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Abstract

We construct nonlinear representations of the Poincaré, Galilei, and conformal alge-
bras on a set of the vector-functions ¥ = (E, H). A nonlinear complex equation of
Euler type for the electromagnetic field is proposed. The invariance algebra of this
equation is found.

1 Introduction

It is well known that the linear representations of the Poincaré algebra AP(1,3) and
conformal algebra AC(1,3), with the basis elements

Pp = ig“"au, J,uu = xupl’ - xl’PM + SW” (1)
D = z,P" — 2i, (2)
K, =2x,D — (z,a")P, + 22" S,,, (3)

is realized on the set of solutions of the Maxwell equations for the electromagnetic field in
vacuum (see. e.g.[1, 2])

OF . OH .

Gl gt _ 4
a1 rotH, a1 rotk, (4)
divE = 0, divd = 0. (5)

Here S, realize the representation D(0,1) @ D(1,0) of the Lorentz group.
Operators (1) — (3) satisfy the following commutation relations:

[Pua Pzz] =0, [P/u Jaﬂ] = i(guapﬂ - guﬂpa)a (6)
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[Jag, Juw) = i(9uTav + JavTap = GapTsw — gavJan), (7)
[D,P,] = —iP,, (D, Jw] =0, (8)
(K, Pa] = i(2Jap — 2guaD), [Kpus Japl = (9 Kp — 9upKa), 9)
[K,,D] = —iK,, (K, K, =0, w, v, 3=0,1,2, 3. (10)

In this paper the nonlinear representations of the Poincaré, Galilei, and conformal algebras
for the electromagnetic field E , H are constructed. In particular, we prove that the conti-
nuity equation for the electromagnetic field is not invariant under the Lorentz group if the
velocity of the electromagnetic field is taken in accordance with the Poynting definition.
Conditional symmetry of the continuity equation is studied. The complex Euler equation
for the electromagnetic field is introduced. The symmetry of this equation is investigated.

2 Formulation of the main results

The operators, realizing the nonlinear representations of the Poincaré algebras
AP(1,3) = (Py,Juw), APi(1,3) = (Pu,Juw,D), and conformal algebra AC(1,3) =
(Py, Jy, D, K,), have the structure

11
P‘LL == a"p#, ( )
12
Jp = x0x; — 1101y, + Sk, (12)
(13)
Jok :moaﬂfk +l’k8x0 +50k7 kal =1,2,3,
D = ﬂfuaxu, (14)
_ 2 ok ok (15)
Ky = xoaxo + l‘oxkaxk + (2 — 2oE™)0pr — xoH"Opgr,
K, = xofclaxo + Jililikawk + [l‘kEl — Io(ElEk — HlHk)]aEk-f-
(16)

[z H' — 2o(H'EF + E'H*)|0g0,
where
S = E*0m — E'0px + H* 01 — H' Oy,
Sox = Ogr — (E*E' — H*H Yo — (E*H' + HFEYop.

The operators, realizing the nonlinear representations of the Galilei algebras
AGP(1,3) = (P, Ju, G2, AGP)(1,3) = (P, Juy, G, D) have the form:

P, =0z, Jii = 2x0x; — 210z, + Sk, (17)
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G} = 21,01, — (E"E' — H*HY0p — (E*H' + H*EYo, (18)
D = 200z + 2740z, + E*Opr + H*0 .. (19)

We see by direct verification that all represented operators satisfy the commutation
relations of the algebras AP(1,3), AC(1,3), AG(1,3).

3 Construction of nonlinear representations

In order to construct the nonlinear representations of Euclid-, Poincare-, and Galilei groups
and their extensions the following idea was proposed in [2, 3]: to use nonlinear equations
invariant under these groups; it is necessary to find (point out, guess) the equations, which
admit symmetry operators having a nonlinear structure. Such equation for the scalar field
u(xo, 1,2, x3) is the eikonal equation

ou Ou

gu gy ~0,1,2,3 20
dx,, Ozt ’ . ’ (20)

which is invariant under the conformal algebra AC(1,3) with the nonlinear operator K,
2, 3].
The nonlinear Euler equation for an ideal fluid

8vk avk
s g k=1.2 21
ot + v aﬂ?l 07 y 4y 3 ( )

which is invariant under nonlinear representation of the AP(1,3) algebra, with basis ele-
ments

Py =0z, Jp = 21.0x; — 1107, + v.0y; — V1 Oy, (22)
Jok = w00 + 00y, + Ovy, — vk Oy, (23)

was proposed in [3] to construct the nonlinear representation for the vector field. Note
that equation (21) is also invariant with respect to the Galilei algebra AG(1,3) with the
basis elements

PIJ» = ax#, Jk[ = $k8xl — $laxk + ’Ukayl — ’Ulavk, Ga = $0a:pa + (%a. (24)

As mentioned in [2, 3] both the Lorentz—Poincaré—Einstein and Galilean principles of
relativity are valid for system (21). We use the following nonlinear system of equations [4]

EF EF
87 + HZL —

oHY _ oH"
=0 —— +E =
(91'0 89:; ’ +

= 25
81‘0 89@ 07 ( )

for constructing a nonlinear representation of the AP(1,3) and AG(1,3) algebras for the
electromagnetic field. To construct the basis elements of the AP(1,3) and AG(1,3) al-
gebras in explicit form we investigate the symmetry of system (25). We search for the
symmetry operators of equations (25) in the form:
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X =810y, +1'0p + 5'0m, (26)

where £ = §“(w,E, ﬁ), nt = nl(x,ﬁ,ﬁ), Bt =gz, E, ﬁ)
Theorem 1  The maximal invariance algebra of system (25) in the class of operators
(26) is the 20-dimensional algebra, whose basis elements are given by the formulas

P, = 0z, (27)
I = 2,00 — 2,00, + E*0p — B + H Oyt — H' Oy, (28)
T2 = 2,00, + 2,0, + E*0p + B + H Oyt + H' Oy, (29)
GV = 200y, + Ope + Opra, (30)
G = 2405y — E“E*0p — H*H" 0y, (31)
Dy = 200gy — E'0p1 — H'Opp, (32)
Dy = 210z, + E'0p + H' O, (33)
Dy = 2905y + E*0ps + H*Opp2, (34)
Dy = 23055 + E*0gs + H*Oys. (35)

Proof Toprove theorem 1 we use Lie’s algorithm. The condition of invariance of
the system L(E, H), i.e. (25), with respect to operator X has the form

XL

; ‘L:OZ 0, (36)

where
X = X +[Da(r!) = ELDa€)0g, + [Da(8) = HiDal€)]0y

o OF . OH'

“ Oz, R VN

[1=1,2,3; a=0,1,2,3

is the prolonged operator. From the invariance condition (36) we obtain the system of
equations which determine the coefficient functions £#, 7!, 3 of the operator (26):
77]l<; = 07 776 = 07
ﬂ]lg = Oa ﬂ(l) = 07 ggu = 07
é—%a = 07 é[ll{tl = 07
0" = —EFY + & + B¢ — EC B,

pF = —HEH + & + HoS) — HOH" g,
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or L _ o ot . 0%

. _ on Ho_
nk - (%ck’ Ny = (‘-)xoa fEa - aEav av T (%aax,,'

Having found the general solution of system (37), we get the explicit form of all the linear
independent symmetry operators of system (25), which have the structure (27) — (35).
Operators of Lorentz rotations Jyi is given by the linear combination of the Galilean

operators G,(Cl) and G,?):

38
Jox = GV 4+ G, (38)

All the following statements, given here without proofs, can be proved in analogy with the
above—mentioned scheme.

4 The finite transformations and invariants

We present some finite transformations which are generated by the operators Jy:

Jor : xo — x{, = rochf; + z1shb),
x1 — x) = z1chb + zoshb,, (39)
Ty — xhH = T2, X3 — Ty = I3,
2
R (40)
2
H? - H? = I{lshﬁlj—l—(zhﬁﬁ’
3
B B = e
H? — HY ik

= Hlshf, + ché,

The operators Jpo, Jo3 generate analogous transformations. 0 is the real group parameter
of the geometric Lorentz transformation. Operators G,(f) generate the following transfor-

mations:
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(2) .
Gi zo — v = xo + 0121,

T — T) = Tg,

k
Ek Ek’ _ E
- 1+91E17
HF — Hk’ _ Hk
1+0,H'

Analogous transformations are generated by the operators G(QQ), Ggf).

generate the following transformations:

Operators G,E})

o
1 - o — /I ! 9
0 — Ty =To, X1 — T} =21+ Tob,
332—>96/2:$C2, 333—>90§:1’37

!
E' - BV = E' 40,

!
H' - HY = H' 4 61,

/ / -
E2—>E2:E2, E3—>E3:E5,

H? - H? = H2, H3 - HY = H3.

The operators Ggl), Ggl) generate analogous transformations.

It is easy to verify that
N
(1-Ef)

() ()

is invariant with respect to the nonlinear transformations of the Poincaré group which are
generated by representations (28), (38).

The invariant of the Galilei group which is generated by representations (28), (31) has
the form:

I = E241, H>#1 (41)

"oy .

Iy =(E— H)~ (43)
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5 Complex Euler equation for the electromagnetic field

Let us consider the system of equations

) oxF
+o = =

- -0, xFk=FgkFiig* (44)
a$0 axl ’ e

The complex system (44) is equivalent to the real system of equations for E and H

OEF L OEF _ OH*
E - H =
83:0 + 833[ 89:1 07
oH* L OEF _ OHF (45)
dog TH Gy TE G =0

The following statement has been proved with the help of Lie’s algorithm.

Theorem 2 The mazimal invariance algebra of the system (45) is the 24-dimensional
Lie algebra whose basis elements are given by the formulas

Py = 0,
I = 2405, — 1102, + E* O — E'Op + H Oy — H'Oypr,
T2 = 0400, + 210, + E*0p + B'Ope + H O + H' O,
G = 200z, + Oge,
GP = 2,05, — (E°E* — HOH")0ge — (E°H* + H*E")d1,
Do = 200z — E*0pr — H Oy, (46)
Dy = 240z, + E“Ope + HOpe (no sum over a),
Ky = 55(2)3360 + 2920z, + (T8 — a:oEk)aEk — $0Hk8Hk,
Ko = 102,01y + Tatk0z), + [ E” — 20(E*E* — H*H")|0px +
[2p H® — 2o(HOE* + ECH*)]|0yk.
The algebra, engendered by the operators (46), include the Galilei algebras

AGWM(1,3), AG®(1,3) and Poincaré algebra AP(1,3), and conformal algebra AC(1,3)

as subalgebras. Operators G((lz) generate the linear geometrical transformations in R(1,3)

xo — Ty = xo + O, (no sum over a),
(47)

x — T,

as well as the nonlinear transformations of the fields
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: ’ E' 4 iH
E'+id' — EV +iH" = 5 0. (B £ il (no sum over a),
, , E'— i (48)
E'—iH' — E" —iH" = :
e ! 1+ 0,(E° —iH")
The invariant of the group G)(1,3) is
2 52 o o g
= G R :
(E"+H)?
Operators Jy generate the linear transformations in R(1,3)
xo — x{, = wochfy + zoshby,
/ (50)
xp — 2}, = Tpchby + xoshby (no sum over k),
if l#k x— o) =uay,
as well as the nonlinear transformations of the fields
, , (E*+iH")ch h
Bhimk . gty gy = )b, shy
(E +iH )Shek + chéy,
k_ crrk .
Ek _ lHk _ Ek/ . Z_Hk/ _ (Ek ZHk)Cth + bhek '
(E® — iH")shé + chfy,
If [ +#Fk, then (51)
) ' E' +iH'
E' il — B il = ! ,
(EF 4 iH)sh), + ché,
: ) E'—iH
B —iH - B —if = ———
(E —1H )Shek + chéy,
(no sum over k).
The invariant of group P(1,3) is
-9 [(E2 Y Lt 2(EH)2} o
Iy = . B4+ H?2A£1. (52)

The operator K\ generates the following nonlinear transformations in R(1,3) and linear

transformations of the fields
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X

/ H
Ty, T, =— "
" # 1—001‘0’

EF — EF = EF 4+ 0y(x), — 20 E"),

(53)
H* — H¥ = HF(1 — 6yz).

The operators K, generate nonlinear transformations in both R(1,3) and of the fields

20— ah = —0
07 1 — 2,0,
g = Fa
¢ S
If k # a, then
T — 2 = —F
1 — 2404
/ / E*+iH"
E*+iH* — E* +iH®* =
T B 11 Oalwo(E° 1+ iHY) — 4]’
/ ! Ea_ZHa
E*—{H* - E* —iH®* = .
e ! 1+ Oalao(E® — iH") — ]
If k # a, then

, ;B iHY 4 0,(B + iHY)xy,
Ek Hk Ek Hk — a
e B 1+ 6ufeo(B* + iHY) — 2]’

(54)
B —iHY 4 0,(E — iH")zy,

EF —iH* — EF —iHN = ¢ a0 (B° — iH%) — 2] (no sum over a).

Note 1  Setting > = oE +ibH , where a, b are arbitrary functions of the invariants Ez,

H 2 EH , we obtain more general form of the equation (44). The equation

—,

»F »F - .
0 zla— = F(EH,E* H*)x*

dzo oxy

is invariant only under some subalgebras of algebra (46) depending on the choice of
function F'.

Note 2 If we analyse the symmetry of the following equations
0 e ; 0 > i
—+FEF—+4+H_ —|E*=0
<3$0 * le + 8:51 ’
9 1 0 1 0 ) k (%)
—+FE—+H_— ) H*=0;
(89@0 * aTl + 8:61 '

or
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OE* ) o)
-+ El Hl ) Hk:
83}0 < 6$l 81‘[ ’

()

OH" , 0 L 0N ok
8950 =+ <E 8$l +H 8$l> E ’

we obtain concrete examples of nonlinear representations for the Poincaré and Galilei
algebras. This problem will be considered in a future paper.

6 Symmetry of the continuity equation
and the Poynting vector

Let us consider the continuity equation for the electromagnetic field

L(E,H)= % 9 + divpt = 0. (55)
0

ox
According to the Poynting definition p and pv* have the forms

j(EQ + H?), pvF = ey EYH™. (56)

Theorem 3 The nonlinear system (55), (56) is not invariant under the Lorentz algebra,
with basis elements:

‘]kl = J,‘k@xl - l‘laxk + EkaEl - ElaEk + HkaHl - _HlaHk7

Jok = 20z + 200z, + Epin(E'Opm — H'Opn), kyl,n=1,2,3. (57)

To prove theorem 3 it is necessary to substitute p and pv*, from formulas (56), to
equation (55) and to apply Lie’s algorithm, i.e., it is necessary to verify that the invariance
condition

L(E,H )‘ =

Juw (L(EH))|,_ =0 (58)

is not satisfied, where Jw/ is the first prolongation of the operator .J,, .

Theorem 4  The contmuzty equation (55), (56) is conditionally invariant with respect
to the operators J,,, given in (57) if and only if E,H satisfy the Mazwell equation (4),
(5).

Thus the continuity equation, which is the mathematical expression of the conservation
law of the electromagnetic field energy and impulse is not Lorentz-invariant if E, H does
not satisfy the Maxwell equation. A more detailed discussion on conditional symmetris
can be found in [1, 2].

The following statement can be proved in the case when

p=FYE H) and p* = F¥(E, H), (59)

where FO, F¥ are arbitrary smooth functions F© # 0, F*¥ # 0.
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Theorem 5  The continuity equation (55), (59) is invariant with respect to the classic
geometrical Lorentz transformatons if and only if

r(B) =4, (60)

where r(B) is the rank of the Jacobi matriz of functions F*.

In conclusion we present some statements about the symmetry of the following systems:

oF : o

= rotH E H —— = —rotE+ Fy(E H
D rot H + Fy(E,H), o rot £ + Fy(E, H), o
- Lo - L o 61
divE = Ry(E,H), divH = Ry(E,H),
d(RE) . ONH
o rot (RH), o rot (NE)
_ . (62)
div(RE) = 0, div(NH) = 0.
Here
R = R(W,Wa), N = N(Wp, Wa),
W, = E? — H?, Wy =EH.
div(RE + NH) = 0. (63)

Theorem 6 The system of equations (61) is invariant under the Lorentz algebra with
the basis elements (57) if and only if

FlEFQEO, RlERQEO.

Theorem 7 The system of equations (62) is invariant under the Lorentz algebm (57) if
R and N are arbitrary functions of the invariants Wi = — H? , Wo =

Theorem 8 The equation (63) is invariant under the Lorentz algebra with the basis
elements (57) if and only if E, H satisfy the system of equations

O(RE+ NH) _
a(lZo

Thus it is established that, besides the generally recognized linear representation of the
Lorentz group discovered by Henry Poincare in 1905 [5], there exists the nonlinear repre-
sentation constructed by using the nonlinear equations of hydrodynamical type [4]. It is
obvious that for instance the linear superposition principle does not hold for a non-Maxwell
electrodynamic theory based on the equation (25) or (45).

The nonlinear representations for the algebras AG(I 3), AP(1,2), AP(2,2), AC(1,2),
AC(2,2) for a scalar field have been considered in [6], AP(1,1) in [7], and AP(1,2) in [8].

ot (RH — NE).



NONLINEAR REPRESENTATIONS FOR POINCARE 221

References

[1] Fushchych W. and Nikitin A., Symmetries of Maxwell’s Equations, Dordrecht, Reidel Publ. Comp.,
1987.

[2] Fushchych W., Shtelen W. and Serov N., Symmetry Analysis and Exact Solutions of Equations of
Nonlinear Mathematical Physics, Dordrecht, Kluwer Publishers, 1993.

[3] Fushchych W., On symmetry and exact solutions of the multidimensional equations of mathematical
Physic in Algebraic-Theoretical Studies in Mathematical Physics Problems, Institute of Mathematics,
Ukrainian Acad. Sci., Kiev, 1983, 4-23.

[4] Fushchych W., New nonlinear equations for electromagnetic field having the velocity different from
C., Dopovidi of the Ukrainian Academy of Sciences, 1982, N 4, 24-28.

[5] Poincare H., On the dynamics of the electron, Comptes Rendus, 1905, V.140, 1504-1510.

[6] Fushchych W., Zhdanov R., Lahno V., On nonlinear representation of the conformal algebra AC(2,2),
Dopovidi of the Ukrainian Academy of Sciences, 1993, N 9, 44-47.

[7] Rideau G., Winternitz P., Nonlinear equations invariant under the Poincare, similitude and conformal
groups in two-dimensional space-time, Journ. Math. Phys., 1990, 31, 1095-1105.

[8] Yehorchenko I., Nonlinear representation of the Poincare algebra and invariant equations, in: ”Sym-

metry Analysis of Equations of Mathematical Physics”, Kiev, Inst. of Math., 1992, 62-66.



