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Abstract

The three ansatzes are constructed for the nonlinear Dirac equation.

In a number of papers [1–3] we constructed exact solutions of the nonlinear Dirac equation

i
3∑

µ=0

γµψxµ − λ(ψψ)kψ = 0, λ, k ⊂ R1 (1)

by reducing it to systems of ordinary differential equations.
In (1) γµ, µ = 0, 3 are (4 x 4) Dirac matrices (see, e.g. [4] ); ψ = ψ(x0, x1, x2, x3) is a

four-component complex function; ψ = ψ+γ0; k, λ ∈ R1.
But we found in [2] that it is quite useful to study reductions of the Dirac equation

(1) to two-dimensional systems of partial differential equations (PDE). For this, one has
to utilise symmetry properties of equation (1) and to construct ansatzes invariant under
inequivalent two-parameter subgroups of the symmetry group of system (1) [4].

In the present paper we will show that three ansatzes obtained in the above mentioned
manner reduce the nonlinear Dirac equation to integrable two-dimensional systems of
PDE. Omitting intermediate computations we adduce ansatzes for the spinor field ψ(x)
and corresponding reduced equations:

1) ψ = ϕ(ξ, w), ξ = x0 + x3, w = x2,

i(γ0 + γ3)ϕξ + iγ2ϕw = λ(ϕϕ)kϕ, (2)
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2) ψ = w−1/2 exp
(
−1

2 arctan x1
x2

)
ϕ(ξ, w), w = x2

1 + x2
2 ,

i(γ0 + γ3)ϕξ + iγ2ϕw = λw−k(ϕϕ)kϕ; (3)

3) ψ = ξ−1/2 exp
(
−1

2γ1(γ0 + γ3)x1/(x0 + x3)
)
ϕ(ξ, w), w = x2,

i(γ0 + γ3)ϕξ + iγ2ϕw = λξ−k(ϕϕ)kϕ. (4)

Surprisingly enough, equations (2)–(4) proved to be integrable in closed form. Let us
consider the system of PDE (2). We rewrite it in the following equivalent form:

ϕw = iγ2fwϕ+ γ2(γ0 + γ3)F, (5a)

ϕξ = F, λ(ϕϕ)k = fw. (5b)

System (5a) can be considered as a system of ordinary differential equations with
respect to the variable w. Its general solution is obtained by the method of variation of
arbitrary constants

ϕ(ξ, w) = eifγ2 [χ(ξ) +
w∫

0

e−ifγ2γ2(γ0 + γ3)Fdw], (6)

where χ(ξ) is an arbitrary four-component complex function.
Since (γ0 + γ3)ϕξ = (γ0 + γ3)F , we get from (6) the following relation:

(γ0 + γ3)F = (γ0 + γ3)eifγ2(χ̇+ ifξγ2χ).

Substituting the obtained result into (6) yields

ϕ(ξ, w) = eifγ2 [χ+ γ2(γ0 + γ3)
w∫

0

e2ifγ2(χ̇+ ifξγ2χ)dw]. (7)

The only thing left is to substitute (7) into the second equation from (5b). As a result,
we get an integrodifferential equation for f = f(ξ, w)

fw = λ(A+B

w∫
0

ch2fdw + C

w∫
0

sh2fdw)k, (8)

where
A = χχ, B = χγ1(γ0 + γ3)χ̇− χ̇γ1(γ0 + γ3)χ,

C = i(χ(γ0 + γ3)χ̇− χ̇(γ0 + γ3)χ). (9)

In the same way one establishes that general solutions of systems of PDE (3), (4) is
given by the formula (7), where f = f(ξ, w) is a solution of integrodifferential equations

wkfw = λ(A+B

w∫
0

ch2fdw + C

w∫
0

sh2fdw)k,
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ξkfw = λ(A+B

w∫
0

ch2fdw + C

w∫
0

sh2fdw)k, (10)

correspondingly.
We have succeeded in integrating equations (8), (10). Since the procedure of integration

demands rather tedious computations, we adduce only the final solution of equation (8).
Its explicit form depends on relations between B and C, so one has to consider four
inequivalent cases.

Case 1 B = ±C, B 6= 0

a) k 6= −1, f = ±1
2 ln(ε+ 2λ

(k+1)B (A+Bg)k+1),

g(ξ,w)∫
0

[
ε± 2λ

(k + 1)B
(A+Bτ)k+1

]−1

dτ = w;

b) k = −1, f = ±1
2 [ln(ε+ 2λ

B ln(A+Bg)],

g(ξ,w)∫
0

[
ε± 2λ

B
ln(A+Bτ)

]−1

dτ = w;

Case 2 B2 > C2 <=> B = α(ξ)ch2β(ξ), C = α(ξ)sh2β(ξ)

a) k 6= −1, f = −β + 1
2arch[1 + (ε+ 2λ

α(k+1)(A+ αg)k+1)2]1/2,

g(ξ,w)∫
0

[
1 + (ε+

2λ
α(k + 1)

(A+ ατ)k+1)2
]−1/2

dτ = w;

b) k = −1, f = −β + 1
2arch[1 + (ε+ 2λ

α ln(A+ αg))2]1/2,

g(ξ,w)∫
0

[
1 + (ε+

2λ
α
ln(A+ ατ))2

]−1/2

dτ = w;

Case 3 B2 < C2 <=> B = α(ξ)sh2β(ξ), C = α(ξ)ch2β(ξ)

a) k 6= −1, f = −β + 1
2arsh[−1 + (ε+ 2λ

α(k+1)(A+ αg)k+1)2]1/2,

g(ξ,w)∫
0

[
−1 + (ε+

2λ
α(k + 1)

(A+ ατ)k+1)2
]−1/2

dτ = w;

b) k = −1, f = −β + 1
2arsh[−1 + (ε+ 2λ

α ln(A+ αg))2]1/2,

g(ξ,w)∫
0

[
−1 + (ε+

2λ
α
ln(A+ ατ))2

]−1/2

dτ = w;
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Case 4 B = C = 0, f = λAkw.

In the above formulae ε = 0,±1. Substituting the results obtained into (7) we obtain
the general solution of system (2).

Equation (10) can also be integrated but we omit corresponding formulae.
Substitution of (7) into one of the ansatzes for the spinor field ψ(x) from (2)–(4) yields

exact solutions of the nonlinear Dirac equation (1) which contain four arbitrary complex
functions on ξ = x0 + x3. Let us remind that solutions of system of PDE (1) obtained by
symmetry reduction to systems of ordinary differential equations do not contain arbitrary
functions [3, 4].
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