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Abstract

A comprehensive application is presented of a recent theory concerning
a geometric characterization of separable second-order differential equa-
tions. The main purpose of the paper is to illustrate how the practical
algorithm developed from this theory effectively works, and what the
significance is of the different conditions entering the separability theo-
rem. These conditions are recalled in a coordinate representation, so as
to make the paper sufficiently self-contained for practical computations.

1 Introduction

Contemporary work on qualitative aspects of dynamical systems is mostly de-
signed for systems of first-order ordinary differential equations of relatively
low dimension. There are of course good reasons for this: higher-order differ-
ential equations can always be recast in an equivalent first-order form, and the
complexity of the qualitative behaviour of orbits rapidly becomes mathemat-
ically intractable when the dimension is too high. Besides, important results
have been obtained, such as the centre manifold theorem, which justify the
restriction to low dimension, at least for certain qualitative aspects of interest.
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Many problems with a physical origin, however, are expressed by second-
order differential equations. Newtonian and Lagrangian equations of motion
in classical mechanics are good examples in that respect, and when it con-
cerns an interacting multiple particle system, for instance, the dimension is
rightaway fairly high. Rewriting such a second-order system in the form of an
equivalent first-order system somehow destroys part of the inherent structure
of the problem. A natural question then is whether a sort of reduction of order
could be achieved by searching for a suitable “reference frame” (i.e. a suitable
coordinate system) with respect to which the given system of second-order
equations at least partially decouples. Two recent papers [3, 5] deal with such
questions, thereby making use of reasonably advanced differential geometric
concepts. Kossowski and Thompson [3] are able to characterize a form of par-
tial decoupling (“submersiveness”) in terms of the existence of a distribution
of vector fields with suitable properties. Existence results of this kind can of
course be hard to verify in practice. Mart́ınez et al [5] discuss the more restric-
tive case of complete decoupling into single second-order equations, but arrive
at a characterization which, in principle, can be directly tested on any given
system of second-order differential equations. In fact, the necessary and suffi-
cient conditions for complete separability turn out to be of an algebraic and
algorithmic nature. Certainly, they can be too tedious to compute by hand,
but computer algebra packages nowadays are invaluable for adding a practical
dimension to theoretical developments. For the history of the problem of full
separability, we should also mention contributions by Ferrario et al (see e.g.
[1, 2]) for the special case of Lagrangian systems.

The purpose of the present paper is to put the theory in [5] to a hard test.
The few examples of application of the theory which have been published so
far ([5] and also [6]), were rather simple and straightforward illustrations. A
hard case is needed to convince the public that the theory is really applicable,
that all conditions play a role, and that the different subcases of the theo-
retical discussion really show up. Needless to say, complete separability will,
generically speaking, be quite exceptional. Therefore, to have hope for success
in analysing a concrete situation, there must be enough freedom left in the
system we start from (i.e. enough arbitrary functions or free parameters). The
three degrees of freedom system we will analyse in this paper has, perhaps a
bit overambitiously, no less than 18 parameters for a start. The task then con-
sists in identifying all regions in this parameter space where a full decoupling
of the given system can be achieved.

For the remainder of this section, let us give an analytical formulation of
the general problem under consideration, and introduce the main matrices and
partial differential operators which play a key role in the computations.

Consider an arbitrary system of autonomous second-order equations in
normal form

q̈i = f i(q, q̇), i = 1, . . . , n. (1)
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The problem of complete separability can then be formulated as follows: under
what conditions for the given f i does there exist a regular coordinate trans-
formation Qj = Qj(q) such that in the new coordinates the system (1) takes
the form

Q̈j = F j(Qj , Q̇j), j = 1, . . . , n,

and if such coordinates exist, how do we construct them?
Two sets of functions of coordinates (qi) and “velocities” (vi = q̇i) which

are naturally associated to any second-order system like (1), are (the summa-
tion convention being used where appropriate),

Γi
j(q, v) = −1

2
∂f i

∂vj
, Φi

j(q, v) = −∂f i

∂qj
− Γk

j Γ
i
k − Γ(Γi

j), (2)

where Γ = vi ∂
∂qi + f i(q, v) ∂

∂vi is the vector field related to (1). Geometrically
speaking, the functions Γi

j are the coefficients of a (nonlinear) connection,
whereas (Φi

j) is truly a matrix representation of a linear endomorphism Φ, a
type (1,1) tensor, which is called the Jacobi endomorphism corresponding to
(1) (cf. [4]). Another important concept is the dynamical covariant derivative
∇: it is a derivation which is defined on tensorial objects of any type, and
is type-preserving. Its action on functions is given by ∇g = Γ(g), whereas
its action on Φ, for example, creates a new type (1,1) tensor whose matrix
representation reads

(∇Φ)i
j = Γ(Φi

j) + Γi
kΦ

k
j − Φi

kΓ
k
j . (3)

In order to have a feeling for the relevance of these concepts for the problem
at hand, assume for a moment that the given equations (1) were already
completely decoupled. Then we would have Γi

j = 0 for i 6= j. Consequently, Φ
would be diagonal and two of its diagonal elements could be equal only if they
are constant. Finally, also ∇Φ would be diagonal and, hence, commute with
Φ. This in turn means that the operator ∇ preserves the eigenspaces of Φ.
Since we are talking here about intrinsically defined objects, we are actually
looking at properties which will certainly be necessary for separability. They
are, however, not quite sufficient. As a matter of fact, whenever Φ happens
to be a constant multiple of the identity matrix, it is clear that Φ is not going
to provide us with much information. In such a case, we have to appeal to
another tensorial object for the characterization of separability, namely the
so-called tension t related to the nonlinear connection (Γi

j), given by

ti
j = Γi

j − vk
∂Γi

j

∂vk
. (4)

In the next section we will recall the main theorem about separability and
comment on the algorithmic process for applications which follows from it.
To keep the present paper reasonably self-contained, we will briefly sketch



8 W.SARLET, F.CANTRIJN and E.MARTÍNEZ

the meaning of other tensors and derivations entering the formulation of the
theorem, referring to [5] for the full exposition and background of the theory.
If one is only interested in doing the calculations, it will be sufficient to look
at the coordinate expressions of all geometrical objects in question.

2 Necessary and sufficient conditions for separability

Let U be an arbitrary type (1,1) tensor with component matrix (U i
j(q, v)) and

X a vector with components Xk(q, v). Here, and in the sequel, all indices run
from 1 to n, with n the dimension of q-space. We define a “vertical covariant
derivative” DV

X which acts in a non-trivial way on components of tensorial
objects only and, for example, acting on U produces a new type (1,1) tensor
DV

XU with components

(DV
XU)i

j = Xk
∂U i

j

∂vk
. (5)

Next, we associate to U a type (1,2) tensor CV
U whose action on arbitrary

vectors X and Y is defined by

CV
U (X, Y ) = [DV

XU,U ](Y ), (6)

the square brackets denoting the commutator of linear maps (i.e. of matri-
ces).

Diagonalizability of a tensor, such as U , is a local and purely algebraic
notion, which roughly means that the real Jordan normal form of the matrix
(U i

j(q, v)) is diagonal, with eigenvalues that are smooth functions of (q, v) in
some appropriate domain. A final ingredient of the separability theorem below
is the curvature tensor R of the connection with coefficients Γi

j , defined by the
second order system (1). This is a type (1,2) tensor which is in fact derivable
from the Jacobi endomorphism Φ via the property

3 R(X, Y ) = DV
XΦ(Y )−DV

Y Φ(X). (7)

Theorem Given a second-order system (1). Assume that the Jacobi endomor-
phism Φ is diagonalizable and that the tensors R, CV

Φ and [∇Φ,Φ] are identi-
cally zero. Then, the system separates into individual second-order equations,
one for each nondegenerate eigenvalue of Φ, and into a multi-dimensional
second-order system, separated from the rest, for each degenerate eigenvalue
(which will then necessarily be constant). If for each such subsystem the cor-
responding tension t is diagonalizable and satisfies CV

t = 0, then the given
system completely decouples. Conversely, if (1) is completely separable, then
all the previous conditions are verified.

Concerning the practical implementation of this result, a first comment is
that the diagonalizability of Φ, although it is the first condition mentioned
in the theorem, will be the last one to impose in an application. Indeed,
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computing eigenvalues and the Jordan normal form of a matrix whose entries
are functions of 2n variables may be quite laborious and will certainly be
simplified if one first takes into account the restrictions coming from the tensor
equalities. To see how these equalities will work, let us first list the coordinate
expressions of the tensors involved. As before, Γ denotes the vector field
representing the given second-order system. We then have, using (3), (5), (6)
and (7):

Ri
jk =

1
3

(
∂Φi

k

∂vj
−

∂Φi
j

∂vk

)
, (8)

(CV
Φ )i

jk =
∂Φi

`

∂vj
Φl

l − Φi
`

∂Φ`
k

∂vj
, (9)

[∇Φ,Φ]ij = Γ(Φi
k)Φ

k
j − Φi

kΓ(Φk
j ) + Γi

kΦ
k
` Φ

`
j + Φi

kΦ
k
` Γ

`
j − 2Φi

kΓ
k
` Φ

`
j . (10)

Generally speaking the situation will be as follows. In most cases of in-
terest, the right-hand sides f i of (1) will have a polynomial dependence on
the velocity variables vi and assume, for example, that they contain a suffi-
cient number of as yet undetermined parameters. The expressions (8–10) then
inherit a polynomial structure and since they must vanish identically, the co-
efficients of independent monomials in the vi must separately be put equal to
zero. This will in general lead to quite severe restrictions on the parameters
and resulting limitations on admissible f i. It is advisable therefore to impose
first the vanishing of (8), (9) and (10), in that order.

The calculations referred to above, are in principle rather straightforward,
but can of course be quite messy as well. It is easy, however, to write pro-
cedures for computing Γi

j ,Φ
i
j and the tensor components (8–10) in any com-

puter algebra environment. We have made use of REDUCE to assist us in
the tedious computations of the next sections. Splitting off coefficients of in-
dependent monomials is also a process which the computer is happy to do
for us. It is not possible, however, to make the whole calculation run fully
automatically. At each stage, different possible branches may show up which
need a separate treatment, and other decisions may have to be taken which
force us to keep the process interactive.

Once the algebraic equalities are satisfied, the hard problem (still of an
algebraic nature) is to investigate the diagonalizability of Φ. If Φ is diagonal-
izable with all eigenvalues different, then we are done: the theory guarantees
complete separability. Moreover, the proof of the theorem also tells us how
to find good coordinates to establish the decoupling. Indeed, the conditions
of the theorem in particular imply that the eigenscpaces of Φ can be spanned
by vectors depending on the coordinates qi only (this is in fact the content
of the condition CV

Φ = 0) and that they define complementary eigendistribu-
tions which are simultaneously integrable in the sense of Frobenius. In case all
eigenvalues of Φ are nondegenerate, the eigenspaces are one-dimensional and



10 W.SARLET, F.CANTRIJN and E.MARTÍNEZ

good coordinates, in which the given system decouples, are obtained through
the process of integrating these complementary one-dimensional distributions.
The same procedure still applies if Φ is diagonalizable but has degenerate
eigenvalues. However, the multi-dimensional subsystem corresponding to any
of the constant degenerate eigenvalues may still be internally coupled. If then
the conditions on the corresponding tension t are met, and if t has distinct
eigenvalues, a decoupling transformation follows as before. If, however, t
also has degenerate eigenvalues, a further coordinate transformation may be
needed in order to achieve the final separation. The theory explains that in
such a case the connection coefficients Γi

j of a subsystem corresponding to a
degenerate eigenvalue of t, say β, will be of the form

Γi
j(q, v) = β δi

j + Γi
jk(q)v

k, (11)

whereby the functions Γi
jk(q) define a linear symmetric connection with zero

curvature. From the theory of linear connections we then know that there
exists a coordinate transformation which will make the transformed connection
coefficients vanish. Such coordinates Qi, in terms of which separability of the
(sub-)system will finally be achieved, can be most easily found by constructing
exact 1-forms which are “parallel”. Explicitly, this amounts to constructing a
number of 1-forms αj satisfying

αj = aj
i (q)dqi = d(Qj(q)),

(12)
∇̃αj := v`

(
∂aj

i

∂q`
− aj

kΓ
k
i`

)
dqi = 0.

Observe, finally, as an interesting point of comparison for the explicit appli-
cation treated in the next sections, that we know in the latter subcase how
the right-hand sides F i of the decoupled equations will look like. Indeed, if
Φ = µI and t = βI (µ, β constant), then the decoupled form of the equations
in question should be such that

F i = −(µ + β2)Qi − 2βQ̇i + γi, (13)

for some constants γi.

3 Setting up a hard test for the theory

Consider the following coupled non-linear system of second-order ordinary
differential equations, depending on eighteen real parameters, (for notational
convenience, coordinate indices are henceforth denoted as subscripts):

q̈1 = b1q̇1 + a1q̇3 − s1q1 + r1q3 + a(q1 − q3)2,
q̈2 = m1q̇

2
1 + q̇2

2 + m3q̇
2
3 + n(2q̇1q̇2 − 2q̇1q̇3 − q̇2q̇3) +

(14)b2q̇2 + a2(2q̇1 − q̇3)− s2q2 + r2(2q1 − q3),
q̈3 = b3q̇3 + a3q̇1 − s3q3 + r3q1 + cq2

2 + b(q1 − q3)2.
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Before embarking on the long calculations, a few words are in order concerning
the origin of this system. To be honest, we have made sure from the start that
a subcase of known separability is built in. We have then added at least one
non-linear coupling term which is intuitively expected to prohibit separability
and, hence, its coefficient is expected to come out pretty soon as having to
be zero. Next, we have replaced almost all numerical factors of the known
separable case by as yet arbitrary parameters. Originally, the coefficient of q̇2

2

in the second equation then was an unspecified constant m2. However, in a
realistic situation one will normally try to eliminate redundant parameters by
a suitable rescaling, and a preliminary analysis of the system revealed that one
of the following parameters could be rescaled to 1, namely: a,m1,m2,m3, n, c,
or b. We have selected m2 as the most logical choice because all other constants
are associated to coupling terms.

Applying the conditions of the separability theorem to the above system,
we will now search for all regions in the 18-dimensional parameter space where
the system admits a full decoupling. In agreement with the general strategy
outlined in the previous section, we start by imposing the vanishing of the
curvature tensor R. It immediately appears from this that there are only two
admissible values for the parameter n, namely n = 2 and n = 0. In the next
section we will pursue in some detail the separability analysis for the case
where n = 2 (case 1), whereas the case n = 0 (case 2) will be treated more
briefly in section 5.

4 Case 1 : n = 2

In this case it follows that R identically vanishes if and only if

m1 = 4; m3 = 1; b1 =
1
2
a3 − 2a1 + b3; b2 = a2 − 2a1 + b3. (15)

With these restrictions on the parameters, it turns out that also the condition
CV

Φ = 0 is already satisfied. Therefore, we can pass to the commutator condi-
tion [∇Φ,Φ] = 0, which is definitely the most stringent among the algebraic
equalities ensuing from the separability requirement.

The components of [∇Φ,Φ], computed according to (10), are found to be
linear in the velocities vi, with coefficients that are themselves polynomials
of degree three in the coordinates qi. Inspection of the various independent
monomials first of all reveals that, necessarily,

c = 0 (16)

(c occurs, for instance, as coefficient of q3
2v3 in [∇Φ,Φ]22). Next, the coefficient

of q3
3v3 in [∇Φ,Φ]11 imposes

b = 2a. (17)
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The parameter a is then found as a factor in various of the remaining mono-
mials. Hence, we are led to make a further subdivision according to whether
a is zero or not.

4.1 Case 1.1 : a 6= 0

Taking into account all parameter conditions obtained so far, it follows from
the coefficient of q2

3 in [∇Φ,Φ]11 that we must have

a3 = −2a1. (18)

A careful analysis of the remaining conditions coming from [∇Φ,Φ] = 0 shows
that they are equivalent to the following three relations:

r3 = −2r1 ; s3 = s1 − 3r1 ; s2 = s1 − (r1 + r2). (19)

Summarizing, for n = 2 and a 6= 0, the ten parameter relations given by (15–
19) are necessary and sufficient for having R = 0, CV

Φ = 0 and [∇Φ,Φ] = 0. We
next investigate diagonalizability of Φ, the components of which are already
reduced to:

Φ1
1 =

1
4
(8aq3 − 8aq1 − 7a2

1 + 6a1b3 − b2
3 + 4s1),

Φ1
2 = 0,

Φ1
3 = −1

4
(8aq3 − 8aq1 − 3a2

1 + 2a1b3 + 4r1),

Φ2
1 = −1

2
[(4s1 − 4r1 − 4r2)(2q1 + q2 − q3)− 4a1a2 + a2

2 + 2a2b3 + 4r2],

Φ2
2 = −1

4
[(4s1 − 4r1 − 4r2)(2q1 + q2 − q3) +

4a2
1 − 4a1a2 − 4a1b3 + a2

2 + 2a2b3 + b2
3 + 4r1 + 4r2 − 4s1],

Φ2
3 =

1
4
[(4s1 − 4r1 − 4r2)(2q1 + q2 − q3)− 4a1a2 + a2

2 + 2a2b3 + 4r2],

Φ3
1 =

1
2
(8aq3 − 8aq1 − 3a2

1 + 2a1b3 + 4r1),

Φ3
2 = 0,

Φ3
3 = −1

4
(16aq3 − 16aq1 − 2a2

1 + b2
3 + 12r1 − 4s1).

We note, in particular, that the following relations hold:

Φ1
2 = Φ3

2 = 0 , Φ2
1 = −2Φ2

3 , Φ3
1 = −2Φ1

3 , Φ1
1 − Φ3

3 = −3Φ1
3.

Using these, the eigenvalues of Φ are easily found to be

λ1 =
1
2
(Φ1

1 + Φ3
3 + Φ1

3) = Φ3
3 − Φ1

3,

λ2 = Φ2
2,

λ3 =
1
2
(Φ1

1 + Φ3
3 − Φ1

3) = Φ3
3 − 2Φ1

3.
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Note that, since a 6= 0, we clearly have λ1 6= λ3 and λ1 6= λ2. However, the
degeneracy λ2 = λ3 is still possible if both

r2 = s1 − r1, (20)

and
4(r1 − s1) = a2

2 + 2a2b3 − 4a1a2 (21)

hold, which is in fact equivalent to Φ2
3 = 0. This forces us to make a further

subdivision.
(i) Assume λ2 6= λ3 (i.e. Φ2

3 6= 0). Φ is now diagonalizable with three distinct
eigenvalues, so we have complete separability. As outlined in the previous
section, the construction of suitable coordinates in principle amounts to the
simultaneous integration of the complementary eigendistributions of Φ. In
the present case, however, this is rather simple because the components of
Φ are linear in the qi’s (and independent of the velocities), so that a linear
coordinate transformation, Qi = aijqj say, is expected to do the job. The
procedure which will be adopted therefore, is to search for a regular constant
matrix A = (aij) such that

AΦ = diag (λ1, λ2, λ3)A. (22)

In view of the structure of Φ, we may take an A of the form

A =

 1 0 α
β 1 γ
δ 0 1

 ,

and (22) then produces equations for the determination of α, β, γ and δ. A
solution is given by α = −1, β = 2, γ = −1, δ = −2. Hence, decoupling
should be achieved by the regular linear coordinate transformation

Q1 = q1 − q3 , Q2 = 2q1 + q2 − q3 , Q3 = −2q1 + q3,

with inverse,

q1 = Q1 −Q3 , q2 = Q2 + Q3 , q3 = −2Q1 −Q3.

The transformed system (14) is indeed found to be:

Q̈1 = (b3 − a1)Q̇1 − aQ2
1 + (2r1 − s1)Q1,

Q̈2 = Q̇2
2 − (2a1 − a2 − b3)Q̇2 − (s1 − r1 − r2)Q2, (23)

Q̈3 = (b3 − 2a1)Q̇3 + (r1 − s1)Q3.

(ii) Assume λ2 = λ3 (i.e. (20) and (21) hold or, equivalently, Φ2
3 = 0). It

turns out that the same coordinate transformation as above diagonalizes Φ
and also decouples the system, even though we are dealing with a degenerate
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eigenvalue. The least one expects then is that the additional conditions of
the theorem, i.e. CV

t = 0 and t diagonalizable, happen to be satisfied. One
easily verifies that this is indeed the case. It is instructive to see that these
conditions are nevertheless not redundant. To that end, observe that α = −1,
β = γ = 0 and δ = −2, provides another solution of (22) in this case. The
corresponding transformation

Q′
1 = q1 − q3 , Q′

2 = q2 , Q′
3 = −2q1 + q3,

diagonalizes Φ, but leaves the subsystem (Q′
2, Q

′
3) internally coupled, so that

a further transformation, coming from the analysis of the tension, is needed
to achieve our goal.

Remark: In analysing t for the subsystem in question, one comes across
the possibility of a degenerate eigenvalue. This happens for a2 = 0, which
implies r1 = s1 and r2 = 0 (see (20) and (21)). Observe that the decoupled
system (23) in this case contains

Q̈2 = Q̇2
2 + (b3 − 2a1)Q̇2,

Q̈3 = (b3 − 2a1)Q̇3.

The common factor b3 − 2a1 is in agreement with the theory (see the factor
−2β in (13)). The extra term Q̇2

2, on the other hand, would seem to contradict
equation (13). However, under the present circumstances, the theory merely
guarantees the existence of coordinates which will bring the “forces” in the
form (13) (we have β2 + µ = 0 here) and of course does not preclude that
separation may be achieved in other coordinates as well. To bring the above
system in line with (13), it suffices to introduce the transformation Q′

2 =
exp(−Q2) which can be obtained from the construction of a “parallel 1-form”,
as characterized by (12).

4.2 Case 1.2 : a = 0

In view of (17) we now also have that

b = 0.

Further analysis of the condition [∇Φ,Φ] = 0 first reveals the following two
additional restrictions on the parameters:

r3 = 2(r2 + s2 − s1) ; s3 = r2 + s2 − 2r1. (24)

The remaining (non-zero) components of [∇Φ,Φ] now only contain constant
terms, the vanishing of which entails just one extra condition which can be
factorized as

[r1a3 +2a1(s1−s2−r2)][(a3 +4a1)(a3−4a1 +4b3)+16(r2 +2r1−s1 +s2)] = 0.
(25)



APPLICATION OF THE THEORY 15

Accordingly, we identify two subcases distinguished by, respectively,

r1a3 6= 2a1(r2 + s2 − s1), (26)

and
r1a3 = 2a1(r2 + s2 − s1). (27)

(i) If (26) holds, then (25) yields

4b3(a3 + 4a1) = 16a2
1 − a2

3 − 16(r2 + 2r1 − s1 + s2).

This can be regarded as a defining relation for b3, since in this case we neces-
sarily have a3 + 4a1 6= 0. Indeed, (25) and (26) imply that a3 + 4a1 = 0 if and
only if r2 = s1 − s2 − 2r1, and both relations together contradict (26).
We now turn to the diagonalizability condition of Φ. Computing the compo-
nents of Φ we observe that

Φ1
2 = Φ3

2 = 0 , Φ2
1 = −2Φ2

3 , Φ3
1 = −4Φ1

3,

which makes it easy to obtain the following eigenvalues:

λ1 = λ3 =
1
2
(Φ1

1 + Φ3
3),

λ2 = Φ2
2.

Further analysis reveals, however, that Φ in this case is not diagonalizable.
Hence, no complete separation of (14) can be accomplished.
(ii) If (27) holds, the components of Φ verify the following relations:

Φ1
2 = Φ3

2 = 0 , Φ2
1 = −2Φ2

3 , Φ1
1 − Φ3

3 =
1
2
Φ3

1 − 2Φ1
3,

and the eigenvalues of Φ now read

λ1 =
1
2
Φ3

1 + Φ3
3,

λ2 = Φ2
2, (28)

λ3 = −2Φ1
3 + Φ3

3.

Both λ1 and λ3 are found to be constant, whereas, if s2 6= 0, λ2 is not. The
only possible degeneracy is then λ1 = λ3. On the other hand, if s2 = 0,
then λ2 is also constant, and various cases of degeneracy may occur. It turns
out, however, that the nature of λ2 does not have any effect on the further
separability analysis of the case under consideration.

Using (28) and the explicit expressions for the components of Φ, we find
that

λ1 − λ3 =
1
2
Φ3

1 + 2Φ1
3 =

1
16

[16a2
1 − 16a1b3 − a2

3 − 4a3b3 − 32r1 − 16(r2 + s2 − s1)].
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A straightforward analysis reveals that a solution of the matrix equation (22)
is here given by

A =

 k1 0 −k2

2 1 −1
−2 0 1

 , (29)

where

k1 = a2
3 − 4a1a3 + 4a3b3 + 16(r2 + s2 − s1),

k2 = 8a2
1 − 2a1a3 − 8a1b3 − 16r1.

Since det A = k1 − 2k2, regularity requires k1 6= 2k2. Observe at this point
that we also have

λ1 − λ3 =
1
16

(2k2 − k1).

This leads to the following discussion.

• If λ1 6= λ3 (i.e. k1 6= 2k2), then Φ has three distinct eigenvalues and is
diagonalized by the matrix A of (29). By means of the corresponding
transformation

Q1 = k1q1 − k2q3 , Q2 = 2q1 + q2 − q3 , Q3 = −2q1 + q3,

the given system (14) effectively decouples and becomes:

Q̈1 =
1
2
(a3 + 2b3)Q̇1 + (2r1 − s1)Q1,

Q̈2 = Q̇2
2 + (a2 − 2a1 + b3)Q̇2 − s2Q2,

Q̈3 = (b3 − 2a1)Q̇3 − (r2 + s2)Q3.

• If λ1 = λ3 (i.e. k1 = 2k2), then the matrix (29) is no longer acceptable
since detA = 0. For k2 6= 0, it turns out that Φ is not diagonalizable
and, hence, (14) cannot be completely separated. Assuming k2 = 0, we
also have k1(= 2k2) = 0, and we can regard these conditions as defining
relations for the parameters r1 and r2, namely

r1 =
1
8
(4a2

1 − a1a3 − 4a1b3),

r2 = s1 − s2 −
1
16

(a2
3 − 4a1a3 + 4a3b3).

Note that these relations are compatible with the condition (27). We
find that Φ, which now has a degenerate eigenvalue, can be diagonalized
by the linear coordinate transformation

Q1 = q1 − q3 , Q2 = 2q1 + q2 − q3 , Q3 = −2q1 + q3.
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In the new coordinates, the system (14) reads:

Q̈1 =
1
2
(a3 + 2b3)Q̇1 +

1
2
(2a1 + a3)Q̇3 +

1
4
(4a2

1 − a1a3 −

4a1b3 − 4s1)Q1 +
1
16

(2a1 + a3)(4a1 − a3 − 4b3)Q3,

Q̈2 = Q̇2
2 + (a2 − 2a1 + b3)Q̇2 − s2Q2, (30)

Q̈3 = (b3 − 2a1)Q̇3 −
[
s1 −

1
16

(a2
3 − 4a1a3 + 4a3b3)

]
Q3

and, in a way which is consistent with the theory, is only partially decou-
pled. Note, however, that the system would be completely decoupled in
case a3 = −2a1. Following the separability theorem, we next investigate
the tension t, associated with the (Q1, Q3)-subsystem, which is given by

t =

( 1
4(a3 + 2b3) 1

4(2a1 + a3)

0 1
2(b3 − 2a1)

)
.

Clearly, t being constant, we have CV
t = 0. The diagonal elements of t

are its eigenvalues. If a3 = −2a1, t is diagonal and, as observed above,
the system (30) is already completely decoupled. In the opposite case, t
can only be diagonalized when its eigenvalues are different, i.e. provided
that a3 6= −4a1. The transformation

Q′
1 = Q1 +

2a1 + a3

4a1 + a3
Q3 , Q′

3 = Q3,

which does the diagonalization is then easily seen to decouple the system
(30) as well.

This completes the study of case 1 (n = 2). As a summary, we list in the
following table the parameter relations which in this case guarantee complete
separability of the second-order system (14).

c = 0 n = 2
m1 = 4 b1 = 1

2a3 − 2a1 + b3

m3 = 1 b2 = a2 − 2a1 + b3

a 6= 0 a = 0 b = 0
b = 2a s3 = s2 + r2 − 2r1

a3 = −2a1 r3 = 2(r2 + s2 − s1)
r3 = −2r1 • if (a3 + 4a1)(a3 − 4a1 + 4b3)
s2 = s1 − (r1 + r2) +8(r3 + 4r1) 6= 0
s3 = s1 − 3r1 then r1a3 = r3a1

• else ? if a3 6= −4a1

then r1 = 1
8a1(4a1 − a3 − 4b3)

? else a1 = 0
a3 = 0
r1 = 0
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5 Case 2 : n = 0

The analysis of this case turns out to be much more involved than that of
case 1. The parameter relations, ensuing from the separability conditions,
are more complicated and there are also more subcases to be distinguished.
Nevertheless, the general procedure being essentially the same as before, we
will keep the treatment of case 2 as concise as possible.

First of all we find that, for n = 0, R vanishes if and only if

m1 = 0 ; m3 = 0 ; a2 = 0; (31)

and these conditions also guarantee the vanishing of CV
Φ . Among the nu-

merous complicated expressions coming from the condition [∇Φ,Φ] = 0, the
requirements that are most easily detected read,

r2 = 0, (32)

and ac = 0, bc = 0. For c 6= 0, we are led to various subcases for which it
always appears, however, that Φ in the end is not diagonalizable. As in case
1, we are thus forced to put

c = 0, (33)

which kills a lot of terms in the components of [∇Φ,Φ]. Nevertheless, there
still remain some complicated parameter relations which, eventually, lead to
the identification of the following three subcases:

case 2.1 : a = b = 0; (34)
case 2.2 : a = b 6= 0;

b3 = b1 + a1 − a3;

r3 = −r1 −
1
4
(a1 + a3)(2b1 + a1 − a3); (35)

s3 = s1 − 2r1 −
1
4
(a1 + a3)(2b1 + a1 − a3);

case 2.3 : a 6= b;
b3 = b1 + a1 − a3;
aa3 = −ba1; (36)
ar3 = −br1;
s3 = s1 + r3 − r1.

Case 2.2 is the easiest one to handle. It rapidly becomes clear that Φ has a
non-diagonal Jordan normal form (with λ1 = λ3) unless, among other things,
we have a = 0, which was excluded! The system therefore is not separable.

Case 2.3 is also quite tractable. It appears that the assumption a 6= b
ensures that the eigenvalues of Φ will all be different. Separability thus follows.
Explicitly, a transformation which performs the separation is given by

Q1 = −bq1 + aq2 , Q2 = q2 , Q3 = q3 − q1.
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We then turn to the hard case 2.1.
Preliminary remark: Under the current assumptions, the q2-equation

in (14) is already separated from the (q1, q3)-subsystem. This means that λ2 =
Φ2

2 will be an eigenvalue of Φ and that for further decoupling we have to worry
about the complementary part of Φ only and, in particular, about possible
degeneracy of λ1 and λ3 only. Moreover, in those cases where decoupling can
be achieved, the corresponding coordinate transformation will merely affect q1

and q3 and we will systematically omit its trivial part Q2 = q2.
In order for [∇Φ,Φ] to be zero, it turns out that the remaining free pa-

rameters still have to verify three equations which, after some straightforward
manipulations, can be cast in the form:

2a1a3(b1 + b3)(s1 − s3) + (a1r3 + a3r1)[b2
1 − b2

3 +
4(s1 − s3)] + 8r1r3(b1 − b3) = 0, (37)

2(a1r3 − a3r1)[(a1 + a3)(b1 + b3) + 4(r1 + r3)] + [b2
3 − b2

1 +
4(s1 − s3)][(r1 − r3)(b1 − b3) + (a1 − a3)(s1 − s3)] = 0, (38)

2(a1r3 − a3r1)[(a1 − a3)(b1 + b3) + 4(r1 − r3)] + [b2
3 − b2

1 +
4(s1 − s3)][(r1 + r3)(b1 − b3) + (a1 + a3)(s1 − s3)] = 0. (39)

A full discussion and analysis of these parameter conditions is a non-trivial
enterprise. We briefly sketch how one may proceed.

First of all, observe that one may regard the equations (38) and (39) as
a linear homogeneous system in the quantities ρ = a1r3 − a3r1 and σ =
b2
3−b2

1+4(s1−s3). Equation (37) then precisely expresses that the determinant
of this system is zero. It is therefore not surprising that ρ and σ will play a key
role in the subsequent discussion. From (38) and (39) one may easily infer that
σ = 0 necessarily implies ρ = 0. Hence, if ρ 6= 0 we must have σ 6= 0 as well.
In this case it remains a non-trivial problem to deduce some more tractable
conditions from (37–39) and to use these for investigating the diagonalizability
of Φ. For all subcases which come into that discussion, however, Φ in the end
turns out to be non-diagonalizable, so we omit reporting on more details.

Assume therefore that ρ = 0. Adding and subtracting equations (38) and
(39), and working out the left-hand side of (37), we obtain the equivalent
system of equations

[2a1(b1 + b3) + 8r1][(b1 − b3)r3 + (s1 − s3)a3] = 0, (40)
σ[(b1 − b3)r3 + (s1 − s3)a3] = 0, (41)
σ[(b1 − b3)r3 + (s1 − s3)a1] = 0, (42)

which, of course, has to be supplemented with the condition ρ = 0. From (41)
and (42), two subcases present themselves.
(I) Assume σ 6= 0.

The above system reduces to

(b1 − b3)r1 = (s3 − s1)a1, (43)
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(b1 − b3)r3 = (s3 − s1)a3, (44)

and again gives rise to two subcases.

• If b1 6= b3, then (43) and (44) can be used as defining relations for r1

and r3 (and note that the resulting expressions are compatible with the
assumption ρ = 0). Computing Φ we find, listing only the part of interest
(recall that the q2-equation is already separated from the rest):

Φ1
1 = −1

4
(a1a3 + b2

1 − 4s1) , Φ1
3 =

−a1σ

4(b1 − b3)
;

Φ3
1 =

−a3σ

4(b1 − b3)
, Φ3

3 = −1
4
(a1a3 + b2

3 − 4s3).

The remaining eigenvalues are obtained as,

λ1,3 =
4(b1 − b3)(Φ1

1 + Φ3
3)± σ

√
4a1a3 + (b1 − b3)2

8(b1 − b3)
.

Clearly, for these to be real one should have that 4a1a3 + (b1− b3)2 ≥ 0.
In case the equality holds and, hence, λ1 = λ3, one can prove that Φ is
not diagonalizable. We thus have to impose the additional restriction

D = 4a1a3 + (b1 − b3)2 > 0, (45)

which then ensures that Φ must be diagonalizable by a linear coordi-
nate transformation, and the system will decouple. In constructing this
transformation, i.e. in identifying a suitable regular matrix A verifying
(22), we again have to distinguish between several cases. Omitting here
also the irrelevant middle row and middle column of A, the results we
obtained read as follows.
If
√

D 6= b1 − b3, a solution is given by

A =

(
1
2(b1 − b3 −

√
D) a1

a3 −1
2(b1 − b3 −

√
D)

)
.

If
√

D = b1 − b3 (6= 0), with a3 = 0,

A =

(
0 1

1
2(b1 − b3) 1

2a1

)
.

Finally, if
√

D = b1 − b3 (6= 0), with a1 = 0,

A =

(
−1

2a3
1
2(b1 − b3)

1 0

)
.
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• Next, assume b1 = b3. Since σ 6= 0 it follows that s1 6= s3 and, hence,
(43) and (44) yield

a1 = a3 = 0.

The remaining eigenvalues of Φ are now given by

λ1,3 =
1
2
[Φ1

1 + Φ3
3 ±

√
D′]

with D′ = 4r1r3 + (s3 − s1)2. For D′ = 0, i.e. for λ1 = λ3, it is found
that Φ is not diagonalizable and thus we have to require

4r1r3 + (s3 − s1)2 > 0,

which will ensure complete decoupling. For the Jacobian matrix A of a
linear transformation which accomplishes the decoupling we obtain this
time:
for

√
D′ 6= s1 − s3,

A =

(
−2r3

√
D′ + s3 − s1√

D′ + s3 − s1 2r1

)
,

for
√

D′ = s1 − s3 (6= 0), with r3 = 0,

A =

(
s3 − s1 r1

0 1

)
,

for
√

D′ = s1 − s3 (6= 0), with r1 = 0,

A =

(
1 0
−r3 s3 − s1

)
.

This completes the study of subcase (I) of case 2.1.
(II) Assume now σ = ρ = 0.

Conditions (41) and (42) are satisfied and we are left with the restriction
(40). Without entering the details of the discussion, we give an overview of
the various possibilities one encounters in this case.

• Let b1 = b3. In view of σ = 0, we then also have s1 = s3. For Φ to admit
real eigenvalues we must have a1a3 ≥ 0.

First, assume a1a3 > 0. Then, if r1 6= −1
2a1b1, Φ is diagonalizable with

λ1 6= λ3, and decoupling can be accomplished by

A =

 1
2(a1 + a3)(a3b1 + 2r3) −√a1a3

[
1
2(a1 + a3)b1 + r1 + r3

]
√

a1a3

[
1
2(a1 + a3)b1 + r1 + r3

]
1
2(a1 + a3)(a1b1 + 2r1)

 .
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• If r1 = −1
2a1b1 (and thus, in view of ρ = 0, r3 = −1

2a3b1), then Φ is
already in diagonal form with λ1 = λ3. The system (14) is not yet com-
pletely decoupled. The tension t corresponding to the (q1, q3)-subsystem,
reads

t =

 b1
2

a1
2

a3
2

b1
2


and, obviously, verifies CV

t = 0. Moreover, t can be brought into diagonal
form by means of the transformation

Q1 = a3q1 +
√

a1a3 q3 , Q3 = a3q1 −
√

a1a3 q3,

which establishes complete decoupling of (14).

Next, assume a1a3 = 0. The analysis now shows that the only favourable
cases are those where a1 = a3 = 0 and either r1r3 > 0 or r1 = r3 = 0.
In the latter case, the system (14) is already decoupled as it stands. In
the former case, Φ is diagonalizable with λ1 6= λ3 and a transformation
which diagonalizes Φ and decouples (14), reads

Q1 = r3q1 −
√

r1r3 q3 , Q3 = r3q1 +
√

r1r3 q3.

• Let b1 6= b3. Further analysis of the parameter conditions, in particular of
equation (40), gives rise to the following three possibilities: (i) a3 = r3 =
0; (ii) a1 = r1 = 0; (iii) a1a3 6= 0, r1 = −1

4a1(b1+b3), r3 = −1
4a3(b1+b3).

(i) If a3 = r3 = 0, then Φ is already in Jordan normal form with λ1 = λ3,
and will be diagonal iff r1 = −1

4a1(b1 + b3). The q1-equation in (14)
then still has a q3-dependence. The tension t of the (q1, q3)-subsystem
satisfies CV

t = 0 and has two distinct (real) eigenvalues. Hence, t can
be diagonalized and a further decoupling of the system can be carried
through by means of the transformation

Q1 =
1
2
(b1 − b3)q1 +

1
2
a1q3 , Q3 = q3.

(ii) If a1 = r1 = 0, then we are in a situation similar to the previous
one. Φ will be diagonal iff r3 = −1

4a3(b1 + b3) and, this time, it is
the q3-equation which is not yet decoupled. The tension of the (q1, q3)-
subsystem verifies the conditions of the separability theorem, and com-
plete decoupling of (14) is accomplished by the transformation

Q1 = q1 , Q3 = −1
2
a3q1 +

1
2
(b1 − b3)q3.

(iii) If a1a3 6= 0, r1 = −1
4a1(b1 + b3) and r3 = −1

4a3(b1 + b3), then Φ is
diagonal with λ1 = λ3, but again the system (14) is not yet completely
decoupled. Diagonalizability of the tension now requires

4a1a3 + (b1 − b3)2 > 0.
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An appropriate transformation leading to complete decoupling of (14),
is then given by

Q1 = a3q1 +
1
2

(√
4a1a3 + (b1 − b3)2 + b3 − b1

)
q1,

Q3 = a3q1 −
1
2

(√
4a1a3 + (b1 − b3)2 + b3 − b1

)
q3.

This completes the study of case 2.1 and, at the same time, concludes the
separability analysis of the second-order system (14).

In the table below we give an overview of the parameter relations which
guarantee complete separability in the case n = 0. In interpreting this classi-
fication, one should keep in mind that whenever we are in a situation where
the separability conditions are verified, the actual construction of the decou-
pling transformation may still lead to different subcases. As a result, some
of the favourable cases listed below, encompass two or more of the subcases
encountered in the above analysis.

c = 0 n = 0
m1 = 0 a2 = 0
m3 = 0 r2 = 0

b 6= a a = 0 b = 0
b3 = b1 + a1 − a3 (b1 − b3)r1 = (s3 − s1)a1

s3 = s1 + r3 − r1 (b1 − b3)r3 = (s3 − s1)a3

aa3 = −ba1 • if b3 6= b1, then 4a1a3 + (b1 − b3)2 > 0
ar3 = −br1 • else ? if s3 6= s1

then 4r1r3 + (s3 − s1)2 > 0
? else � if a1 = a3 = 0

then either r1 = r3 = 0
or r1r3 > 0

� else a1a3 > 0
a1r3 = a3r1

6 Conclusions

The separability theory developed in [5] has been put to a serious test by
means of a system of three coupled, nonlinear second-order ordinary differ-
ential equations, depending on eighteen parameters. In particular, we have
succeeded in identifying all domains in the parameter space where the system
admits a full decoupling. Moreover, for each favourable case we have also
constructed the explicit form of the transformation which accomplishes the
decoupling. Although, the given system may look rather artificial at the out-
set, for the purpose of testing the theory it turned out to be extremely useful.
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Apart from providing us with a highly non-trivial example, it has allowed us
to illustrate the relevance and role of all conditions entering the separability
theorem.
Acknowledgement. Support from the Belgian National Fund for Scientific
Research is gratefully acknowledged.
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