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Abstract

We consider a constrained system of four rigid bodies located in axisymmetric potential
and gyroscopic force fields and interacting by means of angular velocities. We describe
an integrable case (not in Liouville sence!) when 12-dimensional phase space of the
above system is fibered by the coisotropic invariant tori, the majority of which carry
quasi-periodic motions with 7 independent frequences.

1 Introduction

Let (M,ω2) be a smooth symplectic 2n-dimentional manifold. A Hamiltonian system on
M is usually called (completely) integrable if it possesses n independent smooth integrals
Fi, i = 1, . . . , n, with pairwise vanishing Poisson brackets. The regular compact common
level manifolds Mc of Fi are tori on which the motion is quasi-periodic with r = r(c) ≤ n
independent frequences (see [1–2]). As far as we know untill recent time there where no
natural examples of Hamiltonian systems possessing quasi-periodic motions with r > n
independent frequences. Some results in that direction were obtained by the author [3–4].

In the present paper we show that the quasi-periodic motions with r = 7 independent
frequences arises in 12-dimensional Hamiltonian system which governs the evolution of 4
constrained rigid bodies in presense of potential and gyroscopic forces of special type.

In section 2 we give a general construction of mechanical system with phase space
fibered by coisotropic invariant tori. Recall that a submanifold L of M is coisotropic if
the orthogonal complement (relative to ω2) of TxL is contained in TxL for each x ∈ L.
The motion on M will be called coisotropic if the closure of its orbit forms a coisotropic
manifold. The above construction is based on a reduction procedure for Hamiltonian sys-
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tems with locally Hamiltonian symmetries (see [5–6] for more information). This procedure
modifies the reduction methods developed in [1–2, 7–11].

In section 3 we consider a system consisting of 4 constrained rigid bodies located in
axisymmetric potential and gyroscopic force fields and interacting by means of angular
velocities. We do not discuss here whether the accepted hypotheses about the character
of gyroscopic forces are correct from the physical point of view but refer to [12–13]. The
description of our system may appear to be rather cumbersome. However, as will be shown
in section 6, the majority of conditions formulated in sections 3,4 holds true for the system
of Lagrange tops located in coaxial homogeneous gravitational and ”magnetic” fields.

In section 4 we show that the system under consideration can be reduced to the direct
product of mechanical system on TS2 with nontrivial gyroscopic force form and linear
Hamiltonian system with one degree of freedom.

The simplest case of integrable reduced system is considered in section 5. Here we
show, as well, how one can reconstruct the solution of the initial system using that of
the reduced one. As a result we obtain the explicit formula (modulo the solution of the
reduced system) for coisotropic quasi-periodic motions. It may be noted that in the case
considered in section 6 one can express the solution of the reduced system in terms of
elliptic functions.

The perturbation problem for the coisotropic quasi-periodic motions is discussed in
section 7.

2 Hamiltonian systems on twisted cotangent bundles
of manifolds admitting free torus action

Let M be an n-dimensional smooth Riemannian manifold with metric � ·, · �. A
mechanical system with configuration space M is a Lagrangian system on TM with
Lagrangian function of the form L = 1

2 � q̇, q̇ � −U(q). Here q̇ ∈ TqM, U : M → R
is a smooth potential. This system can be transformed into a Hamiltonian one on the
symplectic manifold M = (T ∗M, dΛ), (Λ denote the Liouville 1-form pdq) in a standard
way. Denote by (·|·) the pairing between spaces of covectors and vectors and by A :
TM→M the nondegenerate symmetric bundle map defined by � ·, · �= (A · |·). Then
the Hamiltonian of the transformed system is

H = T + U ◦ pr =
1
2
(p|A−1(q)p) + U(q), (1)

where pr : M →M is the natural projection of cotangent bundle, p ∈M, q = pr(p).
The gyroscopic force field is determined by a skew symmetric bundle map G : TM→

M , which gives rise to a 2-form on M

Γ(ξ, η) = (G(q)η|ξ), ξ, η ∈ TqM.

We shall call Γ the gyroscopic force form [14]. The case of closed form Γ is especially
interesting from the physical point of view [15]. Only that case will be considered in what
follows.
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The equations of motion for the mechanical system located into gyroscopic force field
are of Hamiltonian form relative to the new symplectic structure

ω2 = dΛ + pr∗Γ (2)

but with the former Hamiltonian function (1). The symplectic manifold (T ∗M, dΛ+pr∗Γ)
is called the twisted cotangent bundle [16]. Henceforth the case of non-trivial second
cohomology group H2(M;R) will be considered. We shall assume that Γ represents a
nontrivial cohomology class [Γ].

Let us now describe the reduction procedure on (M,ω2) for a mechanical system pos-
sessing an abelian group of explicit symmetries. Let M admit the smooth isometric action
of k-dimensional torus T k. Suppose that the potential U and 2-form Γ are torus-invariant.
The natural torus action on M preserves Hamiltonian (1) as well as both symplectic struc-
tures dΛ and ω2. Thus H together with Poisson structures generated by dΛ and ω2 drops
on the quotient.

The nature of the reduced space and the reduced Poisson structures have been well
studied in case of torus action admitting the momentum map (see [2, 14]). If [Γ] 6= 0 then
the momentum map, generally speaking, need not exist. In this situation the so-called
2-cocycle of torus action plays an important role. We need some notations to define this
cocycle.

Let T k denotes the Lie algebra of T k, Ya be the infinitesimal generator of a ∈ T k
on M, Xa be the same on M, m : M → (T k)∗ be the momentum mapping of T k-
action on (M,dΛ), I0 : M → TM and I : M → TM be the bundle maps (Hamiltonian
operators) for the symplectic structures dΛ and ω2 respectively, so that, for example,
ι(Ip)ω2 := ω2(Ip, ·) = −(p|·). Obviously that pr∗Xa = Ya and Xa = I0d(m|a).

The bilinear skew-symmetric 2-form C on T k defined correctly by

C(a, b) := Γ(Ya, Yb) = ω2(Xa, Xb)

is called the 2-cocycle of T k-action on (M,ω2) The nontrivial case C 6= 0 will be considered
henceforth.

Let p:M → N := M/T k be the projection of principal bundle associated with T k-
action and ω be the connection form on (M,N , p) generated by the metric.

Definition The metric and 2-form Γ are called concordant if there exist a subspace
L ⊂ T k satisfying the following conditions: 1) T k = K ⊕ L, K := KerC; 2) Γ(Y, Ya) = 0
for each horisontal vector field Y and each a ∈ L.

By PK and PL we denote the projection operators onto K and L respectively. Define
the 1-form β on M with values in K by

(β(·)|a) = −(ι(Ya)Γ)(·), a ∈ K.

It drops to 1-form β̃ on N . Having accepted the following two hypotheses we shall simplify
the reduction procedure:

H1: the metric and Γ are concordant;
H2: β is exact: β = dµ, µ:M→ K being a smooth T k-invariant map.
One can define µ̃ : N → K such that µ = µ̃◦p.
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Define the map J : M → K∗ by

(J |a) = (m + µ|a), a ∈ K.

Since ι(Xa)ω2 = −d(J |a) ∀a ∈ K, J is called the momentum map of K-action on (M,ω2).
To perform the reduction, identify m−1(0)/T k with T ∗N , denote by π0 : m(0) → T ∗N

the projection of principal T k-bundle, define the maps

P0 : M → m−1(0) : p→ p− (m(p)|ωq),

where ωq = ω|TqM, q = pr(p), and

π := π0 ◦ P0 × (m + P∗µ ◦ pr) : M → T ∗N × (T k)∗ := N.

Then π is the projection of principal T k-bundle over N . Observe that the projection
π0 ◦P0×m is used to reduce the canonical Poisson structure on M . The reduced Poisson
structure (r.P.s) may be described in a following way (see [5–6]).

The map J drops to J̃ on N . For every c ∈ K∗ the manifold J̃
−1

(c) is a symplectic
leaf of r.P.s. As a symplectic manifold J̃

−1
(c) splits into a direct product of two symplectic

manifolds:
1) the twisted cotangent bundle of N with gyroscopic force form Γ̃c = α̃+ (c− µ̃|Ξ̃),

where α̃ is the horisontal part of Γ and Ξ̃ is the curvature form of ω (both being regarded
as 2-forms on N );

2) the affine symplectic 2l-dimensional space {w ∈ (T k)∗ : (w|a) = (c|a)
∀a ∈ K}, 2l = dimL, which itself is the symplectic leaf of the Poisson brackets {·, ·} on
(T k)∗ defined by

{(w|a), (w|b)} = C(a, b).

We shall denote by IN : T ∗N → TN the Hamiltonian operator of r.P.s. To obtain the
reduced Hamiltonian, i.e the function H̃ : N → R for which H = H̃ ◦ π holds, define the
smooth family of symmetric operators {B(q̃) : T k → (T k)∗}q̃∈N by

(AYa|Yb)q = (B(q̃)a|b), q̃ = p(q),

denote by (Ã · |·) the quotient metric on N and drop the potential to Ũ : N → R. Then

H̃ =
1
2

(
(p̃|Ã−1(q̃)p̃) + (w − PK∗µ̃(q̃)|B−1(q̃)(w − PK∗µ̃(q̃))

)
+ Ũ(q̃),

where p̃ ∈ T ∗N , q̃ = pr(p̃), w ∈ (T k)∗.
The special case is noteworthy when B(q̃) = B does not depend on q̃ and the equality

(Ba|b) = 0 holds for every a ∈ K and b ∈ L. In this case the above affine symplectic space
may be identified with the subspace K⊥ orthogonal to K, and the reduced system splits
into direct product of mechanical system on TN with gyroscopic force form Γc, kinetic
energy generated by quotient metric and potential

1
2

(
c− µ̃(q̃)|PKB−1PK∗(c− µ̃(q̃))

)
+ Ũ(q̃).

Suppose now that the reduced system is completely integrable. Let N ′ ⊂ N be an open
subset on which the action-angle variables can be constructed (see [2–17]). Otherwise,
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there exist a map F̃ : N ′ → Rm : x → (F̃1(x), . . . , F̃m(x)), m = (dimN − dimK)/2,
with properties:

1) F̃i has zero Poisson bracket with H̃ as well as with every F̃j , i, j = 1, . . . ,m;
2) each vector field INdF̃i generates a circle action on N ′;
3) vector fields INdF̃i (i = 1, . . . ,m) are independent at every x ∈ N ′.
Then for each c∗ ∈ K∗, c̃ ∈ F̃ (N ′) the common level manifold Mc = J−1(c∗)

⋂
F−1(c̃),

F := F̃ ◦ π, is the coisotropic invariant torus of the flow generated by IdH, dimMc =
r := n + (k − dimK)/2. Generally speaking, Mc need not be the minimal set. The
necessary condition for a motion on Mc to be quasi-periodic and coisotropic consists in
non-resonant property of ω2 on Mc [18]. The symplectic structure ω2 is called nonresonant
with respect to coisotropic torus Mc if at least one (and then each) of the leaves of the
integrable foliation generated by Ker(ω2|Mc) is dense in Mc. It turns out that if the orbit
of K-action on T k is dense then the ω2 is nonresonant on each Mc.

Next, let y = (y1, . . . , ys), s = (dimN + dimK)/2, be the coordinates in the open
domain D ⊂ K∗ × F̃ (N ′), mesD <∞. Then H̃ depends only on y, so that H̃ = H∗(y),
and in the case, where the map D → RP s : y → ∂H∗

∂y1
: · · · : ∂H∗

∂ys
is nondegenerate

there exist a subset D′ ∈ D such that mesD′ = mesD and the flow of IdH on the torus
corresponding to y ∈ D′ is quasi-periodic with r independent frequencies. This means
that the majority of coisotropic tori are nonresonant.

3 Description of the mechanical system

Denote by (·, ·) the scalar product and by [·, ·] the vector product in R3. Consider a
mechanical system S consisting of four rigid bodies anchored at fixed points Oj , j =
1, . . . , 4. Let {e0

1, e
0
2, e

0
3} = {ex, ey, ez} be a resting right-handed orthonormal basis in

R3 and {ej1, e
j
2, e

j
3} be the moving right-handed orthonormal basis associated with the

principal axes of inertia of j-th body. Suppose that the system S is constrained in a
following way

h1 : e1
3 = · · · = e4

3.

The constrained system will be denoted by S ′.
Let Qj ∈ SO(3) be the operator that determines the position of the j-th body, i.e.,

eji = Qje0
i , i = 1, 2, 3. Denote by L the configuration space of S, i.e., the direct product

of 4 copies of SO(3). The configuration space of S ′ is the submanifold

M = {(Q1, . . . , Q4) ∈ L : Q1ez = · · ·Q4ez} ∼ SO(3)× T 3

of L. Denote by gtz the one-parametrical rotation group around the z-axis. M naturally
inherits free action of torus T 4 = R4/2πZ4 = {(ψ1, . . .,ψ4)|mod2π} defined on L by

(Q1, . . . , Q4) → (Q1gψ1
z , . . . , Q4gψ4

z ).

The quotient M/T 4 may be identified with the unit sphere S2 : x2 + y2 + z2 = 1 in R3.
To do this assign to any orbit of torus action the point on S2 indicated by e1

3. Thus M
carries the structure of principal T 4-fiber bundle (M, S2, p). Suppose now that

h2: the ellipsoid of inertia of j-th rigid body possesses ej3-axial symmetry, j = 1, . . . , 4.
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Then the kinetic energy of the constrained system is T 4-invariant. Now we are going
to describe this kinetic energy. Denote by Ωj

s the angular velocity (in space) of the j-th
rigid body. In what follows the well-known fact will often be used: the angular velocity
may be concidered as R3- valued 1-form on SO(3) which is equivariant under left- and
invariant under right SO(3)-action.

Putting Ωj
i = (Ωj

s, e
j
i ) and using formula Q̇jez = [Ωj

s, e
j
3] one can easily check that

Ω1
2e

1
1 − Ω1

1e
1
2 = · · · = Ω4

2e
4
1 − Ω4

1e
4
2

on M holds. As a consequence, the following identities are valid on M:

(Ω1
1)

2 + (Ω1
2)

2 = · · · = (Ω4
1)

2 + (Ω4
2)

2,

Ω1
1 ∧ Ω1

2 = · · · = Ω4
1 ∧ Ω4

2.

Define now scalar and R4-valued 1-forms on M by

Ωi = Ω1
i |M, ω = (Ω1

3, . . . ,Ω
4
3)|M = (ω1, . . . , ω4).

We identify the Lie algebra T 4 of torus T 4 with coordinate space R4. Now it turns out
that ω is a connection form on (M, S2, p).

Let Iji , i = 1, 2, 3, be the principal moments of inertia of the j-th body. From h2 it
follows that Ij1 = Ij2 . Thus the kinetic energy of S ′ is

T =
1
2
δ0

(
(Ω1)2 + (Ω2)2

)
+

1
2
(Dω,ω),

where δ0 = 2
∑4
j=1 I

j
1 , D = diag(δ1, . . . , δ4) := diag(I1

3 , . . . , I
4
3 ).

Next we suppose that
h3: the total potential of the constrained system is a T 4-invariant function U = Ũ ◦ p,

Ũ : S2 → R.
Now we describe the gyroscopic forces acting upon the system. Suppose that the

”internal” ones satisfy
h4 : the total moment of force by which j-th body acts upon i-th one is equal to

cijΩ
j
3e
i
3.

In order that the ”internal” forces be gyroscopic the following conditions must be
imposed on the coefficients

h5 : cij = −cji, i, j = 1, . . . , 4.

Thus the 2-form of the ”internal” gyroscopic forces is

C(ω,ω) =
∑

1≤i<j≤4

cijωi ∧ ωj .

In order that this form be closed we accept

h6 :
4∑
i=1

cij = 0, j = 1, . . . , 4.
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Indeed, taking into account the Maurer-Cartan equations dΩj
3 = −Ωj

1 ∧ Ωj
2 and denoting

−Ω1 ∧ Ω2 by Ξ we obtain the curvature form (on M) for ω

dω = (1, 1, 1, 1)Ξ.

Thus, (1, 1, 1, 1) ∈ K implies that the 2-form of ”internal” gyroscopic forces is closed.
The external gyroscopic forcesis assumed to be of Lorenz type, i.e.
h7 : the force acting at the moving ”point-charge” is FB = q[r,B(r)], where q denotes

the algebraic value of ”point-charge”, r denotes its position vector in resting space,
B = rotA is a solenoidal field (”magnetic induction”).

Omitting, for the time, index j and denote by q(R) the ”charge” value at a point
whose position vector relative to the body is R. The position vector of the same point in
the resting space is r = QR + r0, where r0 is the position vector of the point O.

The total moment of FB (in body) is

MB(Ωc) = [Ωc,

∫
q(R)(R, Q−1B(QR + r0))R dV ],

where Ωc = Q−1Ωs is the angular velocity relative to the body. Identify R3 with (R3)∗

by means of (·, ·), and consider the gyroscopic force form determined by MB:

ΓB(ξ, η) = (Ωc(ξ),MB(Ωc(η))) , ξ, η ∈ TQSO(3).

We shall show that ΓB is exact.
Observe first that

1
2
dr ∧ [dr,B(r)] = d(A(r), dr). (3)

Introducing a map SO(3) → R3 : Q→ QR+r0, with R being fixed, one obtains that the
pull-back of 1-form dr to SO(3) is 1-form Q[Ωc(·),R]. It makes possible to calculate the
pull-back of 2-forms in both sides of (3) on vectors ξ, η ∈ TQSO(3). As a result, one can
obtain

(Ωc(ξ), [Ωc(η), (R, Q−1B(QR + r0))R] =

ι(η)ι(ξ)d(Q−1A(QR + r0), [Ωc,R]).

This implies
ΓB = d(a(Q),Ωc),

where a(q) =
∫
q(R)[R, Q−1A(QR+r0)] dV. Denote by aj(Q) the map a(Q) constructed

for j-th rigid body.
The following assumption is necessary to guarantee torus-invariance of gyroscopic force

form:
h8 : gtza

j(Qgtz) = aj(Q), t ∈ R, j = 1, . . . , 4.

This is always true if j-th body and the function qj(R) possess ej3-axial symmetry.
Observe that 1-form

(aj(Q),Ωj
c) = [

2∑
i=1

(aj(Q), e0
i )Ω

j
i ] + (aj(Q), ez)Ω

j
3 (4)
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is invariant under right gtz-action. The same is true for the function

fj(Q) = (aj(Q), ez),

1-form Ωj
3 and, as a consequence, for the 1-form σj enclosed in brackets in (4). Moreover,

σj vanishes on the infinitesimal generator of right gtz-action, thus correctly defining 1-form
σ̃j on S2. Function fj also drops to f̃j on S2. Finally, we conclude that the total gyroscopic
force form of the constrained system is

Γ = d(p∗σ̃) + d(f̃ ◦ p,ω) + C(ω,ω),

where σ̃ =
∑
σ̃j , f̃ = (f̃1, . . . , f̃4). To ensure the concordance of Γ with metric defined by

the kinetic energy T we accept

h9 : c12 6= 0,
4∑
j=1

δ−1
j cij f̃j(s) = const, s ∈ S2, i = 1, 2.

We recall that T 4 have been identified with the coordinate space R4. This allows as
to identify T 4 with (T 4)∗ by means of standard scalar product (·, ·) in R4. Introduce
the D-scalar product by (D·, ·).. Obviously that the space spanned by vectors aj =
(δ−1

1 cj1, . . . , δ
−1
4 cj4), j = 1, 2, is D-orthogonal to K = KerC. Thus h9 guarantees the

decomposition T 4 = K ⊕ L and the property ι(Yaj )Γ = C(aj ,ω), j = 1, 2, which yelds
the required concordance.

4 Description of the reduced system

Let ε1 = (trD)−1/2(1, 1, 1, 1), ε2 beD-orthonormal basis inK, and ε3, ε4 beD-orthogonal
basis in L normed by C(ε3, ε4) = 1, (Dεi, εi) := 1/ν, i = 3, 4. Introduse the dual basis
ε∗i = Dεi, i = 1, 2; ε∗i = νDεi, i = 3, 4, . We may identify K∗ with the subspace
spanned by ε∗1, ε

∗
2 and K⊥ with that spanned by ε∗3, ε

∗
4. Put

µ̃ =
2∑
i=1

(f̃ , εi)ε∗i :=
2∑
i=1

µ̃iε
∗
i .

Then H2 of sect.1 holds.
The momentum map of T 4-action on T ∗M is m = (M1

3 , . . . ,M
4
3 ) where M j

3 is a projec-
tion of j-th body angular momentum on ej3-axis. Now we have J =

∑2
i=1 ((m, εi) + µi) ε∗i ,

and J̃ =
∑2
i=1(w, εi)ε

∗
i , w = (w1, . . . , w4) ∈ (T 4)∗. The functions q = (w, ε3), p =

(w, ε4), whose Poisson bracket is 1, determine the coordinates on K⊥, thus transforming
it into standard symplectic space R2

(p,q).

To obtain the potential of the reduced system notice that P∗K(·) =
∑2
i=1(·, εi)ε∗i1.

Finally, observe that the horisontal part of Γ drops to α̃ = dσ̃ +
√
trDµ̃1Ω̃. Thus, the

reduced system on common level manifold J̃i := (w, εi) = ci, i = 1, 2, is equivalent to a
direct product of
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I. Mechanical system on TS2 with kinetic energy T̃ correctly determined by 1
2δ0((Ω1)2+

(Ω2)2), potential V = Ũ(s) + 1
2

∑2
i=1(ci − µ̃i)2, s ∈ S2, and gyroscopic force form

dσ̃ + c′1Ω̃, c′1 = c1
√
trD.

II. Hamiltonian system on R2
(q,p) with Hamiltonian function

ν(q2 + p2)/2.

5 Integrability

Now we focus on the simplest integrable case of a system with z-axial symmetry. Observe
that left gtz-action on L defined by (Q1, . . . , Q4) → (gtzQ

1, . . . , gtzQ
4) gives rise to S1-action

on M. This action commutes with T 4-action and preserves T, ω. Thus, if we suppose
that

h10 : aj ◦ gtz = aj , j = 1, . . . , 4; U ◦ gtz = U ∀t ∈ R,

then the system I possesses z-axial symmetry, which, as a consequence of H1(S2) = 0,
gives rise to a single-valued extra integral. Observe that if A(gtzr) = gtzA(r) and j-th
body is anchored at the z-axis then aj satisfies h10.

The infinitesimal generator for the lifting on M of the above S1-action is globally
Hamiltonian vector field with Hamiltonian function

F =
4∑
j=1

(M j
s,Ω

j
s(
d

dt
|t=0g

t
zQ

j)) + (aj(Qj), Ωj
c(
d

dt
|t=0g

t
zQ

j))|M =

4∑
j=1

(M j
s +Qjaj(Qj), ez)|M,

where M j
s is the angular momentum (in resting space) of j-th body. We may think of

Qjaj(QJ) as the moment of vector potential A for j-th body. Now we formulate our main
results.
Theorem 1 Let the system S satisfies h1−10. Then the corresponding Hamiltonian
system ẋ = IdH on twisted cotangent bundle of M possesses 5 first integrals H, J1, J2,
4∑
i=3

(m, εi)2, F each generic common level of which is 7-dimensional coisotropic torus.

The symplectic structure ω2 is nonresonant on this torus iff

h11 : |c12k1 + c13k2 + c23k3| 6= 0 ∀(k1, k2, k3) ∈ Z3 \ {0}.

P r o o f It remains only to explain the connection between h11 and the property of
K-action orbit on T 4 to be dense. To do this, observe that if h5 and h6 hold then K is
spanned by the vectors (1, 1, 1, 1) and (c23,−c13, c12, 0). But the K-action orbit is dense
on T 4 iff there does not exist a nontrivial integer vector which is orthogonal to K. The
last condition is equivalent to h11.2

Now let us construct the action variables. First, we examine the mechanical system I.
By virtue of h8 there exist a map bj : R3 → R3 for which Qaj(Q) = bj(Qez) holds. Put
b(r) =

∑4
j=1 bj(r). It turns out that the Lagrangian system with kinetic energy δ0‖ṙ‖2/2,
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potential V (r/‖r‖), gyroscopic force form

Γ̂ = d([b(r), r], dr) +
1
2
c′1[dr, r] ∧ dr

and the constraint ‖r‖ = 1 governs the motion of vector e1
3, thus defining the system

which is equivalent to I.
The vector field −yex + xey generates the action of gtz on R3. In view of h10 there

exist such functions Φ : [−1, 1] → R and Ṽ : [−1, 1] → R that

([b(r), r],−yex + xey)|S2 = Φ(z), V |S2 = Ṽ (z, c1, c2),

where r = xex + yey + zez. Note that Φ(−1) = Φ(1) = 0. Introducing the parametric
representation of S2

x = sin(θ) cos(φ), y = sin(θ) sin(φ), z = cos(θ), θ ∈ [0, π], φ|mod 2π

we obtain

T̃ =
δ0
2

(θ̇2 + φ̇2 sin2 θ), Γ̃ = Γ̂|S2 = d(Φ(cos θ)dφ)− c′1 sin θdθ ∧ dφ.

Put
pθ = δ0θ̇, pφ = δ0φ̇ sin2 θ (5)

to find the Hamiltonian

H̃I = (p2
θ + p2

φ/ sin2 θ)/2δ0 + Ṽ (cos θ, c1, c2)

and the symplectic structure ω̃2
I = d(pθdθ + pφdφ) + Γ̃ for the Hamiltonian system cor-

responding to I. Elimination of cyclic coordinate φ and pφ, by means of Noetherian first
integral

F̄1 := pφ + Φ(cos θ) + c′1 cos θ = c3, (6)

leads to the Hamiltonian system on (θ, pθ)-plane with Hamiltonian of the form H̄I =
p2
θ/2δ0 + W (θ, c1, c2, c3). We restrict ourselves to the domain of c1, . . . , c4 for which the

level curve ς : H̄I = c4 is closed. Define the action variable by

F̄2 =
1
2π

∮
ς
pθdθ = F̄2(c1, . . . , c4)

Now the required action variables on T ∗S2 × (T 4)∗ are

F̃1 = F̄1|c1=J̃1
, F̃2 = F̄2(c1, c2, F̄1, H̃I)|c1=J̃1, c2=J̃2

, F̃3 =
1
2

4∑
i=3

(w, εi)2.

Put yi = J̃i, i = 1, 2; yi+2 = F̃i, i = 1, 2, 3. The reduced Hamiltonian depends only
on yi: H̃ = H∗

I (y1, . . . , y4)+ νy5. One can varify that the map (y1, . . . , y4) → (λ1, . . . , λ4),
where λi = ∂H∗

I /∂yi, is non-degenerate except for some set of measure 0.

Conclusion The majority of coisotropic tori from Theorem 1 are the carriers of quasi-
periodic motions with 7 independent frequencies.
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To describe the evolution of the system S satisfying h1−10 we find θ from the equation

θ̇2 = 2(c4 −W )/δ0 (7)

and define φ(t) using (5), (6), thus obtaining the solution of system I. The solution of
system II is q(t) = c5

√
2 sin(νt+ τ), p(t) = c5

√
2 cos(νt+ τ), τ ∈ R.

The orientation of j-th rigid body is determined by the Eulerian angels θ, φ, ψj [19]. We
use the representation Ωj

3 = ψ̇j + φ̇ cos θ to find the function ψj0 from Ωj
3 = 0. By means

of θ(t), φ(t), ψj0(t) we construct the ”horisontal part” Qj0(t) : R → SO(3) of j-th body
evolution. Finally, observing that the vertical part of vector field IdH is

∑2
i=1 λiXεi +

ν(qXε3 + pXε4) we obtain the evolution of j-th body in the form

Qj(t) = Qj0(t)g
ψj
∗(t)

z

where ψj∗(t) =
∑2
i=1 εi

jλi(t) + ν(ε3j
∫
q(t)dt + ε4

j
∫
p(t)dt), and εi

j is j-th component
of εi.

6 Constrained Lagrange tops in homogeneous fields

In this case h2 holds and Ũ = ρz for some ρ > 0. Suppose that B = 2χez, χ ∈ R. Then
A(r) = χ[ez, r] + const. We may set

a(Q) = χ

∫
q(R)[R, [Q−1ez,R]] dV = SQ−1ez,

where the symmetric operator S : R3 → R3 is constructed similarly to the inertia operator
after replacing the function of mass distribution by χq(R). Obviously h10 holds, and to
satisfy h8 we need to require that the matrix of the operator Sj , corresponding to the j-th
body, takes the form diag(βj , βj , γj) in the basis {ex, ey, ez} .

Now we find by a direct calculation:

f̃j = γjz; bj(r) = (γj − βj)(zxex + zyey) + (βj + (γj − βj)z2)ez;

Φ(z) =
4∑
j=1

βj(1− z2); µ̃i = z
4∑
j=1

γjε
j
i , i = 1, 2.

Substituting z = cos θ into (7) we obtain the equation (ż)2 = P4(z, c1, c2, c3), where
P4 is a polynomial of 4-th order with respect to z. Thus the dependence of z on t is given
by an elliptic function.

Finally, h9 takes the form

c12 6= 0,
4∑
j=1

cijγj/δj = 0, i = 1, 2. (8)

Consider now the case when
h12 : the mass distriburion in bodies, is proportional to the ”charge” distribution.



200 I.PARASYUK

This implies that Sj is proportional to the inertia operator of j-th rigid body. Hence,
γj/δj does not depend on j and (8) becomes a consequence of h6 if c12 6= 0. We have
proved

Theorem 2 Consider the mechanical system consisting of four heavy Lagrange tops con-
strained in accordance with h1 and satisfying h4−7, h11, h12. Then each set D, mesD <
∞, in the phase space of the system containes a subset D′ such that D′ = mesD and each
point of D′ gives rise to coisotropic quasi-periodic motion.

7 Perturbation problem

The question arise whether the above quasi-periodic motions persist under small pertur-
bations of the system. The answer can be given in a framework of KAM-theory after
applying the results of [20]. We consider the case when perturbations may break the sym-
metry properties of rigid bodies, of scalar and vector potentials, but the total gyroscopic
force form remains to be close. Moreover, at first we suppose that the restrictions of per-
turbed and unperturbed gyroscopic force forms to at least one (and then to each) orbit of
T 4-action represent the same cohomology class. In this case, replacing h11 by somewhat
stronger requirement

|c12k1 + c13k2 + c23k3| > γ
(∑

|ki|
)−3

∀(k1, k2, k3) ∈ Z3 \ {0}, (9)

with γ being a positive number, one can apply the results of [20] to prove KAM-like
theorem on persistance of coisotropic quasi-periodic motions. It should be observed here
that in our case not only the Hamiltonian function but the symplectic structure, as well,
is perturbed. This difficulty can be remedied if we note that the projections of the quasi-
periodic motions obtained above does not pass through the poles of S2. Thus M may be
replaced by M1 = p−1(S2 \ {neighbourhoods of the poles}). The perturbed gyroscopic
force form is represented on M1 as Γ + dϑ, a 1-form ϑ being small. Now one can kill such
a perturbation by means of appropriate additional perturbation of the Hamiltonian.

Next, if the above hypothesis on the cohomology classes fails then we shall think of
c12, c13, c23 as parameters which range in some bounded domain G ∈R3. These parameters
uniquely determine a skew-symmetric matrix of 4-th order satisfying h5−6. Let G′ ∈ G be a
subset for which (9) holds. Then mes(G\G′) vanishes together with γ. Now we average the
perturbed gyroscopic force form by T 4-action and take the vertical part of the obtained 2-
form to get 2-form Cε(ω,ω) =

∑
1≤i<j≤4 cεijωi ∧ ωj . It turns out that (1, 1, 1, 1) ∈ KerCε.

Indeed, there exist a connection form ωε on M with curvature form Ξε = dωε taking
values in KerCε (see Proposition 1 in [6]). Since Cε is close to C we may choose ωε close
to ω. The 2-form Ξε drops to Ξ̃ε on S2 which is an integer one as well as Ξ̃. This yields∫
S2 Ξ̃ =

∫
S2 Ξ̃ε = 4π(1, 1, 1, 1) ∈ KerCε. Now we conclude that Cε is uniquelly determined

by the vector (cε12, cε13, cε23). One may expect with probability close to 1 that the above
vector falls into G′. If this is the case we choose f̃ ε(z) close to f̃(z) in such a way that

h′9 :
4∑
j=1

δ−1
j cεij f̃εj(z) = const, i = 1, 2.
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Finally, when regarding the system with kinetic energy δ0((Ω1)2 +(Ω2)2)/2+(Dωε,ωε)/2,
potential U and gyroscopic force form d(p∗σ̃)+d(f̃ ε◦p,ωε)+Cε(ωε,ωε) as an unperturbed
one we reduce the case under consideration to the above case of unperturbed cocycle.
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