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Abstract

We calculate symmetries of the nonlinear n-dimensional wave equation
n—1

O,u + m2u — ef(u) (Z Ayau/ﬁxy> = 0 and its approximations. In
v=0

particular, we study the conformal invariance of the equations. Condi-
tional symmetries of the approximate system are also considered whereby
approximate solutions are constructed.

1 Introduction

Recently we studied approximate symmetries for a Landau-Ginzburg equation
[1] and a multidimensional nonlinear heat equation [2]. Within this approach
one can obtain approximate solutions for multidimensional partial differential
equations with a small parameter [3-5]. By approximate symmetries we mean
the exact symmetries of an approximate system of the original partial differ-
ential equation. Different representations of the solutions can be considered.
In [2] we studied first order approximations of a nonlinear multidimensional
heat equation under the representations u = ug + cu; and u = ug + £g(up).
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42 N.EULER and M.EULER

For the second representation a conditional equation for ug appeared, whereby
we obtained compatible solutions by studying conditional symmetries for the
equation in ug.

In this paper we study the nonlinear multidimensional wave equation

) (1)

where f is an arbitrary differentiable fuction, ¢ is a small real positive param-
eter, and m?, )\, are real constants. Here

nu—l—mu—sf <

92 n—1 o2
SRPSCAE o
n 2 2
Oz st 6xj
For the case
flu) =1-u?, (2)

with A; =0 (j = 1,...,n — 1) and n = 4, equation (1) was proposed and
named the multidimensional Van der Pol equation [6]. Note that for n = 1 the
classical Van der Pol equation is obtained. Based on the conformal symmetry
properties of (1) we connect the dimension of the equation to the nonlinear
function f. For the n-dimensional case the function f, for conformal-type
invariance, is given by

flu)=ec1 + cout/ (=2) (3)

for first approximation (see theorem 6). We named (1) with the nonlinear
function (3) the multidimensional generalized Van der Pol equation. Based on
the symmetries of (1) and its approximations one can construct approximate
solutions that satisfy (1) in the order of approximation. @-conditional symme-
tries [7, 5, 8] whereby non-Lie ansétze can be constructed are also considered
for an approximate system of (1).

2 Exact Symmetry Reductions

In this section we give the maximal Lie symmetry algebra of (1), where f is
arbitrary. We also study (1) with respect to conformal invariance, i.e., the
conformal symmetry generators

n—1
0
Koy, = 2z Z fL‘l + Z 'ua.’Eo 2)$0U%7 (4)

Ky, = 22 Z xua <Z ) 0 p —(n— 2)xlugu, (5)
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where I = 1,...,(n—1). Using these symmetry properties the wave equations
can be reduced to classical Van der Pol type equations or, sometimes even lin-
ear equations. Note that the nonlinear reduced ordinary differential equations
can be studied by the use of the Krylov—Bogolubov method [9] in order to ob-
tain approximate solutions for the nonlinear wave equations. The methods of
performing such calculations are well known and will not be considered here.
We are mainly interested in the symmetry properties of the equations.

Using standard Lie methods [10-13, 5] we can prove the following
Theorem 1 The basis elements of the mazimal Lie symmetry algebra of (1)
1s given by the following Lie symmetry generators

< Tl/7 le >, (6)
where
9 .
T, = EIE Ry = NjRpp + N Ryj + MRy,
0
ARab::xa

dzy YOz,
v=0,....n—1, 1=23,....n—2, j=1014+1,...,n—1.

If \o=1and \; =0 (j =1,...,n—1) (1) admits the Lie symmetries
<T,, Rjj >,

wherev=0,....n—1landi#j=1,...,n—1.

For the function f given in (2), symmetry reductions to classical Van der
Pol equations were performed in [5]. We are not concerned with such reduc-
tions in this paper. Let us, however, mention that (3), with all X’s different
from zero can easily be reduced to a linear equation with the use of the trans-

lation symmetries. For example. Let A\; =1 (j =0,1,...,n—1), and consider
the ansatz

u(l‘o, e ,:Enfl) = go(wl,wQ),
where

n—1
wy = ij — (n — 1)z,
j=1

n—1 n—1
wo = Zm?—22xjxo+(n—l)x%,
j=1 j=1

are invariant functions of the translation symmetries. Since w; and wy are also
first integrals of the equation

ou O
aZEO al’nfl

=0,
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(1) reduces to the linear equation

62<p 9 82@ 82<p 9
—D(n—2)2" 4 A(w? —wy) ot —4
(n=1)(n )aw% + wz)awg T

Let us now turn to the question of conformal invariance of the nonlinear
wave equation (1). We state the following
Theorem 2 The nonlinear wave equation

n—1
Onu 4+ m?u — ef (u) (Z /\,,au> =0
v=0 81‘1,

admits a combination of conformal symmetry generators Ko, and K, (given
by (4) and (5), respectively) if and only if m? =0 and

flu) = e (7)
(with n # 2, ¢c1 € R) for the following cases R
PJ)Ao=EN#0,0<I<n—-landA;=0,j=1,...,1,...,n—1. The circum-
flex indicates omission. The equation then admits the following combination
of conformal generators:

K()u + Klu'

i) \& — Z?:_ll )\3 =0, Ao # 0. The equation then admits the combination
n—1
MoKou — Y AiKju.
j=1

The proof of this theorem is similar to that of theorem 6 which is performed
in the Appendix.
REMARK: Function (7) can be given in the more general form

fu) = (cru+ cg) 72,

whereby the infinitesimal function n of 0/0u in Ko, and Ky, depend on ¢ and
co. We considered n as given in (4) and (5), only.

3 Lie Symmetries of the Approximate system

Let us introduce the following representation for wu:

k
u = Z elu;. (8)
=0
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At first we consider the equation

Opu + m2u — e(1 — u?) (Z)\8$V>_O 9)

By representation (8) the k-order approximate system of (9) is given by the
following (k + 1) partial differential equations:

O, uo + m2uy = 0,

8u0 8U0

Dnul—l—mQul—i—u%(Z 835) Z)\ 92 0,

ouq

O, us + m2us + u% (Z v > Z )\ —l— 2uguq (Z Ay gz()) =0,

n— ou,;_ =l
2 2 YH%i—(2p+1) Uj-1
Onuj +mu; + Z Z /\VUMT — Z Ay 8;: +
v=0 0<p<(j—1)/2 v v=0 v

—(p+1)

SSNED SN SAP WL (10)

v=0 0<u<(j—2)/2 I=p+1

where j = 3,4,...,k. System (10) admits the infinite symmetry generator

0
ZOO :h(.’lf(),...,ﬂfn_l)&iuk, (11)

where h is a solution of O,h 4+ m2?h = 0. This reflects the linearity of the
k-th equation in the dependent variable ui. We now study the Lie symme-
tries of the above system of k-partial differential equations, i.e, the k-order
approximate symmetries of (9) (k > 0). The proof of the following theorems
can be performed by the use of the standard Lie method and mathematical
induction. In order to study system (10) with respect to Lie symmetries we
have to consider different cases.

Case 1 Consider A\g =1, A\; =0 (j =1,...,n— 1), i.e., the equation

ou

Opu 4 m2u — (1 — uz)a— =
z0

0. (12)

Theorem 3 FEquation (12) admits the following Lie symmetry generators
under the representation (8):

i) m? # 0:

<T,, Ry, Tor, AC) >, v=0,...,n—-1, i#j=1..n-1
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i) m? = 0:

<T,, Rij, Sk, Lo, AP >0 v=0,..n—1, i#j=1,...,n—1

Here
0

Tor = tg—— 1
0k = U0z (13)
@ B 0 B 0

Ay = (uozo 3u1)6uk uo B (14)

Sk = Su, + 5z

with Sy, = Ejuj%j, Sg = Z xua—%. (15)

j=1 pn=0

~

Case 2 \g #0, iy #0, \; =0, (j=1,...,1,...,n —1). This results in the
equation

Opu 4+ m?u — (1 — u?) (Aogg + Al;) =0. (16)
0 l

Theorem 4 Under the representation (8) we obtain the following Lie symme-
try generators for (16):
i) m?2#0 and \g = — N\

<T,, Ra, Loj — R

ik ii>

Loi — Ry, Su, — Loty Tow, AL, >
i) m? # 0 and \g = \:

<T,, R, Loi — R, Su, + Loty Tor, AL, >
iii) m? = 0 and \g = —\;:

< TIM Raba LO] - R

50 LOi - R;

13°

Sk7 Sx - L0l7 FO/C’ A‘(xzo)+;plk >
iv) m? =0 and \g = \;:
<Ty. Ra, Loi — Ry, St Su+ Loty Tow, AL, >

Let us define the symbols used in theorem 4:

0 (2) 0
=A —_— 1
8uk_1 ok = ot (%k ’ ( 7)

Ago):t:clk = (UO('TO + xl) - 3’LL1) — Ug

Ouy,

also

a#£b=1,...,0,....n—1, 0<l<n-—1, j=1,...,0—1,
i=l+1,....n—1, 1<Il<n-1, v=0...,n—1.
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Case 3 \g # 0 and all \’s are allowed to be different from zero, i.e., equation

(9).
Theorem 5 Under the representation (8) we obtain the following Lie symme-
try generators for (9):

i) m? #0:
<7, ()‘OR(a+b)a + )‘aLO(a+b) - )‘(a—i—b)LOa) )

n—1
()\OSuk - Z )\jL0j> , Ag(i)xl,,,xn_lk, Cog >;
=1

i) m? = 0 and

A=A = =X £0:
<T,, (MR + AL ~ NassLoa) s Se, AZ Tor >;
Vs 0 (a+b)a a 0(a+b) (a+b) Oa ) » k> TOTL. . Tn_1k’ 0k )
i) m? = 0 and
BN

< TV7 ()\OR(a+b)a + )‘aLO(a—&—b) - )‘(a+b)L0a) > Sk’>

n—1
(/\osa; -+ Z AjLoj) , A3(620)961...:cn_1k7 FOk > .

=1

Here the symbols are defined as follows:

n—1
(2) _ A 0 9
Axoxl...mn_lk = { ()\gxo — Z )\j:c]) Uy — 3u1} s — uo@uk_l' (18)

=1

Also,a=1,...,.n—2,b=1,....n—a— 1.
From the Lie symmetries given above similarity ansétze for system (10),
in the form

n
uu(aco, . 71'71—1) = Z fuj($07 - ,xn_l)goj(wl, - ,wn_l) + fu(l'o, - ,{En_l),
=0

can be constructed. Here the w’s are the new independent variables and the
©’s the new dependent variables.

As an example, we consider (12) together with its 1-dimensional invariant
subalgebra

n—1
Z2=3"T,+A?

zok”
v=0
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The similarity ansatz is obtained by solving the associated Lagrange system.
The ansétze for first-, second-, and k-order (k > 2) approximations are essen-
tially different:

For first approximation we obtain the ansatz:

ug = exp(—zo)po(w),

w = (90— 5 ) exp(-z0)pow) + exp(-Bmhpr(w). (19

For second approximation we have the similarity ansatz

Up = QOO(w):
ur = —zopo(w) + ¢1(w), (20)
ug = 2a3po(w) — 3zopr(w) + Pa(w).

For k-approximation (with k£ > 2) we obtain

2
X
= ) se0pn) + )

ug—1 = —Zopo(w) + Yr—1(w), (21)
Up—i = Pk—i(W), 1=2,3,...,k.

Here w is given by

n—1

w:Z:):j—(n—l)xo.

j=1

The reduced equations can be written down for any order of approximation.
In this case the reduced equations are linear driven oscillators. Let us write
down the reduced equations for first, second, and third order approximation:
By application of the ansatz (19) to system (10) (for (12)), with £ = 1, we
obtain

(n—1)(n —2)gy +2(n — 1)@y + (m? + 1)pg = 0,
(n—1)(n —2)¢] +6(n — 1)¢) + (m* — 91 = (n — 1)giep + 6.
For k = 2 the ansatz (20) applies. It follows that
(n—1)(n — 2)¢f +mPpg = 0,
(n—1)(n —2)¢f +m*p1 = —3(n — 1)) + (n — 1),
(n—1)(n —2)ph +mPpy = —T(n — 1)@} + (n — 1)gfe] +
2(n — 1)pop1h — 5o + @i.
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For k = 3 the ansatz (21) applies. It follows that

(n —1)(n = 2)¢g +m*po = 0,
(n—1)(n = 2)¢] + m*p1 = —(n = 1)¢p(1 = ),
(n—1)(n —2)p3 +mps = —(n — )¢ (1 — ¢5) — 2(n — D1 — popr),
(n—1)n = 2)p5 +m’p3 = —(n — Dh(1 — @) — 2(n — D@} (3 — pop1) +
(n— )b (7 + 200%2) — Po(2 — &5)-
Here ' = d/dw. All reductions which follow for higher approximations are

obtained by applying ansatz (21). In this way any order of approximation for

(12) can be obtained by solving the obove linear ordinary differential equations.
Let us now turn to the question of the conformal invariance of (1) under the

representation (8), i.e., we study the conformal invariance for the approximate

system of (1). We can state the following

Theorem 6 The nonlinear wave equation

ou ou ou > - (22)

Opu 4+ m?u — ef (u) <)\oa /\Zla o —I—---+)\iT%
with ryiv, ..., i, €{1,...,n—1}, r=d1 4+ +1i,, n # 2, and \g # 0, admits
the Lie symmetry generators given by the cases (i) to (iv) below under the the
representation (8), if and only if m* = 0 and

f(u) = Clu4/(n72) + o (01, co € 'R)

i) Ao = —N\.
For first approximation (22) admits the following Lie symmetry generators:

<Ty, Rap, Loj — Ry, Loi — Ry, S1, So— Loi, Ton, A =2) T (wotar) >

13’ (zo+x)1?

For k-order approzimation (k > 2) (22) admits the Lie symmetry generators:

Sk‘7 S.T_Lolu F0k7 A4/(n 2)

<Tl/7 Rab7 LO] Rﬂ: LO’L th (zo+x)k >
Here
a#b=1,....0,....n—1, 0<l<n-—1,
j=1,...,0—1, i=1+1,....,n—1,
l1<l<n-1, v=0...,n—1.
i) Ao = N\.

For first approximation (22) admits the following Lie symmetry generators:

< TI/7 Rab7 LOl R; Sl) S:L‘ _LOIa FOla A4/(” 2 T(xo —xz7) >

13> (zo—x7)1?
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For k-order approximation (k > 2) (22) admits the Lie symmetry generators:

4/(n—2)

<Tl/a Raba LOZ Rlza Skv SCE+L015 FOka A(xo z)k >

Here
a#b=1,...,0,....n—1, 0<l<n-1,
j=1,...,0—1, i=1+1,....,n—1,
l<li<n-1, v=0...,n—1.
i) Ao = )\ij];‘mj and l%%ij =rwithr,ij€{l,...,n—1}, j=1,...,r. For first
approzimation the following Lie symmetry generators are obtained:

<T,, kOa Loj — fcgleOa + Rja, ]Afo_alLof + Rig (r#n—1),

Rcb(r 7é {TL - 17 n— 2}a Sm + Z I;'()_leOjv Slv FOla A4/(n—2) Tmo...mn,1 > .

xQ...Tpn—117
Jj=1

For k-order approximations (k > 2) it follows that
<T,, ];1070/1L0j — ];'aleoa + Rja, ];‘aalLOF + Riq (7“ 75 n— 1),

-
7 — 4 2
Rcb(T #* {n —1,n— 2}), Sy + Zkoleoj, Sk, Tok, Azé(nxn)lk > .
j=1
Here
a=1,....r—1, jg=a+1,....r, T=r+1,...,n—1,
b=r+1,....n—2, c=b+1,....,n—1.
i) Xo = Nijkoiy, kg, #roand N =M — - =X, =0 with ri;e{l,...,
n—1}, 5 =1,...,r. For first approximation (22) admits the following Lie
symmetry generators

<T,, Loj+ kojRs;j (r #n —1), ( 012 ) Sy + (20A2> Ri1 + Loa,
r— kg kg1 — ko

(km km) x ko, ( kg’) Lo1 + Lo,
kOZ kOl r— k01

~4/(n—2)
Ra(r+1) (T‘ 7& {n - 17 n— 2})7 Sla FOlv Aaco...a:nflb Txo...xn_l >

For k-order approximations (k > 2) we obtain

]%01 ]%Oi
<T,, Loj-i-ko] rj( r#n—1), ( = )Sx-F(H)Rﬂ-FLUl,
r— kg kg1 — ki

k2 —k k — k2
( o 01>Sa:_ oL (T ASZ>L01+LO7;7
ka k()i r— k01

~4/(n—2)
RarJrl T%{?’L—l n—2}) Sk, Tok, A

xo...Tn—1k
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Here
j=1....r, ¢=2,...,r, 7=r+1,....n—1, a=r+2,...,n—1.

The proof is performed in the Appendix. Let us define the symbols used in
theorem 6 that were not defined before:
4/(n—2)

0 0
Alrotnk = {2Xoca(zo & 2)ug — (N + 2)uy } 9, + (2 —n)ugp Dy (23)

n—1
~ n— S 8
Ai{)s.zyi)ﬂﬁ = {2)\062 (xo -> :]‘%jlf”j) up — (n + 2)“1} g T
j=1

ouy,
(2 —n)ug Bupy’ (24)
=4/(n-2) 6—n =
vk = { ( 5 > Aoc2 (mo - 2 kjlggj) ug — (2 + n)m} Jur
(2-— n)uom’ (25)

0
T (wotay) = Koug + Kpug + {(2 —n)(xo £ 27)ur + Aoca(zo £ $z)2u0} Jur’ (26)
n—1 .
Tl‘o...xn_l - KOuo - Z k()_JlK]uo + (27)
j=1
n—1 R n—1 R 2 a
(2—n)|xo— Z kajla:j u1 + +Xgea | 29 — Z kajlxj Uo (o
j=1 j=1 1

From theorem 6 it is clear that approximate conformal invariance of (1)
exists only for first approximation.
REMARK: The function f in theorem 6 can be given in the more general form

Flu) = (cru+ cg)¥ =2

if we allow the infinitesimal function ny of 0/0ug in the generator Koy, and
Ky, to depend on c1 and ca.
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4 Conditional Symmetries of the Approximate System

In this section we study conditional symmetries of (12) in the form of Q-
symmetries. @-symmetries are obtained by constructing symmetries of the

form
n
Q:qu(xo,...,xn_l,uo,..., 8 +Z77] (o, .., Tk, Ug, - - -
— $ —
©n=0 H =0
under the condition
ou;
EM ] = 7
Z 8xu
where 5 =0,...,k.
For first approximation of (12) we study the system
O,up + m2u0 =0,
8UQ
O,u m2u; — (1 —ud)=— = 0.
nwl + 1 ( 0)6.%'0
Five classes of Q-symmetries follow:
Class 1: Here m? = —32, (x € R).
0 0 1
Qu = pr + emoa—uO + ( 5.3 ——5 €2 0ug + seuy + vy (w0, - -,xn—1)>
0
Q12 = 920 + {zouo + v2(z0, - -, Tn_1) +2u1} 5 — IR
Qus = -+ {ug + 511 + v )2
= — ug + »uq + vo(xg, ..., Tp_1)} —,
13 920 0 1 2(Zo n—1 By
where v1 and vo are solutions of the linear equations
2 3xox
Dnvl — ’U1%2 - ¢ == 0,
V
0,09 — V93 = 0,

respectively.
Class 2:
0 0
Q21 = Tm+{$0uo+v3($o7-~-7$n—1) 87u1’
0 1o}
Q22 == 87%+{U0+U3(x0,---7xn_1) 87"&17
0 0
Q23 = 920 + {ur +v3(zo, ..., Tp—1) Jur’

0
) 5
J

6u1 ’
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where v3 is a solution of the following equation:

0,v3 + m2vg = 0. (30)
Class 3:
Q31 = 36(50 + s, aa + {—sxouo + uo + 3scur + v3(xo,. .., Tpn-1)} aaul?
0 0
Qs = - —+ +

Uy~
63:0 6u0

1
{3%U1 — <2%6_2m° + m‘o) ug + v3(xo, . . . ,wn—1)} FIE

where v3 is a solution of (30).
Class 4: Here w? = —4;2, (x € R).

0 —22xx0 0
Qu = . + {%uo +e } i
{3%u1 — (%x + 1 e 4%;;:0) ug + va(x T 1} a—
ot 3 0 05 n By’
Qa2 = 87:6'0 + 08711,0 +
{?muo — (%xguo + 16_2}“0) ug + vs(zo x 1)} 9.
25 sy n— 8“17
Q 8+ a+{(1+)+3 + s }6
= — +sug— — #Io U wuq + vs(xg,...,x
43 8.’1)0 08 o 0)%0 1 5«40 n—1 (9’U,
where v4 and vs are solutions of the equations:
2
0,04 — 438 + 2302700 4 Ze=0%0 — (31)
4
Opvs — 4115%2 = 0, (32)

respectively.

REMARK: The (infinite) Q-symmetries in every class given above belong to
the same Q-condition so that subalgebra classifications of the Q-symmetries
that belong to the same class can be considered to construct exact solutions.

As an example we consider ()11, given in class 1, where a solution of (28)
is given by

v1(Zoy vy Tp—1) chexp (Zb1j$]+$0 ZbQ + 32 )
o0 n— 1 .
;c;exp (]; bi; — Zb’Q + 2 ) 563% 0,
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Here ¢;, c; and b;;, bj; are arbitrary constants. By solving the associated

Lagrange system we obtain the following ansatz:

1
ug = po(w) + ;emo, (33)
1
Uy = _ﬁ(g%mo(po(w) + %9:0%01( ) +
> S Zb— (3)
exp Y + T + %
i=1 \/m_ o = gLy T L0
) & n—1 n_17 1
> < exp b + o b2 4,2 | — 763%3;0’
=1 IS b A ; v ; Y 852
where
61 . x _
p— + ,
wo(w) 1 sin { \/m(w (;2)}
_ (&L e
o = (T2 gmom)
C1C2 (n—1)é 2s¢ 3 )
<2 2 + 3)w+ 8,4 cos \/m(w+c2) + ¢4

Here ¢; are arbitrary constants and (g and ¢ are the general solutions of the
reduced equations

dz‘PO 2 dSol
n—1
where w = ) ;.
Jj=1

A first approximate solution of

ou

— =0
Oxo

Opu + m2u — e(1 — u?)

is then given by u = ug + euy, where ug and u; are given by (33) and (34),
respectively. An analogous procedure can be followed for all other cases in
section 3.

Appendix: Proof of Theorem 6

We consider only the first approximation with Ag # 0 and n # 2. In order to
prove the necessity we consider the invariance condition in the form

x®@g, =0, xX®g
S0=0,51=0 S0=0,51=0
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95

where

(With T,il, ‘o

So = Onup =0,

S1 = Opur — f(uo) (Mouo,o + Aiyuos, + -+ + Xiuoi,)

prolongation of the Lie symmetry generator X, with

n—
X = Z §u(ac0, ce ,xn_l,uo,ul)
=0

1

O

i=0
We make use of the following notation:
_ 8251 o 02772‘
$ijijs = 52— Mijiuj, = 5> etc.
8% 81’]'2 8xj18uj2

+> milTo, ..., Tp_1, ug, uy)

0

du;’

vir €{1,...,n =1}, r =4d1 4+ -+ +14,) and X @) is the second

The determining equations for the unknown functions £ and 7 are the follo-

wing:

210,0u0
2770,qu
2770,iu0

10, pur
10,uouo
£0,0
o4
&ij
21M,0uo

—211,0u;

=211 g

271 0uy
201 juy

0,80 + Mo fn0,u; =0,

0,8 — Ajfmou =0, J=L..n

0,8 =0, i=r+1,...,n
r<n—1,

0, w=0,....,n—1,

no,uiur =0,  Opno =0,

&g =0,

&io0=0, 7=1,....,n—1,

i =0, 1£j=1,...,n

f(>\0"71 ur — 2200,0 — Ao"0,ue +
d

Z)\ fOz) >\0"70 f =0,

f()\jnl ur — 225600 — AjN0,uo +

d
Z/\sz) jnodfo_oa .j:17"'77a7

fZAp&-,p:o, i=r4+1,....n
p=0

0,80 — AofM0u, =0,
On& — Ajfnou, =0, j=1,...,m

_1,

—1,

(1.8)

(1.9)

(1.10)
(1.11)
(1.12)
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27]1,iU1 - Dn£Z:O7 7::7"4_1,...,’)’1/—1,
r<mn-—1, (1.13)
Muivr = Maugue = 07 (114)
r
Uy — fz )\p'r/O,p = 0. (115)
p=0

From equations (1.1) — (1.7) and (1.13) — (1.15) the following expressions for
&, and 7); are obtained:

n—1 n—1
& = 2z, (bgazo - Z bi$i> b (3:0 Z T ) + Z Ty +dy, (2.1)

=1 w,v=0

n—1
n = {(2 —n) (bowo - bi%) + 0600} up, (2.2)

i=1
n—1
Mu = (2—n) (boﬂﬁo - Z bil'i) + a1y, (2.3)
i=1
where co, = Ca0, Cap = —Cpa, C00 = Caa, @ # b =1,....n—1, and p =

0,...,n—1 (o, by, cuw, d, € R). The expressions (2.1) — (2.3), with equations
(1.8) — (1.10), results in the following set of equations:

)\obo(n — 4)ﬁ — 2i (i )\ b; ) + )\obo(n — 2)’LLU 2f =0, (31)

duo

+A;b;(n 2)u0d7u(2) =0, i=1...,n (3.2)
df df
Aib 2Mpbi——
p( )duo duo
Aiby(n — 2)u0 L — 0 i Ap=0,....r (33)
Odu%* ) p=4y,...,71 .
Aibg( —4)i+/\b( 2)u d2f—0 i=0 r
i0g\T d Oduoi ) — Uyl
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df
)\7, duo (0411 — 20{00 — C()() —l— e ( Z )\pczp) —

) p#i, p=0
d

)\iaoou(]d—u% = 0, 1= 0, ceey Ty (3.5)

L ()\Obo iijj):o, (3.6)
j=1

duo
d
d—f)\ibp:(), i=0,...,m7
ug
p=r+1,....,.n—1,
r<n-—1 (3.7)
d
df ()\()Cop Z/\CJP)_ , p=r+1,...,n—1,
U
r<mn-—1. (3.8)

For nonconstant functions f, (3.6) results in the following condition:

Aobo — > Ajbj = 0.
j=1

For by = 0 it follows that b; =0 for all j = 1,...,n—1, i.e., there can exist no
conformal symmetry generator. We can thus assume that by # 0. Note that
from (3.7) it follows that b, = 0 for p =r +1,...,n — 1, where r < n — 1.
From the above condition and egs. (3.1) — (3.2) we obtain

df d2f
—_ —_— _— 2 p—
(n 6)du0 (n—2)up—35 Ful 0,
i.e.,
f(uo) = Clué/(an) + c2.

From the above function f, together with (3.1)—(3.3), the following relation is
obtained:

Ao b _ - .
=== =ky =1,...
)\J b] 05> J ) T
ie.,
b (k2 — 1) — Z Ajb; I=1,...,r
J#l =1

This results in two essentially different cases:
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D) kg =1, S, o1 Aibj = 0.

) k2 # 1, Mbi(kg — 1) = S35 o1 Ajby = 0.

Let us consider case (I). This can be rewritten as

b+ b +bf o+ b =0,

ie,bj=X=0,j=1,...,0,...,7,0 <1 <r. Thus it follows that

No=+N, 0<I<r

This is written as case (i) and (ii) in theorem 6. From case (II) we can obtain
case (iii) and (iv) of theorem 6. By inserting the above relations and function
f in the determining equations we obtain the generators listed in theorem 6.
This proofs the necessary condition. By substituting the obtained function f
(with the related conditions) into the wave equation the sufficient condition
is satisfied. For k-order approximations one has to consider mathematical
induction.
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