = 0.

For example if a = 0, then ϕ(ω) = ωµ
(
C1Jµ(1

2ω) + C2Yµ(1
2ω)

)
, where

µ = 1
4(η + 1).

Consider equation (5.22), where η is an arbitrary smooth function of τ .

Theorem 5.2 Equation (5.22) is Q-conditional invariant under the operators

Q1 = ∂τ + g1(τ, z)∂z + (g2(τ, z)f + g3(τ, z))∂f (5.23)

if and only if

g1
τ − ηz−1g1

z + ηz−2g1 − g1
zz + 2g1

zg
1 − ητz

−1 + 2g2
z = 0,

gk
τ + ηz−1gk

z − gk
zz + 2g1

zg
k = 0, k = 2, 3,

(5.24)

and

Q2 = ∂z +B(τ, z, f)∂f (5.25)

if and only if

Bτ − ηz−2B + ηz−1Bz −Bzz − 2BBzf −B2Bff = 0. (5.26)

An arbitrary operator of Q-conditional symmetry of equation (5.22) is equiv-
alent to either an operator of form (5.23) or an operator of form (5.25).

Theorem 5.2 is proved by means of the method described in [13].
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Note 5.6 It can be shown (in a way analogous to one in [13]) that system
(5.24) is reduced to the decomposed linear system

fa
τ + ηz−1fa

z − fa
zz = 0 (5.27)

by means of the following non-local transformation

g1 = −f
1
zzf

2 − f1f2
zz

f1
z f

2 − f1f2
z

+ ηz−1,

g2 = −f
1
zzf

2
z − f1

z f
2
zz

f1
z f

2 − f1f2
z

,

g3 = f3
zz − ηz−1f3

z + g1f3
z − g2f3.

(5.28)

Equation (5.26) is reduced, by means of the change

B = −Φτ/Φf , Φ = Φ(τ, z, f)

and the hodograph transformation

y0 = τ, y1 = z, y2 = Φ, Ψ = f,

to the following equation in the function Ψ = Ψ(y0, y1, y2):

Ψy0 + η(y0)y−1
1 Ψy1 −Ψy1y1 = 0.

Therefore, unlike Lie symmetries Q-conditional symmetries of (5.22) are
more extended for an arbitrary smooth function η = η(τ). Thus, Theorem 5.2
implies that equation (5.22) is Q-conditional invariant under the operators

∂z, X = ∂τ + (η − 1)z−1∂z, G = (2τ + C)∂z − zf∂f

with C = const. Reducing equation (5.22) by means of the operator G, we
obtain the following solution:

f = C2(z2 − 2
∫
(η(τ)− 1)dτ) + C1. (5.29)

In generalizing this we can construct solutions of the form

f =
N∑

k=0

T k(τ)z2k, (5.30)

where the coefficients T k = T k(τ) (k = 0, N) satisfy the system of ODEs:

T k
τ + (2k + 2)(η(τ)− 2k − 1)T k+1 = 0,

k = 0, N − 1, TN
τ = 0.

(5.31)
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Equation (5.31) is easily integrated for arbitrary N ∈ N. For example if N = 2,
it follows that

f = C3

{
z4 − 4z2

∫
(η(τ)− 3)dτ+ 8

∫(
(η(τ)− 1)

∫
(η(τ)− 3)dτ

)
dτ
}
+

+C2

{
z2 − 2

∫
(η(τ)− 1)dτ

}
+ C1.

An explicit form for solution (5.30) with N = 1 is given by (5.29).
Generalizing the solution

f = C0 exp{−z2(4τ + 2C)−1 +
∫
(η(τ)− 1)(2τ + C)−1dτ} (5.32)

obtained by means of reduction of (5.22) by the operator G, we can construct
solutions of the general form

f =
N∑

k=0

Sk(τ)(z(2τ + C)−1)2k·

· exp
{
−z2(4τ + 2C)−1 +

∫
(η(τ)− 1)(2τ + C)−1dτ

}
,

(5.33)

where the coefficients Sk = Sk(τ) (k = 0, N) satisfy the system of ODEs:

Sk
τ + (2k + 2)(η(τ)− 2k − 1)(2τ + C)−2Sk+1 = 0,

k = 0, N − 1, SN
τ = 0.

(5.34)

For example if N = 1, then

f =
{
C1

(
z2(2τ + C)−2 − 2

∫
(η(τ)− 1)(2τ + C)−2dτ

)
+ C0

}
·

· exp
{
−z2(4τ + 2C)−1 +

∫
(η(τ)− 1)(2τ + C)−1dτ

}
.

Here we do not present results for arbitrary N as they are very cumbersome.
Putting g2 = g3 = 0 in system (5.24), we obtain one equation in the

function g1:

g1
τ − ηz−1g1

z + ηz−2g1 − g1
zz + 2g1

zg
1 − ητz

−1 = 0.

It follows that g1 = −gz/g+ (η− 1)/z, where g = g(τ, z) is a solution of the
equation

gτ + (η − 2)z−1gz − gzz = 0. (5.35)

Q-conditional symmetry of (5.22) under the operator

Q = ∂τ + (−gz/g + (η − 1)/z)∂z (5.36)

gives rise to the following
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Theorem 5.3 If g is a solution of equation (5.35) and

f(τ, z) =
∫ z
z0
z′g(τ, z′)dz′+

+
∫ τ
τ0

(
z0gz(τ ′, z0)− (η(τ ′)− 1)g(τ ′, z0)

)
dτ ′,

(5.37)

where (τ0, z0) is a fixed point, then f is a solution of equation (5.22).

Proof. Equation (5.35) implies

(zg)τ = (zgz − (η − 1)g)z

Therefore, fz = zg, fτ = zgz − (η − 1)g and

fτ + ηz−1fz − fzz = zgz − (η − 1)g + ηg − (zg)z = 0. QED.

The converse of Theorem 5.3 is the following obvious

Theorem 5.4 If f is a solution of (5.22), the function

g = z−1fz (5.38)

satisfies (5.35).

Theorems 5.3 and 5.4 imply that, when η = 2n (n ∈ Z), solutions of (5.22)
can be constructed from known solutions of the heat equation by means of
applying either formula (5.37) (for n > 0) or formula (5.38) (for n < 0) |n|
times.

Let us investigate symmetry properties and construct some exact solutions
of system (5.19)–(5.20) for ε = 1, i.e., the system

w1
τ − w1

zz + η̂(τ)z−1w1
z = 0, (5.39)

w2
τ − w2

zz + (η̂(τ)− 2)z−1w2
z + (w1 − χ̂(τ))z−2 = 0. (5.40)

If (w1, w2) is a solution of system (5.39)–(5.40), then (w1, w2 + g) (where
g = g(τ, z)) is also a solution of (5.39)–(5.40) if and only if the function g
satisfies the following equation

gτ − gzz + (η̂(τ)− 2)z−1gz = 0 (5.41)

System (5.39)–(5.40), for some χ̂ = χ̂(τ), has particular solutions of the
form

w1 =
N∑

k=0

T k(τ)z2k, w2 =
N−1∑
k=0

Sk(τ)z2k,

where T 0(τ) = χ̂(τ). For example, if χ̂(τ) = −2C1
∫
(η̂(τ) − 1)dτ + C2 and

N = 1, then

w1 = C1(z2 − 2
∫
(η̂(τ)− 1)dτ) + C2, w2 = −C1τ.

Let χ̂(τ) = 0.
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Theorem 5.5 The MIA of system (5.39)–(5.40) with χ̂(τ) = 0 is given by
the following algebras

a) < wi∂wi , w̃i(τ, z)∂wi > if η̂(τ) 6= const;

b) < 2τ∂τ + z∂z, ∂τ , w
i∂wi , w̃i(τ, z)∂wi > if η̂(τ) = const, η̂ 6= 0;

c) < 2τ∂τ + z∂z, ∂τ , w
1z−1∂w2 , wi∂wi , w̃i(τ, z)∂wi > if η̂ ≡ 0.

Here (w̃1, w̃2) is an arbitrary solution of (5.39)–(5.40) with χ̂(τ) = 0.

For the case χ̂(τ) = 0 and η̂(τ) = const system (5.39)–(5.40) can be
reduced by inequivalent one-dimensional subalgebras of its MIA. We obtain
the following solutions:

For the subalgebra < ∂τ > it follows that

w1 = C1 ln z + C2,

w2 = 1
4C1(ln2 z − ln z) + 1

2C2 ln z + C3z
−2 + C4

if η̂ = −1;

w1 = C1z
2 + C2,

w2 = 1
4C1z

2 + 1
2C2 ln2 z + C3 ln z + C4

if η̂ = 1;

w1 = C1z
η̂+1 + C2,

w2 = 1
2C1(η̂ + 1)−1zη̂+1 + C2(η̂ − 1)−1 ln z + C3z

η̂−1 + C4

if η̂ 6∈ {−1; 1}.

For the subalgebra < ∂τ − wi∂wi > it follows that

w1 = e−τz
1
2
(η̂+1)ψ1(z), w2 = e−τz

1
2
(η̂−1)ψ2(z),

where the functions ψ1 and ψ2 satisfy the system

z2ψ1
zz + zψ1

z + (z2 − 1
4(η̂ + 1)2)ψ1 = 0, (5.42)

z2ψ2
zz + zψ2

z + (z2 − 1
4(η̂ − 1)2)ψ2 = zψ1. (5.43)

The general solution of system (5.42)–(5.43) can be expressed by quadratures
in terms of the Bessel functions of a real variable Jν(z) and Yν(z):

ψ1 = C1Jν+1(z) + C2Yν+1(z),

ψ2 = C3Jν(z) + C4Yν(z)+

+π
2Yν(z)

∫
Jν(z)ψ1(z)dz − π

2Jν(z)
∫
Yν(z)ψ1(z)dz
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with ν = 1
2(η̂ − 1);

For the subalgebra < ∂τ + wi∂wi > it follows that

w1 = eτz
1
2
(η̂+1)ψ1(z), w2 = eτz

1
2
(η̂−1)ψ2(z),

where the functions ψ1 and ψ2 satisfy the system

z2ψ1
zz + zψ1

z − (z2 + 1
4(η̂ + 1)2)ψ1 = 0, (5.44)

z2ψ2
zz + zψ2

z − (z2 + 1
4(η̂ − 1)2)ψ2 = zψ1. (5.45)

The general solution of system (5.44)–(5.45) can be expressed by quadratures
in terms of the Bessel functions of an imaginary variable Iν(z) and Kν(z):

ψ1 = C1Iν+1(z) + C2Kν+1(z),

ψ2 = C3Iν(z) + C4Kν(z)+

Kν(z)
∫
Iν(z)ψ1(z)dz − Iν(z)

∫
Kν(z)ψ1(z)dz

with ν = 1
2(η̂ − 1).

For the subalgebra < 2τ∂τ + z∂z + awi∂wi > it follows that

w1 = |τ |ae−
1
2
ω|ω|

1
4
(η̂−1)ψ1(ω), w2 = |τ |ae−

1
2
ω|ω|

1
4
(η̂−3)ψ2(ω)

with ω = 1
4z

2τ−1, where the functions ψ1 and ψ2 satisfy the system

4ω2ψ1
ωω =

(
ω2 + (a− 1

4(η̂ − 1))ω + 1
4(η̂ + 1)2 − 1

)
ψ1, (5.46)

4ω2ψ2
ωω =

(
ω2 + (a− 1

4(η̂ − 3))ω + 1
4(η̂ − 1)2 − 1

)
ψ2+

+2|ω|1/2ψ1.
(5.47)

The general solution of system (5.46)–(5.47) can be expressed by quadratures
in terms of the Whittaker functions.

The continuation of this paper will be published in the next number
(Vol.1, N 2, June, 1994).


