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Abstract

Ansatzes for the Navier-Stokes field are described. These ansatzes reduce
the Navier-Stokes equations to system of differential equations in three,
two, and one independent variables. The large sets of exact solutions of
the Navier-Stokes equations are constructed.

1 Introduction
The Navier-Stokes equations (NSEs)

iy + (i V)i — AN+ Vp =0,

divii =0

(1.1)

which describe the motion of an incompressible viscous fluid are the basic
equations of modern hydrodynamics. In (1.1) and below @ = {u%(t,Z)}
denotes the velocity field of a fluid, p = p(t, ¥) denotes the pressure, ¥ = {z,},
Oy = 0/0t, 0, = 0/0x,, V= {0u}, A = V-V is the Laplacian, the kinematic
coefficient of viscosity and fluid density are set equal to unity. Repead indices
denote summation whereby we consider the indices a, b to take on values in
{1,2,3} and the indices i, j to take on values in {1, 2}.

The problem of finding exact solutions of non-linear equations (1.1) is
an important but rather complicated one. There are some ways to solve it.
Considerable progress in this field can be achieved by means of making use of a
symmetry approach. Equations (1.1) have non-trivial symmetry properties. It
was known long ago [37, 2] that they are invariant under the eleven-parametric
extended Galilei group. Let us denote it by G1(1,3). This group includes the
Galilei group and scale transformations. The Lie algebra AG1(1,3) of G1(1,3)
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is generated by the operators
Py, Ja, D, P, Ga,

where
Po=0y, D =2t0+ x40, — u"Oya — 2p0p,
Jap = 200 — 1400 + 0y — uPDya, a # b,
Gq =104 + Oya, Py = 0,.

Relatively recently it was found by means of the Lie method [8, 5, 26] that
the maximal Lie invariance algebra (MIA) of the NSEs (1.1) is the infinite-
dimensional algebra A(NS) with the basis elements

O, D, Jw, R(m), Z(x), (1.2)
where

R(m) = R(m(t)) = m®(£)da + mi (t)0ue — miy(t)za0p, (1.3)

Z(x) = Z(x(t)) = x(t)0p, (1.4)

m® = m?(t) and xy = x(t) are arbitrary smooth functions of ¢ (degree of their
smoothness is discussed in Note A.1).

The algebra AG;(1,3) is a subalgebra of A(NS). Indeed, setting
m® = 45, where b is fixed, we obtain R(m) = 0y, and if m?® = J,t then
R(m) = Gy . Here 0,y is the Kronecker symbol (0, =1 if a =05, 04, =0 if
a#b).

Operators (1.2) generate the following invariance transformations of system
(1.1):
O alt, @) =d(t+e@), pt,T)=p(t+e,7)
(translations with respect to t),

-

Jab : u(t7£) = Bﬁ(t7BT£)a ﬁ(t7f) :p(thTf)
space rotations),
D: a(t, ) = efu(e®t, e°F), p(t, T) = e2p(e*t, e°7)
(scale transformations), (1.5)
R(m) : a(t, &) = i(t, & — m(t)) + m(t),
ﬁ(t, f) = p(t,.f — ﬁi(t)) — T?Ltt T — %T?L . T?Ltt
(these transformations include the space translations

and the Galilei transformations),

Z(x): A, @) =it @), pt,T) = p(t, ) + x(0).
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Here ¢ € R, B={Bw} € O(3), i.e. BB = {6,}, BT is the transposed
matrix.

Besides continuous transformations (1.5) the NSEs admit discrete trans-
formations of the form

tN t, xNa Zq, a4 F b, 1’~b Tp, (16)

p=p, wW=u a#b = —ub,
where b is fixed. Invariance under transformations (1.5) and (1.6) means that
(@,p) is a solution of (1.1) if (@, p) is a solution of (1.1).

A complete review of exact solutions found for the NSEs before 1963 is
contained in [1]. We should like also to mark more modern reviews [16, 7, 306]
despite their subjects slightly differ from subjects of our investigations. To
find exact solutions of (1.1), symmetry approach in explicit form was used in
(2, 31, 32, 6, 20, 21, 4, 17, 15, 12, 10, 11, 30]. This article is a continuation and
a extention of our works [15, 12, 10, 11, 30]. In it we make symmetry reduction
of the NSEs to systems of PDEs in three and two independent variables and
to systems of ODEs, using subalgebraic structure of A(NS). We investigate
symmetry properties of the reduced systems of PDEs and construct exact
solutions of the reduced systems of ODEs when it is possible. As a result,
large classes of exact solutions of the NSEs are obtained.

The reduction problem for the NSEs is to describe ansatzes of the form

[9]:
u® = fab(t’ f)vb(w) + ga(tvf)v p= fo(tvf)Q(w) + go(tvf) (17)

that reduce system (1.1) in four independent variables to systems of differential
equations in the functions v* and ¢ depending on the variables w = {wy,} (n =
1, N), where N takes on a fixed value from the set {1,2,3}. In formulas (1.7)
£ g%, 19, ¢°, and w, are smooth functions to be described. In such a general
formulation the reduction problem is too complex to solve. But using Lie
symmetry, some ansatzes (1.7) reducing the NSEs can be obtained. According
to the Lie method, first a complete set of A(N.S)-inequivalent subalgebras of
dimension M = 4 — N is to be constructed. For N =3, N =2, and N =1
such sets are given in Subsections A.2, A.3, and A.4, correspondingly. Knowing
subalgebraic structure of A(NN.S), one can find explicit forms for the functions
. g% f°, ¢°, and w, and obtain reduced systems in the functions v* and g¢.
This is made in Sec. 2 (N = 3), Sec. 3 (N = 2) and Sec. 4 (N = 1). Moreover,
in Subsec. 2.3 symmetry properties of all reduced systems of PDEs in three
independent variables are investigated, and in Subsec. 4.3 exact solutions of
the reduced systems of ODEs are constructed. Symmetry properties and exact
solutions of some reduced systems of PDEs in two independent variables are
discussed in Sections 5 and 6. In Sec. 7 we make symmetry reduction of a
some reduced system of PDEs in three independent variables.

In conclusion of the section, for convenience, we give some abbreviations,
notations, and default rules used in this article.
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Abbreviations:
the NSEs: the Navier-Stokes equations

the MIA: the maximal Lie invariance algebra (of either a some equation or
a some system of equations)

a ODE: a ordinary differential equation

a PDE: a partial differential equation

Notations:

C>((to,t1),R): the set of infinite-differentiable functions from (tp,¢1) into R,
where —oo <ty < t1 < 400

C>((to,t1),R3): the set of infinite-differentiable vector-functions from (g, 1)
into R?, where —oo < tg < t; < 400

0y = 8/, B = 8/, , Oya = 8/Dya, ...

Default rules:

Repead indices denote summation whereby we consider the indices a, b to
take on values in {1,2,3} and the indices i, j to take on values in {1, 2}.

All theorems on the MIAs of PDEs are proved by means of the standard
Lie algorithm.

Subscripts of functions denote differentiation.

2 Reduction of the Navier-Stokes equations to sys-
tems of PDEs in three independent variables

2.1 Ansatzes of codimension one

In this subsection we give ansatzes that reduce the NSEs to systems of PDEs
in three independent variables. The ansatzes are constructed with the subal-
gebraic analysis of A(NS) ( see Subsec.A.2 ) by means of the method discribed
in Sec.B .

Loul = [¢f|7V2 (vl cosT —v?sinT) + Soit7! — seaat™,
u? = [t|7Y2(vlsinT +v?cosT) + dwot T 4 syt
(2.1)
udb o= |t 7V208 + %ﬂfgt_l,
p = [t[Trq+ 32757 + H e,
where

y1 = [tV 2 (w1 cos T + zasinT), yp = |t| V2 (—axysinT + 29 cosT),
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ys = |t|7Y2%x3, x>0, 7=snlt.

Here and below  v% = v%(y1,y0,93), q=q(y1,92,93), 1= (2}+a3)/2%

2. u' = wlcosst —v?sin st — o,
2 o1 2
u® = v sinxt + v°cosut + xxy,
(2.2)
uw = 3,
po= g+
where
Y1 = T1C€0S st + x98in b, Yo = —x1Sin »t + Ty cOSs s,
Y3 = T3, HE {0;1}.
3. ul = pprlol —aor T 4z
u? = mor ol 4 ayr 0?4 2or2,
(2.3)
ud = 03+ nt)r v + i (t) arctan zo /21,
p = q- %ntt(t)(n(t))_lxg — %T_2 + x(t) arctan xo /1,

where
y1=1t, y2=7r, y3=mx3—n(t)arctanzy/x1, n,x€C((to,t1),R).

Note 2.1 The expression for the pressure p from ansatz (2.3) is indeterminate
in the points t € (to,t1) where n(t) = 0. If there are such points t, we will
consider ansatz (2.3) on the intervals (t3,t7) that are contained in the interval
(to,t1) and that satisfy one of the conditions:

a)n(t) #0 Vte (&g, 17);
b)n(t) =0 Vte(tg,th).

In the last case we consider ny/n := 0.

4. @ = v+ ()" dm 4 (mm) T m - B)my — yin,
p o= q—3(m-m) (M- 7)ys)? — (1 m) T (T - B) (- D)+ (2.4)
+ 3 (1 - ) (- ) 72 (- )2,
where

inﬁi~f, y3 =1, Tﬁ,ﬁz eCm((to,tl),R?’).

i -m=n-i=q A =0, |i]=1. (2.5)
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Note 2.2 There exist vector-functions ii' which satisfy conditions (2.5). They
can be constructed in the following way: let us fix the wvector-functions
k' = k'(t) such that k' -m =k'-k*=0, |k|=1, and set

il = k! cos P(t) — k2 siny(t), (2.6)
2 = klsin W(t) + k2 cos(t). |

Then @@=k k2 —r=0 if o= [kl E)dt.

2.2 Reduced systems

1-2. Substituting ansatzes (2.1) and (2.2) into the NSEs (1.1), we obtain
reduced systems of PDEs with the same general form

vt — ol + @+ 12 =0,

va

) (2.7)

a
2 2 1 _
Vg = Vgq + G2 — NV =0,
3

V™,

) —vga—i-qs:O,
Ve = 7.

Hereafter subscripts 1, 2, and 3 of functions denote differentiation with respect
to y1, y2, and ys, accordingly. The constants ~; take the values

L oy ==2x, m=-3 if t>0, y1=2x <=3 if t<0.
2. vy1=—23x vy =0.
For ansatzes (2.3) and (2.4) the reduced equations have the form
3. vl +vlvy + P — gy Pe® — (v + (14 7Py, *)ugs) -
~2y5 %03 + g2 = 0,
vf +vled +v%uf 4y ol — (uFy + (14 0Py, M)edy)+

+2ny5 vl + 2y5 0% — nys tas + xys L =0,

(2.8)
vf + 0'od + vt — (3, + (14 n’yy *)ds) — 20y Pvi+
+2myy v+ 2nyy gy 102 + (14 0y *)gs—
—muintys — xnys© =0,
yy 't + vl + 3 = 0.
4. vf +oIvh — vk + g+ p(yz)v® =0,
v3 + Uj’Uj-’ — vj-’j =0, (2.9)

vl 4 p*(y3) = 0,
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where

(2.10)

2.3 Symmetry of reduced systems

Let us study symmetry properties of systems (2.7), (2.8), and (2.9). All results
of this subsection are obtained by means of the standard Lie algorithm [28, 27].
First, let us consider system (2.7).

Theorem 2.1 The MIA of system (2.7) is the algebra
a) < 0ay 0y, Jiy > if 1 #£0;
b) < 04,04, JY > if 11 =0, 2 #0;
¢) < 04,04, JY, DI > if m=v2=0.

Here JY = a0y — ypOa + 00 — v°0pa

a

D} = 9,04 — v*0pa — 2q0, .

Note 2.3 All Lie symmetry operators of (2.7) are induced by operators from
A(NS): The operators Jéb and D} are induced by Ju, and D. The operators
cq0q (cq = const) and 0, are induced by either

R(|t|"?(c1 cos T — casinT, ey sinT + cgcos 7, ¢3)),  Z(|t] 1),
where T = sxIn|t|, for ansats (2.1) or
R(cq cos st — cosin s, ¢ sin st + cacos s, c3), Z(1)

for ansatz (2.2), respectively. Therefore, Lie reductions of system (2.7) give
only solutions that can be obtained by reducing the NSEs with two- and three-
dimensional subalgebras of A(NS).

Let us continue to system (2.8). We denote A™* as the MIA of (2.8).
Studying symmetry properties of (2.8), one has to consider the following cases:
A.n,x =0. Then

AT =< 9Y DY, Ry (¥(y1)), ZH (A (1)) >,

where D% = 2y181 + y262 + y383 — v%pa — 2q8q s
Ri(¥(y1)) = Y03 + 10y — ¥11y30g,  Z'(A(y1)) = My1)0,-

Here and below 9 = 9(y1) and A = A(y1) are arbitrary smooth functions of

= 0, x Z 0. In this case an extension of A™% exists for
x = (Ciynr —i—Cg)*l, where C1,Cy = const. Let C; # 0. We can make (5
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vanish by means of equivalence transformation (A.6), i.e., y = Cy; ', where
C = const. Then

AT =< Dy, Ri(4(y1)), Z' (A1) > -
If C; =0, x =C = const and

AT =< 01, Ri(¥ (1), 21 (A(wn)) > -
For other values of , i.e., when x11x # X1X1,

AT =< Ry (¢ (1)), Z' (A(y1)) > -

C. n # 0. By means of equivalence transformation (A.6) we make y = 0.
In this case an extension of A™%* exists for n = £|Ciy; + 02\1/2, where
C1,Cy = const. Let C; # 0. We can make C5 vanish by means of equiv-
alence transformation (A.6), i.e., n = C|y;|'/?, where C' = const. Then

A™% =< Dy, Ro(lyn['/2), Ra(|ly1 [V I [y]), Z" (Mwn)) >,
where Ra(¢(y1)) = ¥03 + ¢10,3. If C1 =0, i.e., n = C = const,
AT =< 9 95,4105 + O3 ZH(A(y1)) > .
For other values of 7, i.e., when (n%)1; # 0,
AmT =< Ry(n(y1)), Ra(n(yn) [ (n(y1))"2dyn), Z'(A(w1)) > -

Note 2.4 In all cases considered above the Lie symmetry operators of (2.8)
are induced by operators from A(NS): The operators 01, D3, and Z'(\(y1))
are induced by O, D, and Z(\(t)), respectively. The operator R(0,0,(t))
induces the operator Ri(¢¥(y1)) for n = 0 and the operator Ra(v¥(y1)) (if
viun —ym1 =0) for n # 0. Therefore, the Lie reduction of system (2.8)
gives only solutions that can be obtained by reducing the NSEs with two- and
three-dimentional subalgebras of A(NS).

When n = x = 0, system (2.8) describes axially symmetric motion of a
fluid and can be transformed into a system of two equations for a stream
function ¥! and a function ¥? that are determined by

Ul =yov!, Ui =y, U? =y’

The transformed system was studied by L.V. Kapitanskiy [20, 21].
Consider system (2.9). Let us introduce the notations

t=ys, p=pt)=[p(t)dt,
R3(9' (1), ¥*(t)) = ©'8y, + ¥} 0y — PiyyiOy,
ZHA() = Mt)Dg, S = Dys — p'(1)yi0y,

E(x(t)) = 2x0¢ + xt%i0y; + (Xetyi — x¢v")Byi — (2xeq + 5Xe11Yj5) 0
Jly = 4102 — Y201 + v' 02 — v?0,1.
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Theorem 2.2 The MIA of(2.9) is the algebra

1) < Ry(41 (1), ¥2(t)), Z' (A1), S, E(X' (), EOA(L)), v30ys, Sy >,
where ' = eP1) fep(t)dt and x2=e PO, if pi=0;

2) < R3(¢1(t), ¥2(t)), ZH (A1), S, E(x(t))+2a1v30ys +2a2Ji5 >, where
a1, az, and ag are fived constants, x = e P (f ePdt + a3> if
pt = e%f’ﬁféf‘“ (Cl cos(ag In p) — Cysin(az In ﬁ)),
(C’l sin(ag In p) + Co cos(az In p))

with p=pt) =| [erOdt + as|, C1,Cy = const, (C1,Cs) # (0,0);
3) < Ra(v'(8),¥*(1)), Z'(A(1)), S, E(x(t)) +2a1v°0ys +2a2.J15 >, where

a1 and as are fized constants, y = e P, if

pl = 6%/)—!11[7 (Cl COS(CLQﬁ) — (Y sin(ay’))),
2 3o—_aib . N ~
p° = e2PmUP (01 sin(agp) + Co cos(agp))

with p=pt) = [erODdt, Cy,Cy = const, (C1,C3) # (0,0);

4) < R3(¥(t), ¥2(t)), ZY(\(t)), S > in all other cases.
Here ' = 4i(t), A = A(t) are arbitrary smooth function of t = ys.
Note 2.5 If functions p° are determined by (2.10), then e”t) = Cm(t)|,

where C' = const, and the condition p' =0 implies that m = |m(t)|€, where
€= const and |€] =1.

Note 2.6 The vector-functions it from Note 2.2 are determined up to the
transformation

il =il cosd — %sind, 72 =ii'sind + 72 cosd,
where § = const. Therefore, & can be chosen such that Cy =0 (then C1 #0).

Note 2.7 The operators Rg(w1 w2)+aS and Zl(/\) are induced by R()+Z (X)
and Z(N), respectively. Here | = it +¢3m, (- m) + 20 ( - 1) =

X = 30 ) (g - 7)) = $ (g - T3+ Ll - ) = 0.

If m = |m|€, where &= const and |&] =1, the operator Ji, is induced
by €1J23 + €2J31 + €3J12.
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For

1M = (3¢ (Ba cos T, Basin T, B1)T

with 7 = st + & and B, = const, where 32 + (5 = 1, the operator Oy + »J12
induces the operator Oy, — By is + ov30,s if the following vector-functions
i’ are chosen:

it = k' cos O + k2 sin Gir, W= —k'sin 87 + k2 cos 51T, (2.11)

where k! = (—sinT,cos7,0)T and k2 = (B cos T, B sinT, —F2)7.
For

i = Ba|t + Ba|7TY2(Ba cos T, BasinT, B1) T

with T = xIn |t + B4] + & and B,, B4 = const, where 3% + 35 = 1, the operator
D + 20640 + 2sJ15 induces the operator

D3 + 2340y, — 2B15]15 + 20030,3,

where D3 = y;0,, +2y30y, —v'0y —2qdy, if the vector-functions ii* are chosen
in form (2.11). In all other cases the basis elements of the MIA of (2.9) are
not induced by operators from A(NS).

Note 2.8 The invariance algebras of systems of form (2.9) with different
parameter-functions p> = p3(t) and p® = p3(t) are similar . It suggests that
there exists a local transformation of variables which make p® vanish. So, let
us transform variables in the following way:

Ji = yiezPt) | g = JerWat,
G — (Uz’ 1 %yip?)(w)e—%p(t), 73 =03, (2.12)

7= qe™"O + Ly ((0*(1)?) — 20} (1) ) eV,
As a result, we obtain the system

U+ 0I0E — 5 + G+ P (§3)0° =0,

03 + 07v} — 03 =0,

for the functions ©* = 0*(41,92,93) and § = G(91,72,U3). Here subscripts
1, 2, and 8 denote differentiation with respect to 41, 92, and 33, accordingly.

Also ji(fs) = pi(t)e ¢,
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3 Reduction of the Navier-Stokes equations to sys-
tems of PDEs in two independent variables

3.1 Ansatzes of codimension two

In this subsection we give ansatzes that reduce the NSEs to systems of PDEs
in two independent variables. The ansatzes are constructed with the subalge-
brical analysis of A(N.S) ( see Subsec. A.3 ) by means of the method discribed
in Sec. B.

Low' = (rR)7'((z1 — sewp)w! — wow? + zrz3r w?),
uw? = (rR)7M(z2 4 s@1)w! + 1w + zowsrtw?),
(3.1)
u? = x3(rR)"'w! — R~'w?,
p = R72s,

where z; = arctanzy/z1 — »In R, 29 = arctanr/xs, 3 > 0.

Here and below — w® = w%(z1,22), s = s(z1,22), r = (27 + x3)'/2,

R= (22 + 22+ x§)1/2, %, €, 0, |4, and v are real constants.

2. ul = Y2 (mw! — 2ow?) + At ey 4 a2,
u? = Y2 N (mow! + 2w?) + At ey + mor2,
(3.2)
o= Y203 4 s w? 4 St e,
p o= |t ls—5r 2+ %IS*ZR2 +elt| ! arctan o /21,

where 21 = [t|7V/?r, 29 = |t| /223 — sarctanxa /21, 2x>0, >0.

3. ut = r i zw! — zow?) + 2172
uw? = r i zow! + zw?) + 29172,
(3.3)
ud = wd o,

p = s—%r*2+€arctanx2/x1,
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where 21 =r, 2y = x3 — xarctanze/x, x€ {0;1}, >0 if »x=1
and €€ {0;1} if »=0.

Al = V2 4 ) cosT — [tV 2w sin T+

&t cos T+ 3t ey — st g,

u? = [tV (! + vwd)sinT + |t~ 2w? cos T+

+vétlsinT + $t 7wy + st lay, (3.4)
u = \t\_1/2(—yw1 + pw?) 4+ plt= + %t_ll‘g,
p = |t[Tts — 51727 + §tT2R? + 5Pt

+elt| 732 (v cos T + vagsinT + pas),

where
21 = [t|7Y2(uxy cosT 4 pxesinT — vas),
2z = |t|"Y?(xycosT — zysinT),
¢ = o(vxrycosT +vresinT + pxs) + 25/ (x2 cOST — 1 SINT),

T=sxn|t|, x>0, p>0, v>0, PP+ =1, 0e=0, e>0.

5. ul = |tV + st 1wy,
u? = |22 4 L,
(3.5)
w o= Y203 + (o + )t s,
p = [t|7 s — g0t i} + §tT2R? + eft| ¥ 2ay,
where
2=t %21, 2=tV %0y, 0e=0, &>0.
6. u! = (uw'+vwd)cost —w?sint + v€cost — xo,
u? = (pw!+vw3)sint + w? cost + v€sint + 1,
(3.6)
o= (—vw 4 pw?) + g,

p = S§— %52 + %7“2 + e(vxy cost + vrgsint + pxs),
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where
z1 = (uxycost+ pxrysint — vry),
z9 = (xgcost— xysint),
¢ = o(vxycost+vagsint + pas) + 2v(xy cost — xy sint),

w=>0, v2>0, u2+1/2:1, ce=0, €2>0.

7. uwb o= wl, W?=w? ol =w+ous,
(3.7)
p = s—30%a3+eus,
where
z1 =x1, 29 =2x3, o0e=0, 86{0;1}.
8. ul = zpw! —zr2(w? — x(1)),
u? = mow! +xr2(w? — x(b)),
(3.8)
ud = (p(t)) (w3 + py(t)x3 + e arctan xo /1),
p = s5-— %ptt(t)(p(t))_lxg + x¢(t) arctan zo /z1,
where
2=t zo=r c€{0;1}, x,p€ C®((to,t1),R).
9. @ = w4 AN D)l — ANk - D)k,
(3.9)
p o= s— s\ (g D) (A - T) - ZA 2 (my - k)7 D) (k- D),
where

1
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3.2 Reduced systems

Substituting ansatzes (3.1)—(3.9) into the NSEs (1.1), we obtain the following
systems of reduced equations:

1. w?w + wdwl — wlw? cot zg — (w)? — (w? + aw!)? sin? 29—

—(w?)? — (52 + sin ™2 z9)wiy + wly — saw] — 2w — 2wi-

1 iqa—1 2

—2w!) sin 29 + w} cos zp — wlsin™ 29 — (25 + 2s1) sin? 25 = 0,

w?w? + wiw? + w3(w? + 2:a0') cot 29—

—((w')? + (w?)? + (w? + saw')? sin® 23)

—((52 +sin"? zp)wi; + w3y + 35wt + (W] + sawp + w'))-

-sin 2o + (2w + 2w$ cot 2z — w? — 2aw!) sin ! 2o— (3.10)

—(w3 + 25awd) cos zp + 255 5in? 29 + (1 + »2 sin? 23)s1 = 0,

2w + wiws — (w?)? cot 22 — (w? + saw!)? sin 29 cos 29—

—((52 4 sin™2 z9)w; + w3y + saw? + 2wl) sin 2o+

+ (2wt + wi + w? + sawi) cos 29 + s38in? 23 = 0,
w! +wi +wi = 0.

Hereafter numeration of the reduced systems corresponds to that of the
ansatzes in Subsec. 3.1. Subscripts 1 and 2 denote differentiation with respect
to the variables z; and 29, accordingly.

2-3. wlwl + wiwl — 27 ww? — (wh + (14 5227 ) wdy)—

—2%21_2203 +s1 =0,

wlw? + wdws + zl Lwlw? — (wn (1 + 5227wy )+

—1—2%21 + 221 Zw? — %z, 32 + 521 =0, (3.11)

Ywd 4+ wiwd — 2z ?wlw? — (wi; + (1 + 5227 Hwiy)+

—1—2%(21 w?)) — 25227 wh 4+ (1 + 5227 %) sy — sz 2 =0,

wi + w3 + 27wt v =0,

where v = +3/2 for ansatz (3.2) and v = 0 for ansatz (3.3). Here and below
the upper and lower sign in the symbols ”4+” and ”F” are associated with
t > 0 and t < 0, respectively.
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4-7 For ansatzes (3.4)—(3.7) the reduced equations can be written in the
form

wwll—w + 51+ asw? =0,
wiw? — w? + sy — apw! + ajw® =0, (3.12)
wiwd — wi + aqw? + a5 =0,
w! = az
where the constants a,, (n = 1,5), take on the values
4. a1 =+, o = F2eu, az=TF(0+3/2), as==0, as=c.
5 a1 =0, as =0, ag=F(0+3/2), aq==0, az=c¢.
6. oy =2v, Qo = —2u, «a3=—0, a4 = 0, a5 = €.
7. a1 =0, as = 0, as = —o, a4 = 0, a5 = €.
8. wi4 (w")? — 25 (w? — x)? + zw'w — wiy— (3.13)
—3z0wd + 25159 = 0, .
w? + zowtws — wiy + 25wl =0, (3.14)
w3 + zoww3 — wiy — 25 w3 + 25 2 (w? — x) =0, (3.15)
2wt + zowd + p1/p = 0. (3.16)
9. Wy — AMlgg + sok + AL (A - @)mi + zE =0, (3.17)
k- by =0, (3.18)

where y; =t and
g=¢et) =227 2(m} - m2 —mb - mD ke x k+ N2k - ky — kg - k).
Let us study symmetry properties of reduced systems (3.10) and (3.11).
Theorem 3.1 The MIA of (3.10) is given by the algebra < 0y >

Theorem 3.2 The MIA of (3.11) is given by the following algebras:
a) < 02,05, D? = 2;0; — W Oya — 2505 > if Y=x=¢c=0;
b) < 09,05 > if (7v,5¢)# (0,0,0).

All the Lie symmetry operators of systems (3.10) and (3.11) are induced
by elements of A(NS). So, for system (3.10) the operator 0; is induced by
Jiz. For system (3.11), when v = 0 (y = 43/2), the operators D? s, and
ds (03 and 9,) are induced by D, R(0,0,1), and Z(1) (R(0,0,[t|~'/2) and
Z(|t|71)), accordingly. Therefore, the Lie reductions of systems (3.10) and
(3.11) give only solutions that can be obtained by reducing the NSEs with
three-dimensional subalgebras of A(NS) immediately to ODEs.

Investigation of reduced systems (3.13)—(3.16), (3.17)—(3.18), and (3.12) is
given in Sec. 5 and 6.
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4 Reduction of the Navier-Stokes equations to or-
dinary differential equations

4.1 Ansatzes of codimension three

By means of subalgebraic analysis of A(N.S) (see Subsec. A.3) and the method
described in Sec. B one can obtain the following ansatzes that reduce the NSEs
to ODEs:

1. u' = 2 R20" — 29(Rr)~'¢? + zy23r 1 R™2¢3,
u? = xoR72p! + 21 (Rr)1p? + zomzr 1 R72¢3,
(4.1)
’LL3 — ng—2901 _ TR_Q 3’
p = R’h,
where w = arctanr/z3. Here and below ¢ = p*(w), h = h(w),
r= (23 +23)Y%, R=(z}+ 23+
2. ul =172 (z10! —22p?),  u? =172z + 1192),
(4.2)
ud=r"tp3, p=r72h,
where w = arctanxy/z1 — xInr, 3> 0.
3. ut = x|t et — erT2p? + %Zﬂlt_la
u? = molt| Tt + 2% + %CL‘Qt_l,
o= 7Y% + (04 Dastt + vtV arctan o /2, (4.3)
p = |t|7th+ $t72R? — JoPaft 2+
+e1[t| 7t arctan zo /2 + eaxs|t| /2,
where w = [t|?r, vo=0, e90=0, e >0, v >0.
4. ul = mpl — wor2p?
W = zap' +mirT e,
(4.4)
3

= ¢®+ox3+ varctanxs/z1,

p = h-— %szg + g1 arctan xa /1 + €223,
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where w =71, vo=0, eg0 =0, and for 0 = 0 one of the conditions
v=1,62>0 v=0,e1=1,62>0; v=¢e7=0, g9 € {0;1}

is satisfied.
Two ansatzes are described better in the following way:
5. The expressions for u* and p are determined by (2.1), where

vl = a1l + asp® + byw,
v = %+ by,
(4.5)
V3 = agpt — a1p? + baiw;,
p = h+crwi + cxww; + 3dijwiw;.
In formulas (4.5) we use the following definitions:
w1 = a1y1 +agys, w2 =1yY2, W=w3= a2yl — a1ys3;
a; = const, a%+a%:1; as =0 if vy =0;
Y1 = —2, ’)/2:—% if t>0 and Y1 = 2, ’)/2:% if ¢t<O.
bai, Bi, cij, and d;; are real constants that satisfy the equations
bi; = a1Bi, b3 = agB;,  c2; + agy1by =0,
ba1 B; + bagbe; — v1a1B; + dg; = 0,
(4.6)

B1B; + Babo; +y1a1B; + dy1; = 0,

(B1 + b22)(Bz + a1y1 — ba1) = 0.

6. The expressions for u® and p have form (2.2), where v* and ¢ are
determined by (4.5), (4.6), and 3 = —2s, 72 = 0.

Note 4.1 Formulas (4.5) and (4.6) determine an ansatz for system (2.7),
where equations (4.6) are the necessary and sufficient condition to reduce sys-
tem (2.7) by means of an ansatz of form (4.5).

7. ut = @lcosas/n® — p?sinxs/nd + 110 (t) + 220%(1),
u? = plsinzs/nd + @?cosxz/n® — 210%(t) + 220 (t),
(4.7)
ut = P+ ni(n’)las,

poo= h—gnim®) " ad — gl (n'n’)
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where w =t,
nt € C®((to,t1),R), 13 #0, n'n'#0, nin*—n'n? e {0;3},

0' =i’ (), 0% = (nin® —n'nd)(n'n?) "L

p = h—A1m - F) (A% T)+ (4.8)
Fg AT (g, - m®) (A - ) (7 - D),
where w=t, m®e C®((tg,t1),R), m% -mP—ms mb =0,
A=At) = (M xm?) - m3£0 V€ (tg, 1),

Al =m2xms, #=m

4.2 Reduced systems

Substituting the ansatzes 1-8 into the NSEs (1.1), we obtain the following
systems of ODE in the functions ¢ and h:

1. 903%10 — %p®* — gD}M — cp}u cotw — 2h =0,

2

P2 + 2P cotw — @2, — 2 cotw + P sin2w = 0,
0303 — p2p? cotw — 3, — 3 cotw + 3 sin~2 W (4.9)
901 + 903’, + <p3cotw =0.
2. (¢? — )l — (L4 52)pl, — plo' — p?p? — schy, — 2k =0,
(p? — 50" )2 — (1 + 32) 2, — 203002 + L) + by = 0,
(4.10)
(0% = 50" ) @l — (L +52)p8, — "% — ¢ — 20}, = 0,
@2 — spp, = 0.
3-4. plp! —w™p?p? +wplpl — pl  — 3w lpl +wth, =0,
w2 — @2, +w 1 +e1 =0,
(4.11)

welpd + o103 +vw™2p? — B, — w3 +e9 =0,

20 +we, + 02 =0,
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where

3. o1 =o0, oy =(0+3) if ¢t>0,
o1 = —o0, 02:—(04—%) if ¢t<0O.

4. 01 = 0'2 = 0.
5-6. ‘PSSOiJ - ()Dcluw - Mh;cpi 4+ c11 + 1w =0,
903903; - QDZW - M2i90i + c12 + Ccoow + ’ygazgp?’ =0,
(4.12)
P38 — o2, + mazp® + hy, =0,
Pw = 0,

where p11 = —B1, pi2 = —Ba — ya1, po1 = —bor + via1, p2e = —boo,
o= — B1 —ba.

7. ol 00t 4+ 020 — (3) TP e? + (nP) 2! =0,

0l — 070! + 010 + () It + (1) % = 0,

(4.13)
o3 +np(n*)1e? =0,
20"+ ()~ = 0.
8. @+ AH#A- F)ymd =0,
(4.14)
79 me = 0

4.3 Exact solutions of the reduced systems

1. Ansatz (4.1) and system (4.9) determine the class of solutions of the NSEs
(1.1) that are called the steady axially symmetric conically similar flows of
a viscous fluid in hydrodynamics. This class of solutions was studied in a
number of works (for example, see references in [16]). For ¢? = 0 it was
shown, by N.A.Slezkin [34], that system (4.9) is reduced to a Riccati equation.
The general solution of this equation was expressed in terms of hypergeomet-
ric functions. Later similar calculations were made by V.I.Yatseev [38] and
H.B.Squire [35]. The particular case in the class of solutions with ¢? = 0 is
formed by the Landau jets [24]. For swirling flows, where ? # 0, the order
of system (4.9) can be reduced too. For example [33], an arbitrary solution of
(4.9) satisfies the equation

©*p? sin® w — sinw(®, sin~! w), 4+ 2@, cot w + 2P = const,
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where @ = (p3 — 1%¢%) sin

are completely extended to the case ¢
2. System (4.10) implies that

20w — @ coswsinw, and the Yatseev results [38]

2 ginw = const.

©? = o' + 1,

h= (1452l + (252 + 2 — %C1)p' + Oy,
(1452 ply, + (43— C)pl + ot + 40!+ (4.15)
+(1 4 2)"HC? +20C3) = 0,

(14 52)3, — (C1 — 25093 + (1 + ¢1)p® = 0.

If ¢* = 0, the solution determined by ansatz (4.10) and formulas (4.15)
coincides with the Hamel solution [18, 23]. In Sec. 6 we consider system
(6.14) which is more general than system (4.10).

3—4. Let us integrate the last equation of system (4.11), i.e.,

ol = Clw™2 — 109 (4.16)

Taking into account the integration result, the other equations of system (4.11)
can be written in the form

hy = w3%p% + C3w™3 — 103w,

@2, — ((C1+ Dw™! — Jogw)p? =1,

gpiw —((C; = Nw™! — %ng)wi —01¢% = vw2p? + ey. (4.17)
Therefore,
h=[w3p?p?dw — $C3w™2 — Lo3w?, (4.18)

@ = Cp + Cy [ || e 572" dut

(4.19)
ey [ fw|COrHlemim ([ fw|mCrTedrn d ) duw.
If o1 =0, it follows that
0* = Cy+ Cs [ w|O e 129" dut
(4.20)

[ ol O 1e a2 ([ o]~ (g + v 22 dow ) doo.

Let 01 # 0 (and, therefore, v = 0). Then, if o9 # 0, the general solution of
equation (4.17) is expressed in terms of Whittaker functions:

3 o1 L 2 -1 1 11 1 2
@ = ]w\z 1=t~ g2 W(—O'lO'z + ZCI — 5,101,10’20.) ),
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where W (s, u, 7) is the general solution of the Whittaker equation
AT Wiy = (12 — doer + 4> — D)WL (4.21)

If 09 = 0, the general solution of equation (4.16) is expressed in terms of
Bessel functions:

1
& = w34 Zy6, (~o1) V),
where Z,(7) is the general solution of the Bessel equation
722 + 772, + (1 =% Z =0, (4.22)
Note 4.2 If o9 = 0, all quadratures in formulas (4.18)-(4.20) are easily
integrated. For example,
Cy+C51n ]w| + %61&)2 if Cp=-2,
P =< Co+ Cs33w? + e’ (lnw — 3) if C1=0,
Co + C5(Ch + 2) 7 Hw|“172 — Ley07 10?2 if O # —2,0.
5-6. Let 0 = 0. Then the last equation of system (4.12) implies that

@3 = Cp = const. The other equations of system (4.12) can be written in the
form

h=—maz [ ¢*(w)dw,
Plow — Cowl, + pije’ = v1i + 1aiw, (4.23)

where Vi1 = €11, V21 = C21, V12 = C12 —i—’}/Q(ZQCo, V99 = C22. System (4.23) is a
linear nonhomogeneous system of ODEs with constant coefficients. The form
of its general solution depends on the Jordan form of the matrix M = {y;;}.
Now let us transform the dependent variables

' = e,

where the constants e;; are determined by means of the system of linear alge-
braic equations

eijitik = pijejr (1,7, k = 1,2)

with the condition det{e;;} # 0. Here M = {fi;;} is the real Jordan form of
the matrix M. The new unknown functions 1* have to satisfy the following
system

Ul — Covly + gt = D1 + o, (4.24)

where vy; = e;;115, V2; = ej;25. Depending on the form of M, we consider
the following cases:
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A. det M = 0 (this is equivalent to the condition det M =0 ).

i. M= (8 g), where e € {0;1}. Then

P2 = Cy + C2e“0% — L5y Cilw? — (g — 220y 1) Cp M w, (4.25)
Lﬁl =C5+ C4€COw — %172100_1w2 — (511 — 172100_1)(70_1w+
te(— 472905 2w = §(Pr12 — 250 C5 1) O 2w+
+(Cl + (521 — 252200_1)00_2)00_10) — CQCO_IWGCO‘U)
for Cy # 0, and
wz =C1+ Cow + %1;220)3 + %ﬁlguﬂ, (4.26)

Pl = Cs+ Caw + 3 (021 — Co)w? + § (011 — Cr)w?—

— a5 20w — gpP1aw?
for C(] =0.
i, M = ng 8 , where s; € R\{0}. Then the form of ¢? is given

either by formula (4.25) for Cp # 0 or by formula (4.26) for Cp = 0. The form
of 9! is given by formula (4.28) (see below).

B. det M # 0 (this is equivalent to the condition det M # 0).

i M= ( %01 0 ) , where s; € R\{0}. Then

9
Y% = Dggscy 'w + (D12 — Cotpasey )oey t + C10% (W) + Co0%(w),  (4.27)
Yt = Doyse tw F (11 — Cotmrseg o b + C30M (W) + C10'% (W),  (4.28)
where

0" (w) = exp(3(Co — VDi)w), 67(w) = exp(5(Co + vDi)w)
if D;=C3— 45 >0,

0 (w) = e2Cow cos(3v/—Dyw), 02(w) = e2Cow sin(3v/—Djw)
if D; <0,
il(w) = e%ng7 0i2(w) = we3Cow

if D;=0.
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i, M = }62 1 > , where 5 € R\{0}. Then the form of ¥? is given
2

by formula (4.27), and
Yl = (011 — (D19 — Colnasey V) sey b — Co(a1 — Dansey V)sey V) oey 4

(D1 — o236y )5y 'w + C36% (w) + Cy%2(w) — Ci (w),
where

7 (w) = Dy 'w(20% (w) — Cob* (w)) if Dy #0,
nt(w) = %uﬂe%co“’, n*(w) = %w%écow it Dy =0.
iii. M = ( S ) , where ; € R, s # 0. Then
w1
Y = (o) (D131 + Dogsea)w + (326) ~H (Dr130 + Prase)—
—Co(s36) 2 (D21 (55 — 23) — D292301300) + Cpf" (W),
V? = (3656) " (—Da15e2 + Dagse )w + (5656) " (—D15e2 + Drgser ) —

—Co(56126) 2 (0212501300 + D (565 — 53)) + Cpf?"(w),

where n =1, 4,

7 =/(C3 — 4a)? + (422,

Br=1/2(v+ C3 — da), P =122 /2(y — C3 + 43a),

Ol(w) =  62(w) = exp((5C0 — Bi)w) cos o,
SM(w) = 02(w) = exp(3Ch— Bi)w) sin o,
03(w) = 6%(w) = exp((5C0+ Bi)w) cos v,
0%(w) = —6M(w) = exp((§Co + B1)w) sin Bow.

If 0 # 0, the last equation of system (4.12) implies that ¥? = ow
(translating w, the integration constant can be made to vanish). The other
equations of system (4.12) can be written in the form

h=—yas [ ¢*(w)dw — %02w2,

Pl — WL, + pij e’ = v1i + vaw, (4.29)
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where vi1 = c11, V91 = o1, V12 = C12, Voo = €92 + Yeag0. The form of the
general solution of system (4.29) depends on the Jordan form of the matrix
M = {u;j}. Now, let us transform the dependent variables

@' = e,

where the constants e;; are determined by means of the system of linear alge-
braic equations

eijiik = pijejr (1,7, k = 1,2)

with the condition det{e;;} # 0. Here M = {ji;;} is the real Jordan form of
the matrix M. The new unknown functions 7’ have to satisfy the following
system

Wl — WYL, + i = D1 + Do, (4.30)

where v1; = e;j015, v2; = e;j25. Depending on the form of M, we consider
the following cases:

A. det M = 0 (this is equivalent to the condition det M =0 ).

i. M= (8 g), where e € {0;1}. Then

¢2 =Ch1+ (s f G%UL‘)de - 0'_11722w+
(4.31)
. 12 12
na [ 3o (] e ),
Pl =C5+Cy [ 399 du — o g w+

+ [e2o ([ 7294 (D) — etp?)dw)dw.

i, M= < g 8 > Then the form of ¥? is given by formula (4.31), and

P! = Cyw + C’4(wfe%"“’2dw — a‘le%U“’Q) +o o+
+o iy (ow fe%‘mz)\l(w)dw — 6%0”2)\1@))),
where A\ (w) = feféa“’zdw.

0 0
(4.31), and the form of 9! is given by (4.33) (see below).

iii. M = ( 0 ) , where s € R\{0;0}. Then 1?2 is determited by
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B. detM # 0, det{ji;j — 0d;;} = 0 (this is equivalent to the conditions
det M # 0, det{yu;; — 0d;;} = 0; here J;; is the Kronecker symbol).

i M= (g 2) where ¢ € {0;1}. Then

2 = Chw + C’g(wfe%"“ﬂdw — a_le%"‘“2) + o 19+
(4.32)
+0~ Vgg(awfez"“’ M(w)dw — e%"“’Q)\l(w)),
Pl = Cyw + C’4(wfe%‘m2dw - J‘le%‘“"z) +o Yo+
+ow [ e%”“’2>\2(w)dw - e%"“’Q)\Q(w) + o Y (Dg1w — evp?),

where \(w) = fe_%”“’2dw, M(w)=0"t fe_%””2(ﬁ21 — e?)dw

0
by (4.32), and the form of 1! is given by (4.33) (see below).

ii. M = ( 1 2 ) , where 5 € R\{0;0}. In this case 1? is determined

C. detM # 0, det{ji;j — 08;;} # 0 (this is equivalent to the condition
det M # 0, det{y;; — 0d;;} # 0: here 0;; is the Kronecker symbol).

i M= < S ) , where »; € R\{0;0}. Then
0

Pl = %1_1511 + (50 — U)flﬁzlw + |w|™ 1/2¢ jow?
(4.33)
(CsM (S0t + 1,4, 20w?) + CaM (Soaot + %,—i,%awzb,
7,/}2 = %2_11712 =+ (%2 — 0')711722w + ’w‘—l/Qeian
(4.34)
(CrM (3ot + 1,4, 30w?) + oM (ot + -1, Jow?)),

where M (s, pu, 7) is the Whittaker function:

M (5, pu,7) = T%*“e*%TlFl(% +pu—2u+1,7), (4.35)

and 1 Fi(a,b,7) is the degenerate hypergeometric function defined by means
of the series:

(a+n-=1)7
(b+n—1) !

1F1(ab7 —1—1—2

b#£0,—1,-2,....
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n2 1

ii. M = ( S ) where »; € R, 3o # 0. Then

Y = (5j3)) " (saD11 + se2in2)+
+((a = 0)? +58) 7151 — )21 + sz )w+
+C1Rent(w) — Colmnt (w) + C3Ren?(w) — Cylmn? (w),
V2 = (5¢j3¢)) " H(—se011 + sa112)+
(G = 0)? +54) " H(—smaba1 + (0 — 0)n)w+

+C1Imnt (w) + C2Rent (w) + C3Imn?(w) + C4Ren?(w),

iii. M = ( %02 %1 ) , where s € R\{0;0}. Here the form of ? is
2

given by (4.34), and
Pl = (011 — 1256y 1 )o6y t + (D1 — Da2 (502 — 0) 1) (52 — 0) ot

Fw| 1 2erow? (Cgﬁl(T) + Ca0*(1) — 010N (1) [ 77103 () Cib (1) dT+

+o10(7) [ 710} (r)C0 (r)dr ),

where 7 = %0’&)2,

o1 (r) = M(%%Qafl + %, %,T), 0%(1) = M(%%gafl + %, —i,’i‘).
Note 4.3 The general solution of the equation
Yow — oWP, — (77, + 1)0'¢ =0,

where n is an integer and n > 0, is determined by the formula

d" Llow2 Low2 d" low? -2
Y =|-—e2 C1+02/62 ——e3 dw | .
dw™ dw™
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Note 4.4 If function v satisfies the equation
Yow — oWy, + 2p =0 (%7& _0)7
then [(w)dw = (s+0) " (owt) — ) + C1.

7. The last equation of system (4.13) is the compatibility condition of the
NSEs (1.1) and ansatz (4.7). Integrating this equation, we obtain that

n* = Co(n'n")™", Co#0.

As @3 = —n2(n3)71p3 =203, ©® = Cynin’. Then system (4.13) is reduced
to the equations
v =X w)e! = x*(w)¢?,
(4.36)
0 = x}w)e! +xH(w)¢?,

where x' = —Ci2(n'n')? — ' and x? = 0> — C3C; ' (n'n')%. System (4.36)
implies that

o' = exp([ Xl(w)dw)(Cl cos([ x*(w)dw) — Cosin( [ Xz(w)dw)),
©? = exp([ x}(w)dw) (C’1 sin( [ x%(w)dw) + Co cos( [ X2(w)dw)).

8. Let us apply the trasformation generated by the operator R(k(t)), where
Et = )‘_l(ﬁb ’ ]Z)’I’?L? - (157
to ansatz (4.8). As a result we obtain an ansatz of the same form, where the

functions ¢ and h are replaced by the new functions gé and h:

G =G — AL K)ymd + k=0,
h=h—A"Nmg, - k) (A - k) + A2 (w0, - mo) (7 - k) (7 - k).

Let us make h vanish by means of the transformation generated by the operator
Z(—h(t)). Therefore, the functions ¢® and h can be considered to vanish. The
equation (71%-mf) =0 is the compatibility condition of ansatz (4.8) and the
NSEs (1.1).

Note 4.5 The solutions of the NSEs obtained by means of ansatzes 5-8 are

equivalent to either solutions (5.1) or solutions (5.5).

5 Reduction of the Navier-Stokes equations to lin-
ear systems of PDEs

Let us show that non-linear systems 8 and 9, from Subsec. 3.2, are reduced
to linear systems of PDEs.
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5.1 Investigation of system (3.17)—(3.18)

Consider system 9 from Subsec. 3.2, i.e., equations (3.17) and (3.18). Equation
(3.18) integrates with respect to zo to the following expression:

k- =1(t).
Here ¢ = 9(t) is an arbitrary smooth function of z; = t. Let us make the
transformation from the symmetry group of the NSEs:

ﬁ(taf) = ﬁ(t7£_ Z_B + l_:;(t)a

—

where Iy - mt — [ - mt, =0 and
k-l — AN Dmi + ANk - Dk) + 4 = 0.

This transformation does not modify ansatz (3.9), but it makes the function
¥(t) vanish, i.e., k- = 0. Therefore, without loss of generality we may
assume, at once, that =0.

Let f%= fi(21,22) 1. Since mf, -m2 —ml-m2 = 0, it follows that
my - m? —m!-m? = C = const. Let us multiply the scalar equation (3.17)
by m' and k. As a result we obtain the linear system of PDEs with variable

coefficients in the functions f* and s:
fi = Mg + CXTH(m - m?) f1 = (m* - mit) f2)—
—20N"2((k x k) - mi)zg =0,

Il ol

xn
n‘,‘Ll

Sy = 2)\_2(ﬁi . lgt)fz + )\_Q(Ett . E — 2];15 . ];t)ZQ.

Consider two possible cases.
A. Let C = 0. Then there exist functions g* = ¢*(7,w), where 7 = [ A(¢)dt
and w = 29, such that f' =g} and g% — g¢_ = 0. Therefore,

i = \"Ygi(r,w) + mi - D)itt — X\ (kg - D)k,

=1
I
—~
=
.
—
~
:_/
=
o
N—
)
=
a
3
|
—~
=
=
(3]
T
N—
o
N—
=
=
-t
=
3@
—~
~
S—
S
o
=

For example, if
follows that

u' = (") ), WP = 07) TN 4 niae),
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u? = —(n'n?)(n'n?)as,

p=—nh(n") et — snE(n?) " tad+

+(%(n1n2)tt(n1n2)’l - ((n1n2)t(n1n2)*1)2)a;§,

where f! = fi(1,w), fi — fi, = [(nt )2dt, and w = nln?zs. If

m' = (nl(t)mz(t)v 0) and 77 (0 ( ) Wlth 3 (t) # 0 and 7' (t)n'(t) # 0
we obtain that

at = ()0 (g + i) — P () + ey — nfan) |,
W= (') P (g0 + mjms) + 0t (F ) Pw + ity — njwa) |
u' o= ()N + niws),

p = 20 (' — a0 ('n') g+ 5A7h

AN = 2yt — 2nPnining — 2(0%) i)+
+0*)2 (07 — ') (2% — 23) — 2(mn* + n' i) w122) —
—nin'nPngad ).

Here f = f(T,w), fr — fuw =0, g = g(T,w), gr — guw = 0, 7 = [(n®)*n'n'dt,
w = n*(n’z1 — n'zs), and A = (n*)?n'n’.

Note 5.1 The equation

mp-m?—mlomZ =0 (5.2)
can easily be solved in the following way: Let us fix arbitrary smooth vector-
functions mi 1€ C®((to,t1),R?)  such that m'(t) # 0, I(t) # 0, and

mA(t) - 1(t) =0 for all t € (to,t1). Then the vector-function M2 = m2(t) is
taken in the form

m2(t) = p(t)m! +1(t). (5.3)
FEquation (5.2) implies

plt) = [(mL - m) " (k- T— it - Tyt (5.4)
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B. Let C' # 0. By means of the transformation m’ — a;;m/, where
a;j = const and det{a;;} = C, we make C' = 1. Then we obtain the following
solution of the NSEs (1.1)

i@ = A7L(0%9(t)gh (7, w) + 0w + i & — NTH((F xiid)-7) )i

p=2X"2( - k) (09 (t)g (1, w) + 300 (t)w?)+ (5.5)

— —

FAIN2(ky -k — 2Ky - ky)w? — ANV D) (i, - ©)—
—IN2(k i) (A - D) (k - ).
Here ml -m2—m!-m2=1, k=m'xm?, @l=m2xk a2 =kxm
A=1k]?, w=k-Z 7= [A{t)dt, and gL —g, =0. (01(t), 6% i
are linearly independent solutions of the system
0! + Xt -m?)et — XL mt - mh)e? =0, (5.6)
and (019(¢),6?°(t)) is a particular solution of the nonhomogeneous system
0!+ AHmt - m2)0t — AT mh0? = 2272 ((k x k) - m). (5.7)
For example, if m! = (ncosv,nsin,0) and m? = (—nsin, ncosp,0),

where n = n(t) # 0 and 1 = —1 [(n)~2dt (therefore, mi} - m? — m! - m? = 1),
we obtain

ul = (M eos — f2sing + may — 3y '),
u? = n7H(frsine + f2eostp + mze + 307 Lw),
w o= =2 tas,

p = (nun—3nmn 223 — 5(mun~" — 0~ iz

Here f’L - fi(va)7 f7l' - iw = 07 T= f(”)4dt7 and w = (77)2553-

w
Note 5.2 As in the case C = 0, the solutions of the equation

mp-m? —mloml=1 (5.8)
can be sought in form (5.3). As a result we obtain that

p(t) = [t 2(ml -1 —mb - I, — 1)dt. (5.9)
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Note 5.3 System (5.6) can be reduced to a second-order homogeneous differ-
ential equation either in 0%, i.e.,

(At [7208), + (((m" - m2) it [2), + [t 7)o" = 0 (5.10)
(then 6% = |t ~2(\0} + (m!' - m2)0Y)), or in 62, i.e.,
(A2 7207) + (=((m" - m?) 2| ~2), + [m? ~2)6% = 0 (5.11)

(then 01 = |m2|~2(=\0? + (m! - m2)0%)). Under the notation of Note 5.1
equation (5.10) has the form:
(T 161, + |2t - T— - Ty = o. (5.12)

The wvector-functions m' and | are chosen in such a way that one can

find a fundamental set of solutions for equation (5.12). For example, let

m x my # 0Vt € (to,t1). Let us introduce the notation m = m' and put

I =n(t)m x my, where n € C>®((to,t1),R), n(t) # 0 Vt € (to,t1). Then
o l=0, my-l—m-lp=0, m2=—(f|m|2dt)m +nm x iy,
k=nmx (mxmy), A= (n)2m2m x 2,

2 = nm2m x my, 7t = ([ || 72dE)R2 4+ ()| x | ~2m,

01 (t) = [(n) 2 x mg|2dt,  02M(t) =1 0" [ || ~2dt,

012(t) =1, 622(t) = — [ || 2dt,

010 (t)

2 [(((7 X 17og) - 1) | 10|~ 4 [~ || ~dt)-

7772\% X mt‘72dt
020(t) = —00(¢) [ |m|~2dt + 2 [ n~tm|Adt.

Consider the following cases: m x my = 0, i.e., m = x(t)@ where
X(t) Ecw((to)tl)7R)7 X(t) 7é 0Vt e (t07t1)7 a = const, and |C_i| =
Let us put

I{t) = n' (0)b -+’ (t)é,
where n',n? € C®((to,t1),R), (n'(t),n(t)) # (0,0) Vt € (to,t1), b = const,
b|]=1, @a-b=0, and ¢=a

x b. Then
m? = —(x [ x“?dt)@+n'b+ ¢ k= xn'¢— xn’b,
A= (0%, 7%= (0P +n?e), At = (fxT2di? + xn'nid,
o1 = [(i)ldt, 62 =1— 9\ [ y"2dL,
912 =1, 622 = — [\ 2L,

=2 in' —wPnd)x ") Hdt, 670 = =01 [ x Pt
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Note 5.4 In formulas (5.1) and (5.5) solutions of the NSEs (1.1) are ex-
pressed in terms of solutions of the decomposed system of two linear one-
dimensional heat equations (LOHEs) that have the form:

= g (513)

The Lie symmetry of the LOHE are known. Large sets of its exact solu-
tions were constructed [27, 3]. The Q-conditional symmetries of LOHE were
investigated in [14]. Moreover, being decomposed system (5.13) admits trans-
formations of the form

(W) = Fl(r,w,¢'(t,w)), 7 =G (r,w), W =HY1,w),

P (W) = FA(r,w,¢*(1,w)), 7" =G*(1,w), w"=H1w),

where (G, HY) # (G?, H?), i.e. the independent variables can be transformed
in the functions g* and ¢* in different ways. A similar statement is true for

system (5.19)-(5.20) (see below) if € = 0.

Note 5.5 It can be proved that an arbitrary Navier-Stokes field (i, p), where
@ = w(t,w) + (K(t) - D) (t)

with E’,ﬁ € C%((to, 1), R?), kL x k2 #£0, and w = (El X I;Q) - T, is equivalent
to either a solution from family (5.1) or a solution from family (5.5). The
equivalence transformation is generated by R(m) and Z(x).

5.2 Investigation of system (3.13)—(3.16)

Consider system 8 from Subsec. 3.2, i.e., equations (3.13)-(3.16). Equation
(3.16) immediately gives

wh=—$pip~ "+ (n— 1)z 7 (5.14)

where 1 = 7(t) is an arbitrary smooth function of z; = ¢. Substituting (5.14)
into remaining equations (5.13)—(5.15), we get

@2 =3((pep™ ) — 3(pep 1)) 22 —may ' — (n — 1)%25°+

5.15

Hu? — X)) (519)

wi —wh + (23" — gpep~ 22)wd =0, (5.16)
w — i + (" — o a4 < — )23 = 0. 5.17)

Recall that p = p(t) and x = x(t) are arbitrary smooth functions of ¢;
e € {0;1}. After the change of the independent variables

= [lp()ldt, == |p(t)?z (5.18)



SYMMETRY REDUCTION AND EXACT SOLUTIONS 107

in equations (5.16) and (5.17), we obtain a linear system of a simpler form:
w‘?‘ - w,zz + ﬁ(T)Zilwz =0, (5.19)

w? wg’z + (n(1) — 2)2_11112’ +e(w? — )“((T))z_2 =0, (5.20)

where 7(7) = n(t) and x(7) = x(t). Equation (5.15) implies

q=5((pep Ve = 5(pep )% 23 — meIn |20|—

L1252 4 [(w2(r 2) — §(1)) 223 Y. (5.21)

Formulas (5.14), (5.18)—(5.21), and ansatz (3.8) determine a solution of the
NSEs (1.1).

If ¢ =0 system (5.19)-(5.20) is decomposed and consists of two transla-
tional linear equations of the general form

fT"‘ﬁ(T)Z_lfz — fz =0, (5.22)
where 7 =17 (7 = 1) — 2) for equation (5.19) ((5.20)). Tilde over 7 is omitted
below. Let us investigate symmetry properties of equation (5.22) and construct
some of its exact solutions.

Theorem 5.1 The MIA of (5.22) is given by the following algebras

a) Ly =< foOy, g(1,2)0r > if n(7) # const;

b) Ly =< 0;, D, 11, 0y, g(7,2)0; > if n(7) = const, n & {0; -2}

c) Ly =< 0y, ﬁ, II, 9, + %nz_lfaf, G=2710; — (2 — nz_lT)faf, foy,
g(1,2)0p > if ne{0;-2}.
Here D = 270, + 20,, 11 = 4720, + 4720, — (2> + 2(1 — n7)fO0r; g = g(T,2)
is an arbitrary solution of (5.22).

When n = 0, equation (5.22) is the heat equation, and, when n = —2, it is
reduced to the heat equation by means of the change f = zf.

For the case n = const equation (5.22) can be reduced by inequivalent
one-dimensional subalgebras of Ly. We construct the following solutions:

For the subalgebra < 9; + afdy >, where a € {—1;0;1}, it follows that
f=eT2(C1d,(2) + C2Y,(2)) if a=—1,
f=€2"(Cil,(z) + C2K,(2)) if a=1,
f=0C12"14Cy if a=0 and 7 #—1,

f=Cilnz+Cy if a=0 and n=-1.
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Here J, and Y,, are the Bessel functions of a real variable, whereas I,, and K,
are the Bessel functions of an imaginary variable, and v = %(77 +1).

For the subalgebra < D+ 2af0f >, where a € R, it follows that
f=lrlre 3w DW (G = 1) - a, j(n + 1), w)

with w = %227_1. Here W (s, pu,w) is the general solution of the Whittaker
equation

40P W = (W? — doaw + 4> — 1)W.
For the subalgebra < 0, +II + afdy >, where a € R, it follows that
f=04r+ 1)%(77_1) exp(—7Tw + 3aarctan 27)p(w)
with w = 22(472 4+ 1)1, The function ¢ is a solution of the equation
dwppw +2(1 = n)pw + (w —a)p = 0.

For example if a = 0, then p(w) = w“(C’lJu(%w) + CQYM(%CU))7 where

p=jn+1),
Consider equation (5.22), where 7 is an arbitrary smooth function of 7.

Theorem 5.2 FEquation (5.22) is Q-conditional invariant under the operators
Q' =0 +¢'(1,2)0: + (¢*(7,2)f + g°(7, 2))0y (5.23)
if and only if

g7 —nz tgl +nz%gt — gl + 2919t — ezt 4+ 292 =0,

(5.24)
gr +nz7lgE — b +29lgF =0, k=23,
and
Q*=0, + B(1,z, f)0f (5.25)
if and only if
B; —nz 2B+n2"'B, — B,, — 2BB,; — B*Bj; = 0. (5.26)

An arbitrary operator of Q-conditional symmetry of equation (5.22) is equiv-
alent to either an operator of form (5.23) or an operator of form (5.25).

Theorem 5.2 is proved by means of the method described in [13].



SYMMETRY REDUCTION AND EXACT SOLUTIONS 109

Note 5.6 It can be shown (in a way analogous to one in [13]) that system
(5.24) is reduced to the decomposed linear system

fran e = fL =0 (5.27)

by means of the following non-local transformation

1 _ _lezf2 — flszz
A

LA 5.28
Iy iR o

P =1 - R gt -t

Equation (5.26) is reduced, by means of the change

g +nz 1,

B=-®./0;, &=0®(7,2,f)

and the hodograph transformation
Yo=7, y1=2 Y=o V=7

to the following equation in the function ¥ = U(yo, y1,y2):
Wy, +1(y0)yr Wyy — Pyyy, = 0.

Therefore, unlike Lie symmetries Q-conditional symmetries of (5.22) are
more extended for an arbitrary smooth function n = n(7). Thus, Theorem 5.2
implies that equation (5.22) is Q-conditional invariant under the operators

0:y X=0;+(n—-1)210,, G=2r+C)0,— 2f0;

with C' = const. Reducing equation (5.22) by means of the operator G, we
obtain the following solution:

f =022 =2 [(n(r) — 1)dr) + Cy. (5.29)

In generalizing this we can construct solutions of the form

f= f: TF(1) 2%, (5.30)
k=0

where the coefficients T* = T*(r) (k =0, N) satisfy the system of ODEs:

TF + (2k + 2)(n(1) — 2k — )T+ =0,
(5.31)
k=0,N—-1, TN =o.
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Equation (5.31) is easily integrated for arbitrary N € N. For example if N = 2,
it follows that

f = Ca{t = 422 (n(r) = 3)dr+ 8 [((n(r) = 1) f(n(r) = B)dr )dr |+

+Co{22 = 2 [(n(r) = )dr | + C1.

An explicit form for solution (5.30) with N =1 is given by (5.29).
Generalizing the solution

f=Coexp{—z2(47 +2C)1 + [(n(r) — 1)(27 + C)~tdr} (5.32)

obtained by means of reduction of (5.22) by the operator GG, we can construct
solutions of the general form

N
f= Y 8Mr)(z(2r +O)
k=0 (5.33)

-exp{—22(47' +20) 7+ [(n(r) = 1)(27 + C)_ldT},

where the coefficients S* = S¥(7) (k =0, N) satisfy the system of ODEs:

SE 4+ (2k +2)(n(1) — 2k — 1)(27 + C)728*+1 = 0,
(5.34)
k=0,N—-1, SN=o.

T

For example if N =1, then

f={ai(Per+ 02 =2 /(n(r) - 1)(2r +C)2d7) + Co }-

cexp{—22(47 +20) "L + [(n(r) — 1)(27 + C)Ydr }.

Here we do not present results for arbitrary IV as they are very cumbersome.
Putting ¢?> = ¢% = 0 in system (5.24), we obtain one equation in the
function g':

gt —nz"tgl +nz72gt — gl +2¢Lgt — 27t = 0.

It follows that g' = —g./g+ (n—1)/z, where g = g(r, 2) is a solution of the
equation

gr+(n—=2)2""g. = g.. = 0. (5.35)
Q-conditional symmetry of (5.22) under the operator
Q = 87' + (_gz/g + (77 - 1)/2’)82 (536)

gives rise to the following
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Theorem 5.3 If g is a solution of equation (5.35) and

f(r,2) = f:o 2 g(r,2)dz"+
(5.37)
+ 17, (209: (7', 20) = (n(7') = 1)g(, 20) ) ',

where (10, 20) is a fixed point, then f is a solution of equation (5.22).

Proof. Equation (5.35) implies

(29)r = (29: — (1 = 1)9)=
Therefore, f. =29, fr=2z29.—(n—1)g and
Jr+ anlfz — frz =292 — (77 - 1)9 +ng — (Zg)z =0. QED.

The converse of Theorem 5.3 is the following obvious

Theorem 5.4 If f is a solution of (5.22), the function
g=2"1f. (5.38)
satisfies (5.35).

Theorems 5.3 and 5.4 imply that, when n = 2n (n € Z), solutions of (5.22)
can be constructed from known solutions of the heat equation by means of
applying either formula (5.37) (for n > 0) or formula (5.38) (for n < 0) |n|
times.

Let us investigate symmetry properties and construct some exact solutions
of system (5.19)—(5.20) for £ = 1, i.e., the system

w! —wl, +7(r)zwl =0, (5.39)
w2 — w2, + (7(1) — 2)z7 w? + (w' — x(1))27% = 0. (5.40)

T

If (w!,w?) is a solution of system (5.39)(5.40), then (w!,w? + g) (where
g = g(7,2)) is also a solution of (5.39)—(5.40) if and only if the function g
satisfies the following equation

Gr — G+ (H(T) = 2)27 g, =0 (5.41)

System (5.39)—(5.40), for some x = x(7), has particular solutions of the
form

N N-1
w! = Z TH(r) 2%, w? = Z SF(1)22*,
k=0 k=0
where T°(7) = x(7). For example, if X(7) = —2C; [(/(7) — 1)dT + Co and
N =1, then
w! = C1(22 -2 [(A(1) — D)dr) + C3, w?=—C41.
Let x(7) = 0.
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Theorem 5.5 The MIA of system (5.39)-(5.40) with x(7) = 0 is given by
the following algebras

a) < W'y, W(r,2)0yi > if H(r) # const;
b) < 270, + 20,, Or, WOy, W (T,2)0y: > if N(T) = const, 7 # 0;
¢) < 270; + 20., Or, w27 02, WOy, W (T,2)0y > if 1 =0.
Here (w',w?) is an arbitrary solution of (5.39)-(5.40) with x(7) = 0.
For the case x(7) = 0 and 7(7) = const system (5.39)—(5.40) can be

reduced by inequivalent one-dimensional subalgebras of its MIA. We obtain
the following solutions:

For the subalgebra < 9; > it follows that

w!' =C1Inz+ Cy,
w? = %C’l (ln2 z—Inz)+ %C’g Inz+Csz724+Cy

wh = C1Z2 + O,
w? = %0122 + %CQ In?z+ Cslnz + Cy

wl = C1211 + Oy,
w? = 3C1(H+ 1) 7121+ Co(f — 1) Hnz + C3277 1 + Cy
if n¢{-1;1}.
For the subalgebra < 9, — w'd,, > it follows that
wh= T IPe), P = ey (),
where the functions ! and v? satisfy the system
2PL+ 2l 4 (22— 1 (1 + 1%yt =0, (5.42)
P2P2 4 292 + (22— 1 (71— 1)%)9? = 2. (5.43)

The general solution of system (5.42)—(5.43) can be expressed by quadratures
in terms of the Bessel functions of a real variable .J,,(z) and Y, (z):

wl = Clju—i—l(z) + CQYV+1(Z),

¢2 = C3J1/(Z) + C4Y1/(Z)+
FEV(2) [ (20} () — TIu(2) [ Yol2) (2)de
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with v = () — 1);
For the subalgebra < 9, 4+ w'0, > it follows that
w' = 672%(’”1)1#1(2), w? = 672%(’7*1)1/12(2),
where the functions ' and v? satisfy the system
PPl + 2l — (22 4 1+ Dt =0, (5.44)
222, + 22 — (22 + 1 — 1)?)yp? = 2yl (5.45)

The general solution of system (5.44)—(5.45) can be expressed by quadratures
in terms of the Bessel functions of an imaginary variable I, (z) and K, (z):

Pr = Cily4a(2) + Co Ky (2),
P2 = Csl,(2) + C4K, (2)+
K, (2) [ L(2)9"(2)dz — L(2) [ K, (2)¢' (2)dz
with v = (7 — 1).

For the subalgebra < 270, + 20, + aw'd,: > it follows that

w' = |79 2 w[T0 Vg (W), w? = |7|% 2 |w| 1D y2(w)

with w = +22771, where the functions ! and 2 satisfy the system
1

4wph, = (w2 + (0 = 51— 1)+ F7 +1)% = 1), (5.46)

2,02 _ (2 _len 1ia _1)\2 _ 2
w22, = (w +(a—3(1=3)w+3(H—-1) l)w + (5.47)
+2|w| /21,
The general solution of system (5.46)—(5.47) can be expressed by quadratures
in terms of the Whittaker functions.

The continuation of this paper will be published in the next number
(Vol.1, N 2, June, 1994).



