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Abstract

We calculate symmetries of the nonlinear n-dimensional wave equation

2nu + m2u − εf(u)
(

n−1∑
ν=0

λν∂u/∂xν

)
= 0 and its approximations. In

particular, we study the conformal invariance of the equations. Condi-
tional symmetries of the approximate system are also considered whereby
approximate solutions are constructed.

1 Introduction

Recently we studied approximate symmetries for a Landau-Ginzburg equation
[1] and a multidimensional nonlinear heat equation [2]. Within this approach
one can obtain approximate solutions for multidimensional partial differential
equations with a small parameter [3–5]. By approximate symmetries we mean
the exact symmetries of an approximate system of the original partial differ-
ential equation. Different representations of the solutions can be considered.
In [2] we studied first order approximations of a nonlinear multidimensional
heat equation under the representations u = u0 + εu1 and u = u0 + εg(u0).
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For the second representation a conditional equation for u0 appeared, whereby
we obtained compatible solutions by studying conditional symmetries for the
equation in u0.

In this paper we study the nonlinear multidimensional wave equation

2nu + m2u− εf(u)

(
n−1∑
ν=0

λν
∂u

∂xν

)
= 0, (1)

where f is an arbitrary differentiable fuction, ε is a small real positive param-
eter, and m2, λν are real constants. Here

2n ≡
∂2

∂x2
0

−
n−1∑
j=1

∂2

∂x2
j

.

For the case

f(u) = 1− u2, (2)

with λj = 0 (j = 1, . . . , n − 1) and n = 4, equation (1) was proposed and
named the multidimensional Van der Pol equation [6]. Note that for n = 1 the
classical Van der Pol equation is obtained. Based on the conformal symmetry
properties of (1) we connect the dimension of the equation to the nonlinear
function f . For the n-dimensional case the function f , for conformal-type
invariance, is given by

f(u) = c1 + c2u
4/(n−2) (3)

for first approximation (see theorem 6). We named (1) with the nonlinear
function (3) the multidimensional generalized Van der Pol equation. Based on
the symmetries of (1) and its approximations one can construct approximate
solutions that satisfy (1) in the order of approximation. Q-conditional symme-
tries [7, 5, 8] whereby non-Lie ansätze can be constructed are also considered
for an approximate system of (1).

2 Exact Symmetry Reductions

In this section we give the maximal Lie symmetry algebra of (1), where f is
arbitrary. We also study (1) with respect to conformal invariance, i.e., the
conformal symmetry generators

K0u = 2x0

n−1∑
i=1

xi
∂

∂xi
+

n−1∑
µ=0

x2
µ

∂

∂x0
− (n− 2)x0u

∂

∂u
, (4)

Klu = 2xl

n−1∑
µ=0

xµ
∂

∂xµ
−
(

n−1∑
k=1

x2
k − x2

0

)
∂

∂xl
− (n− 2)xlu

∂

∂u
, (5)
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where l = 1, . . . , (n− 1). Using these symmetry properties the wave equations
can be reduced to classical Van der Pol type equations or, sometimes even lin-
ear equations. Note that the nonlinear reduced ordinary differential equations
can be studied by the use of the Krylov–Bogolubov method [9] in order to ob-
tain approximate solutions for the nonlinear wave equations. The methods of
performing such calculations are well known and will not be considered here.
We are mainly interested in the symmetry properties of the equations.

Using standard Lie methods [10–13, 5] we can prove the following
Theorem 1 The basis elements of the maximal Lie symmetry algebra of (1)
is given by the following Lie symmetry generators

< Tν , R̃lj >, (6)

where

Tν =
∂

∂xν
, R̃lj = λjRl1 + λlR1j + λ1Rjl,

Rab = xa
∂

∂xb
− xb

∂

∂xa
,

ν = 0, . . . , n− 1, l = 2, 3, . . . , n− 2, j = l + 1, . . . , n− 1.

If λ0 = 1 and λj = 0 (j = 1, . . . , n− 1) (1) admits the Lie symmetries

< Tν , Rij >,

where ν = 0, . . . , n− 1 and i 6= j = 1, . . . , n− 1.
For the function f given in (2), symmetry reductions to classical Van der

Pol equations were performed in [5]. We are not concerned with such reduc-
tions in this paper. Let us, however, mention that (3), with all λ’s different
from zero can easily be reduced to a linear equation with the use of the trans-
lation symmetries. For example. Let λj = 1 (j = 0, 1, . . . , n−1), and consider
the ansatz

u(x0, . . . , xn−1) = ϕ(ω1, ω2),

where

ω1 =
n−1∑
j=1

xj − (n− 1)x0,

ω2 =
n−1∑
j=1

x2
j − 2

n−1∑
j=1

xjx0 + (n− 1)x2
0,

are invariant functions of the translation symmetries. Since ω1 and ω2 are also
first integrals of the equation

∂u

∂x0
+ · · ·+ ∂u

∂xn−1
= 0,
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(1) reduces to the linear equation

(n− 1)(n− 2)
∂2ϕ

∂ω2
1

+ 4(ω2
1 − ω2)

∂2ϕ

∂ω2
2

− 4nω1
∂2ϕ

∂ω1∂ω2
+ m2ϕ = 0.

Let us now turn to the question of conformal invariance of the nonlinear
wave equation (1). We state the following
Theorem 2 The nonlinear wave equation

2nu + m2u− εf(u)

(
n−1∑
ν=0

λν
∂u

∂xν

)
= 0

admits a combination of conformal symmetry generators K0u and Klu (given
by (4) and (5), respectively) if and only if m2 = 0 and

f(u) = c1u
4/(n−2) (7)

(with n 6= 2, c1 ∈ R) for the following cases
i) λ0 = ±λl 6= 0, 0 < l ≤ n−1 and λj = 0, j = 1, . . . , l̂, . . . , n−1. The circum-
flex indicates omission. The equation then admits the following combination
of conformal generators:

K0u ∓Klu.

ii) λ2
0 −

∑n−1
j=1 λ2

j = 0, λ0 6= 0. The equation then admits the combination

λ0K0u −
n−1∑
j=1

λjKju.

The proof of this theorem is similar to that of theorem 6 which is performed
in the Appendix.
Remark: Function (7) can be given in the more general form

f(u) = (c1u + c2)4/(n−2),

whereby the infinitesimal function η of ∂/∂u in K0u and Klu depend on c1 and
c2. We considered η as given in (4) and (5), only.

3 Lie Symmetries of the Approximate system

Let us introduce the following representation for u:

u =
k∑

j=0

εjuj . (8)
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At first we consider the equation

2nu + m2u− ε(1− u2)

(
n−1∑
ν=0

λν
∂u

∂xν

)
= 0. (9)

By representation (8) the k-order approximate system of (9) is given by the
following (k + 1) partial differential equations:

2nu0 + m2u0 = 0,

2nu1 + m2u1 + u2
0

(
n−1∑
ν=0

λν
∂u0

∂xν

)
−

n−1∑
ν=0

λν
∂u0

∂xν
= 0,

2nu2 + m2u2 + u2
0

(
n−1∑
ν=0

λν
∂u1

∂xν

)
−

n−1∑
ν=0

λν
∂u1

∂xν
+ 2u0u1

(
n−1∑
ν=0

λν
∂u0

∂xν

)
= 0,

2nuj + m2uj +
n−1∑
ν=0

∑
0≤µ≤(j−1)/2

λνu
2
µ

∂uj−(2µ+1)

∂xν
−

n−1∑
ν=0

λν
∂uj−1

∂xν
+

2
n−1∑
ν=0

∑
0≤µ≤(j−2)/2

j−(µ+1)∑
l=µ+1

λνuµuj−l

∂ul−(µ+1)

∂xν
= 0, (10)

where j = 3, 4, . . . , k. System (10) admits the infinite symmetry generator

Z∞ = h(x0, . . . , xn−1)
∂

∂uk
, (11)

where h is a solution of 2nh + m2h = 0. This reflects the linearity of the
k-th equation in the dependent variable uk. We now study the Lie symme-
tries of the above system of k-partial differential equations, i.e, the k-order
approximate symmetries of (9) (k > 0). The proof of the following theorems
can be performed by the use of the standard Lie method and mathematical
induction. In order to study system (10) with respect to Lie symmetries we
have to consider different cases.
Case 1 Consider λ0 = 1, λj = 0 (j = 1, . . . , n− 1), i.e., the equation

2nu + m2u− ε(1− u2)
∂u

∂x0
= 0. (12)

Theorem 3 Equation (12) admits the following Lie symmetry generators
under the representation (8):
i) m2 6= 0:

< Tν , Rij , Γ0k, Λ(2)
x0k >, ν = 0, . . . , n− 1, i 6= j = 1, . . . , n− 1.
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ii) m2 = 0:

< Tν , Rij , Sk, Γ0k, Λ(2)
x0k >, ν = 0, . . . , n− 1, i 6= j = 1, . . . , n− 1.

Here

Γ0k = u0
∂

∂uk
, (13)

Λ(2)
x0k = (u0x0 − 3u1)

∂

∂uk
− u0

∂

∂uk−1
, (14)

Sk = Suk
+ Sx

with Suk
=

k∑
j=1

juj
∂

∂uj
, Sx =

n−1∑
µ=0

xµ
∂

∂xµ
. (15)

Case 2 λ0 6= 0, λl 6= 0, λj = 0, (j = 1, . . . , l̂, . . . , n − 1). This results in the
equation

2nu + m2u− ε(1− u2)
(

λ0
∂u

∂x0
+ λl

∂u

∂xl

)
= 0. (16)

Theorem 4 Under the representation (8) we obtain the following Lie symme-
try generators for (16):
i) m2 6= 0 and λ0 = −λl:

< Tν , Rab, L0j −Rjl̃, L0i −Rl̃i, Suk
− L0l, Γ0k, Λ(2)

x0+xlk
> .

ii) m2 6= 0 and λ0 = λl:

< Tν , Rab, L0i −Rl̃i, Suk
+ L0l, Γ0k, Λ(2)

x0−xlk
> .

iii) m2 = 0 and λ0 = −λl:

< Tν , Rab, L0j −Rjl̃, L0i −Rl̃i, Sk, Sx − L0l, Γ0k, Λ(2)
x0+xlk

> .

iv) m2 = 0 and λ0 = λl:

< Tν , Rab, L0i −Rl̃i, Sk Sx + L0l, Γ0k, Λ(2)
x0−xlk

> .

Let us define the symbols used in theorem 4:

Λ(2)
x0±xlk

= (u0(x0 ± xl)− 3u1)
∂

∂uk
− u0

∂

∂uk−1
≡ Λ(2)

x0k ± u0xl
∂

∂xk
, (17)

also

a 6= b = 1, . . . , l̂, . . . , n− 1, 0 < l ≤ n− 1, j = 1, . . . , l̃ − 1,

i = l̃ + 1, . . . , n− 1, 1 < l̃ ≤ n− 1, ν = 0 . . . , n− 1.
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Case 3 λ0 6= 0 and all λ’s are allowed to be different from zero, i.e., equation
(9).
Theorem 5 Under the representation (8) we obtain the following Lie symme-
try generators for (9):
i) m2 6= 0:

< Tν ,
(
λ0R(a+b)a + λaL0(a+b) − λ(a+b)L0a

)
,λ0Suk

−
n−1∑
j=1

λjL0j

 , Λ(2)
x0x1...xn−1k, Γ0k >;

ii) m2 = 0 and

λ2
0 − λ2

1 − · · · − λ2
n−1 6= 0 :

< Tν ,
(
λ0R(a+b)a + λaL0(a+b) − λ(a+b)L0a

)
, Sk, Λ(2)

x0x1...xn−1k, Γ0k >;

iii) m2 = 0 and

λ2
0 − λ2

1 − · · · − λ2
n−1 = 0 :

< Tν ,
(
λ0R(a+b)a + λaL0(a+b) − λ(a+b)L0a

)
, Sk,λ0Sx +

n−1∑
j=1

λjL0j

 , Λ(2)
x0x1...xn−1k, Γ0k > .

Here the symbols are defined as follows:

Λ(2)
x0x1...xn−1k =


λ0x0 −

n−1∑
j=1

λjxj

u0 − 3u1

 ∂

∂uk
− u0

∂

∂uk−1
. (18)

Also, a = 1, . . . , n− 2, b = 1, . . . , n− a− 1.
From the Lie symmetries given above similarity ansätze for system (10),

in the form

uµ(x0, . . . , xn−1) =
µ∑

j=0

fµj(x0, . . . , xn−1)ϕj(ω1, . . . , ωn−1) + fµ(x0, . . . , xn−1),

can be constructed. Here the ω’s are the new independent variables and the
ϕ’s the new dependent variables.

As an example, we consider (12) together with its 1-dimensional invariant
subalgebra

Z =
n−1∑
ν=0

Tν + Λ(2)
x0k.



48 N.EULER and M.EULER

The similarity ansatz is obtained by solving the associated Lagrange system.
The ansätze for first-, second-, and k-order (k > 2) approximations are essen-
tially different:
For first approximation we obtain the ansatz:

u0 = exp(−x0)ϕ0(ω),

u1 =
1
2

(
x0 −

1
2

)
exp(−x0)ϕ0(ω) + exp(−3x0)ϕ1(ω). (19)

For second approximation we have the similarity ansatz

u0 = ϕ0(ω),
u1 = −x0ϕ0(ω) + ϕ1(ω), (20)
u2 = 2x2

0ϕ0(ω)− 3x0ϕ1(ω) + ϕ2(ω).

For k-approximation (with k > 2) we obtain

uk =
x2

0

2
ϕ0(ω)− 3x0ϕ1(ω) + ϕk(ω),

uk−1 = −x0ϕ0(ω) + ϕk−1(ω), (21)
uk−i = ϕk−i(ω), i = 2, 3, . . . , k.

Here ω is given by

ω =
n−1∑
j=1

xj − (n− 1)x0.

The reduced equations can be written down for any order of approximation.
In this case the reduced equations are linear driven oscillators. Let us write
down the reduced equations for first, second, and third order approximation:
By application of the ansatz (19) to system (10) (for (12)), with k = 1, we
obtain

(n− 1)(n− 2)ϕ′′0 + 2(n− 1)ϕ′0 + (m2 + 1)ϕ0 = 0,

(n− 1)(n− 2)ϕ′′1 + 6(n− 1)ϕ′1 + (m2 − 9)ϕ1 = (n− 1)ϕ2
0ϕ

′
0 + ϕ3

0.

For k = 2 the ansatz (20) applies. It follows that

(n− 1)(n− 2)ϕ′′0 + m2ϕ0 = 0,

(n− 1)(n− 2)ϕ′′1 + m2ϕ1 = −3(n− 1)ϕ′0 + (n− 1)ϕ2
0ϕ

′
0,

(n− 1)(n− 2)ϕ′′2 + m2ϕ2 = −7(n− 1)ϕ′1 + (n− 1)ϕ2
0ϕ

′
1 +

2(n− 1)ϕ0ϕ1ϕ
′
0 − 5ϕ0 + ϕ3

0.
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For k = 3 the ansatz (21) applies. It follows that

(n− 1)(n− 2)ϕ′′0 + m2ϕ0 = 0,

(n− 1)(n− 2)ϕ′′1 + m2ϕ1 = −(n− 1)ϕ′0(1− ϕ2
0),

(n− 1)(n− 2)ϕ′′2 + m2ϕ2 = −(n− 1)ϕ′1(1− ϕ2
0)− 2(n− 1)ϕ′0(1− ϕ0ϕ1),

(n− 1)n− 2)ϕ′′3 + m2ϕ3 = −(n− 1)ϕ′2(1− ϕ2
0)− 2(n− 1)ϕ′1(3− ϕ0ϕ1) +

(n− 1)ϕ′0(ϕ
2
1 + 2ϕ0ϕ2)− ϕ0(2− ϕ2

0).

Here ′ ≡ d/dω. All reductions which follow for higher approximations are
obtained by applying ansatz (21). In this way any order of approximation for
(12) can be obtained by solving the obove linear ordinary differential equations.

Let us now turn to the question of the conformal invariance of (1) under the
representation (8), i.e., we study the conformal invariance for the approximate
system of (1). We can state the following
Theorem 6 The nonlinear wave equation

2nu + m2u− εf(u)
(

λ0
∂u

∂x0
+ λi1

∂u

∂xi1

+ · · ·+ λir

∂u

∂xir

)
= 0, (22)

with r, i1, . . . , ir ∈ {1, . . . , n− 1}, r = i1 + · · ·+ ir, n 6= 2, and λ0 6= 0, admits
the Lie symmetry generators given by the cases (i) to (iv) below under the the
representation (8), if and only if m2 = 0 and

f(u) = c1u
4/(n−2) + c2 (c1, c2 ∈ R).

i) λ0 = −λl.
For first approximation (22) admits the following Lie symmetry generators:

< Tν , Rab, L0j −Rjl̃, L0i −Rl̃i, S1, Sx − L0l, Γ01, Λ4/(n−2)
(x0+xl)1

, Υ(x0+xl) >

For k-order approximation (k ≥ 2) (22) admits the Lie symmetry generators:

< Tν , Rab, L0j −Rjl̃, L0i −Rl̃i, Sk, Sx − L0l, Γ0k, Λ4/(n−2)
(x0+xl)k

>

Here

a 6= b = 1, . . . , l̂, . . . , n− 1, 0 < l ≤ n− 1,

j = 1, . . . , l̃ − 1, i = l̃ + 1, . . . , n− 1,

1 < l̃ ≤ n− 1, ν = 0 . . . , n− 1.

ii) λ0 = λl.
For first approximation (22) admits the following Lie symmetry generators:

< Tν , Rab, L0i −Rl̃i, S1, Sx − L0l, Γ01, Λ4/(n−2)
(x0−xl)1

, Υ(x0−xl) > .
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For k-order approximation (k ≥ 2) (22) admits the Lie symmetry generators:

< Tν , Rab, L0i −Rl̃i, Sk, Sx + L0l, Γ0k, Λ4/(n−2)
(x0−xl)k

> .

Here

a 6= b = 1, . . . , l̂, . . . , n− 1, 0 < l ≤ n− 1,

j = 1, . . . , l̃ − 1, i = l̃ + 1, . . . , n− 1,

1 < l̃ ≤ n− 1, ν = 0 . . . , n− 1.

iii) λ0 = λij k̂0ij and k̂2
0ij

= r with r, ij ∈ {1, . . . , n− 1}, j = 1, . . . , r. For first
approximation the following Lie symmetry generators are obtained:

< Tν , k̂−1
0a L0j − k̂−1

0j L0a + Rja, k̂−1
0a L0r̃ + Rr̃a (r 6= n− 1),

Rcb(r 6= {n− 1, n− 2}, Sx +
r∑

j=1

k̂−1
0j L0j , S1, Γ01, Λ̃4/(n−2)

x0...xn−11, Υx0...xn−1 > .

For k-order approximations (k ≥ 2) it follows that

< Tν , k̂−1
0a L0j − k̂−1

0j L0a + Rja, k̂−1
0a L0r̃ + Rr̃a (r 6= n− 1),

Rcb(r 6= {n− 1, n− 2}), Sx +
r∑

j=1

k̂−1
0j L0j , Sk, Γ0k, Λ̃4/(n−2)

x0...xn−1k > .

Here

a = 1, . . . , r − 1, j = a + 1, . . . , r, r̃ = r + 1, . . . , n− 1,

b = r + 1, . . . , n− 2, c = b + 1, . . . , n− 1.

iv) λ0 = λij k̂0ij , k̂2
0ij
6= r and λ2

0 − λ1 − · · · − λ2
n−1 = 0 with r, ij ∈ {1, . . . ,

n − 1}, j = 1, . . . , r. For first approximation (22) admits the following Lie
symmetry generators

< Tν , L0j + k̂0jRr̃j (r 6= n− 1),

(
k̂01

r − k̂2
01

)
Sx +

(
k̂0i

k̂2
01 − k̂2

0i

)
Ri1 + L01,

(
k̂2

0i − k̂2
01

k̂0i

)
Sx −

k̂01

k̂0i

(
r − k̂2

0i

r − k̂2
01

)
L01 + L0i,

Ra(r+1) (r 6= {n− 1, n− 2}), S1, Γ01,
˜̃Λ

4/(n−2)

x0...xn−11, Υx0...xn−1 > .

For k-order approximations (k ≥ 2) we obtain

< Tν , L0j + k̂0jRr̃j (r 6= n− 1),

(
k̂01

r − k̂2
01

)
Sx +

(
k̂0i

k̂2
01 − k̂2

0i

)
Ri1 + L01,

(
k̂2

0i − k̂2
01

k̂0i

)
Sx −

k̂01

k̂0i

(
r − k̂2

0i

r − k̂2
01

)
L01 + L0i,

Ra(r+1) (r 6= {n− 1, n− 2}), Sk, Γ0k,
˜̃Λ

4/(n−2)

x0...xn−1k > .
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Here

j = 1, . . . , r, i = 2, . . . , r, r̃ = r + 1, . . . , n− 1, a = r + 2, . . . , n− 1.

The proof is performed in the Appendix. Let us define the symbols used in
theorem 6 that were not defined before:

Λ4/(n−2)
(x0±xl)k

= {2λ0c2(x0 ± xl)u0 − (n + 2)u1}
∂

∂uk
+ (2− n)u0

∂

∂uk−1
, (23)

Λ̃4/(n−2)
x0...xn−1k =

2λ0c2

x0 −
n−1∑
j=1

k̂−1
0j xj

u0 − (n + 2)u1

 ∂

∂uk
+

(2− n)u0
∂

∂uk−1
, (24)

˜̃Λ
4/(n−2)

x0...xn−1k =


(

6− n

2

)
λ0c2

x0 −
n−1∑
j=1

k̂−1
0j xj

u0 − (2 + n)u1

 ∂

∂uk
+

(2− n)u0
∂

∂uk − 1
, (25)

Υ(x0±xl) = K0u0 ±Klu0 +
{
(2− n)(x0 ± xl)u1 + λ0c2(x0 ± xl)2u0

} ∂

∂u1
, (26)

Υx0...xn−1 = K0u0 −
n−1∑
j=1

k̂−1
0j Kju0 + (27)

(2− n)

x0 −
n−1∑
j=1

k̂−1
0j xj

u1 + +λ0c2

x0 −
n−1∑
j=1

k̂−1
0j xj

2

u0

 ∂

∂u1
.

From theorem 6 it is clear that approximate conformal invariance of (1)
exists only for first approximation.
Remark: The function f in theorem 6 can be given in the more general form

f(u) = (c1u + c2)4/(n−2)

if we allow the infinitesimal function η0 of ∂/∂u0 in the generator K0u0 and
Klu0 to depend on c1 and c2.



52 N.EULER and M.EULER

4 Conditional Symmetries of the Approximate System

In this section we study conditional symmetries of (12) in the form of Q-
symmetries. Q-symmetries are obtained by constructing symmetries of the
form

Q =
n−1∑
µ=0

ξµ(x0, . . . , xn−1, u0, . . . , uk)
∂

∂xµ
+

k∑
j=0

ηj(x0, . . . , xk, u0, . . . , uk)
∂

∂uj

under the condition

ηj −
n−1∑
µ=0

ξµ
∂uj

∂xµ
= 0,

where j = 0, . . . , k.
For first approximation of (12) we study the system

2nu0 + m2u0 = 0,

2nu1 + m2u1 − (1− u2
0)

∂u0

∂x0
= 0.

Five classes of Q-symmetries follow:

Class 1: Here m2 = −κ2, (κ ∈ R).

Q11 =
∂

∂x0
+ eκx0

∂

∂u0
+
(
− 1

2κ2
e2κx0u0 + κu1 + v1(x0, . . . , xn−1)

)
∂

∂u1
,

Q12 =
∂

∂x0
+ {x0u0 + v2(x0, . . . , xn−1) + κu1}

∂

∂u1
,

Q13 =
∂

∂x0
+ {u0 + κu1 + v2(x0, . . . , xn−1)}

∂

∂u1
,

where v1 and v2 are solutions of the linear equations

2nv1 − v1κ2 − 2e3x0κ

κ
= 0, (28)

2nv2 − v2κ2 = 0, (29)

respectively.
Class 2:

Q21 =
∂

∂x0
+ {x0u0 + v3(x0, . . . , xn−1)}

∂

∂u1
, .

Q22 =
∂

∂x0
+ {u0 + v3(x0, . . . , xn−1)}

∂

∂u1
,

Q23 =
∂

∂x0
+ {u1 + v3(x0, . . . , xn−1)}

∂

∂u1
,
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where v3 is a solution of the following equation:

2nv3 + m2v3 = 0. (30)

Class 3:

Q31 =
∂

∂x0
+ κu0

∂

∂u0
+ {−κx0u0 + u0 + 3κu1 + v3(x0, . . . , xn−1)}

∂

∂u1
,

Q32 =
∂

∂x0
+ κu0

∂

∂u0
+{

3κu1 −
(

1
2κ

e−2κx0 + κx0

)
u0 + v3(x0, . . . , xn−1)

}
∂

∂u1
,

where v3 is a solution of (30).
Class 4: Here ω2 = −4κ2, (κ ∈ R).

Q41 =
∂

∂x0
+
{

κu0 + e−2κx0

} ∂

∂u0
+{

3κu1 −
(

κx0 +
1

4κ2
e−4κx0

)
u0 + v4(x0, . . . , xn−1

}
∂

∂u1
,

Q42 =
∂

∂x0
+ κu0

∂

∂u0
+{

3κu0 −
(

κx0u0 +
1
2κ

e−2κx0

)
u0 + v5(x0, . . . , xn−1)

}
∂

∂u1
,

Q43 =
∂

∂x0
+ κu0

∂

∂u0
+ {−(1 + κx0)u0 + 3κu1 + v5(x0, . . . , xn−1}

∂

∂u1
,

where v4 and v5 are solutions of the equations:

2nv4 − 4v4κ2 + 2κe−2κx0 +
2
κ

e−6κx0 = 0, (31)

2nv5 − 4v5κ2 = 0, (32)

respectively.
Remark: The (infinite) Q-symmetries in every class given above belong to
the same Q-condition so that subalgebra classifications of the Q-symmetries
that belong to the same class can be considered to construct exact solutions.

As an example we consider Q11, given in class 1, where a solution of (28)
is given by

v1(x0, . . . , xn−1) =
∞∑
i=1

ci exp

n−1∑
j=1

bijxj + x0

√√√√n−1∑
j=1

b2
ij + κ2

+

∞∑
i=1

c′i exp

n−1∑
j=1

b′ij − x0

√√√√n−1∑
j=1

b′2ij + κ2

+
1

4κ3
e3κx0 .
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Here ci, c′i and bij , b′ij are arbitrary constants. By solving the associated
Lagrange system we obtain the following ansatz:

u0 = ϕ0(ω) +
1
κ

eκx0 , (33)

u1 = − 1
2κ3

e2κx0ϕ0(ω) + eκx0ϕ1(ω) +

∞∑
i=1

ci√∑n−1
j=1 b2

ij + κ2 − κ
exp

n−1∑
j=1

bijxj + x0

√√√√n−1∑
j=1

b2
ij + κ2

+ (34)

∞∑
i=1

c̃′i√∑n−1
j=1 b′2ij + κ2 − κ

exp

n−1∑
j=1

b′ijxj + x0

√√√√n−1∑
j=1

b′2ij + κ2

− 1
8κ2

e3κx0 ,

where

ϕ0(ω) =
c̃1

κ
√

n− 1
sin
{

κ√
n− 1

(ω + c̃2)
}

,

ϕ1(ω) =
(

c̃1

4κ2
− 1

2(n− 1)

)
ω2 +(

c̃1c̃2

2κ2
+ c̃3

)
ω +

(n− 1)c̃2
1

8κ4
cos

{
2κ√
n− 1

(ω + c̃2)
}

+ c̃4.

Here c̃j are arbitrary constants and ϕ0 and ϕ1 are the general solutions of the
reduced equations

(n− 1)
d2ϕ0

dω2
+ κ2ϕ0 = 0, (n− 1)

d2ϕ1

dω2
+ 1− ϕ2

0 = 0,

where ω =
n−1∑
j=1

xj .

A first approximate solution of

2nu + m2u− ε(1− u2)
∂u

∂x0
= 0

is then given by u = u0 + εu1, where u0 and u1 are given by (33) and (34),
respectively. An analogous procedure can be followed for all other cases in
section 3.

Appendix: Proof of Theorem 6

We consider only the first approximation with λ0 6= 0 and n 6= 2. In order to
prove the necessity we consider the invariance condition in the form

X(2)S0

∣∣∣
S0=0, S1=0

= 0, X(2)S1

∣∣∣
S0=0, S1=0

= 0,
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where

S0 ≡ 2nu0 = 0,

S1 ≡ 2nu1 − f(u0) (λ0u0,0 + λi1u0,i1 + · · ·+ λiru0,ir)

(with r, i1, . . . , ir ∈ {1, . . . , n − 1}, r = i1 + · · · + ir) and X(2) is the second
prolongation of the Lie symmetry generator X, with

X =
n−1∑
µ=0

ξµ(x0, . . . , xn−1, u0, u1)
∂

∂xµ
+

1∑
i=0

ηi(x0, . . . , xn−1, u0, u1)
∂

∂ui
.

We make use of the following notation:

ξi,j1j2 ≡
∂2ξi

∂xj1∂xj2

, ηi,j1uj2
≡ ∂2ηi

∂xj1∂uj2

, etc.

The determining equations for the unknown functions ξ and η are the follo-
wing:

2η0,0u0 − 2nξ0 + λ0fη0,u1 = 0, (1.1)
2η0,ju0 + 2nξj − λjfη0,u1 = 0, j = 1, . . . , r, (1.2)
2η0,iu0 + 2nξi = 0, i = r + 1, . . . , n− 1,

r < n− 1, (1.3)
η0,µu1 = 0, µ = 0, . . . , n− 1, (1.4)

η0,u0u0 = η0, u1u1 = 0, 2nη0 = 0, (1.5)
ξ0,0 − ξj,j = 0,

ξ0,j − ξj,0 = 0, j = 1, . . . , n− 1, (1.6)
ξi,j + ξj,i = 0, i 6= j = 1, . . . , n− 1, (1.7)

2η1,0u0 + f
(
λ0η1,u1 − 2λ0ξ0,0 − λ0η0,u0 +

r∑
i=0

λiξ0,i

)
− λ0η0

df

du0
= 0, (1.8)

−2η1,0uj + f
(
λjη1,u1 − 2λjξ0,0 − λjη0,u0 +

r∑
i=0

λiξj,i

)
− λjη0

df

du0
= 0, j = 1, . . . , r, (1.9)

−2η1,iu0 + f
r∑

p=0

λpξi,p = 0, i = r + 1, . . . , n− 1,

r < n− 1, (1.10)
2η1,0u1 − 2nξ0 − λ0fη0,u1 = 0, (1.11)
2η1,ju1 − 2nξj − λjfη0,u1 = 0, j = 1, . . . , r, (1.12)
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2η1,iu1 − 2nξi = 0, i = r + 1, . . . , n− 1,

r < n− 1, (1.13)
η1,u1u1 = η1,u0u0 = 0, (1.14)

2nη1 − f
r∑

p=0

λpη0,p = 0. (1.15)

From equations (1.1) – (1.7) and (1.13) – (1.15) the following expressions for
ξµ and ηj are obtained:

ξµ = 2xµ

(
b0x0 −

n−1∑
i=1

bixi

)
− bµ

(
x2

0 −
n−1∑
i=1

x2
i

)
+

n−1∑
µ,ν=0

cµνxν + dν , (2.1)

η0 =

{
(2− n)

(
b0x0 −

n−1∑
i=1

bixi

)
+ α00

}
u0, (2.2)

η1,u1 = (2− n)

(
b0x0 −

n−1∑
i=1

bixi

)
+ α11, (2.3)

where c0a = ca0, cab = −cba, c00 = caa, a 6= b = 1, . . . , n − 1, and µ =
0, . . . , n−1 (αµν , bµ, cµν , dµ ∈ R). The expressions (2.1) – (2.3), with equations
(1.8) – (1.10), results in the following set of equations:

λ0b0(n− 4)
df

du0
− 2

df

du0

 r∑
j=1

λjbj

+ λ0b0(n− 2)u0
d2f

du2
0

= 0, (3.1)

λjbj(n− 4)
df

du0
− 2

df

du0

λ0b0 −
r∑

s 6=j, s=1

λsbs

+

+λjbj(n− 2)u0
d2f

du2
0

= 0, j = 1, . . . , r, (3.2)

λibp(n− 4)
df

du0
− 2λpbi

df

du0
+

λibp(n− 2)u0
d2f

du2
0

= 0, i 6= p = 0, . . . , r, (3.3)

λibq(n− 4)
df

du0
+ λibq(n− 2)u0

d2f

du2
0

= 0, i = 0, . . . , r,

q = r + 1, . . . , n− 1,
r < n− 1, (3.4)
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λi
df

du0
(α11 − 2α00 − c00) +

df

du0

 r∑
p6=i, p=0

λpcip

−
λiα00u0

d2f

du2
0

= 0, i = 0, . . . , r, (3.5)

df

du0

λ0b0 −
r∑

j=1

λjbj

 = 0, (3.6)

df

du0
λibp = 0, i = 0, . . . , r,

p = r + 1, . . . , n− 1,
r < n− 1 (3.7)

df

du0

λ0c0p −
r∑

j=1

λjcjp

 = 0, p = r + 1, . . . , n− 1,

r < n− 1. (3.8)

For nonconstant functions f , (3.6) results in the following condition:

λ0b0 −
r∑

j=1

λjbj = 0.

For b0 = 0 it follows that bj = 0 for all j = 1, . . . , n− 1, i.e., there can exist no
conformal symmetry generator. We can thus assume that b0 6= 0. Note that
from (3.7) it follows that bp = 0 for p = r + 1, . . . , n − 1, where r < n − 1.
From the above condition and eqs. (3.1) – (3.2) we obtain

(n− 6)
df

du0
− (n− 2)u0

d2f

fu2
0

= 0,

i.e.,

f(u0) = c1u
4/(n−2)
0 + c2.

From the above function f , together with (3.1)–(3.3), the following relation is
obtained:

λ0

λj
=

b0

bj
≡ k̂0j , j = 1, . . . , r

i.e.,

λlbl(k̂2
0l − 1)−

r∑
j 6=l, j=1

λjbj = 0, l = 1, . . . , r.

This results in two essentially different cases:
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I) k̂2
0l = 1,

∑r
j 6=l, j=1 λjbj = 0.

II) k̂2
0l 6= 1, λlbl(k̂2

0l − 1)−
∑r

j 6=l, j=1 λjbj = 0.

Let us consider case (I). This can be rewritten as

b2
1 + · · ·+ b2

l−1 + b2
l+1 + · · ·+ br = 0,

i.e., bj = λj = 0, j = 1, . . . , l̂, . . . , r, 0 < l ≤ r. Thus it follows that

λ0 = ±λl, 0 < l ≤ r.

This is written as case (i) and (ii) in theorem 6. From case (II) we can obtain
case (iii) and (iv) of theorem 6. By inserting the above relations and function
f in the determining equations we obtain the generators listed in theorem 6.
This proofs the necessary condition. By substituting the obtained function f
(with the related conditions) into the wave equation the sufficient condition
is satisfied. For k-order approximations one has to consider mathematical
induction.
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