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Abstract

It is proved that if the spectrum and spectral measure of a semi-infinite Jacobi matrix
L(t) change appropriately, then L(t) satisfies a generalized Lax equation of the form
L̇(t) = Φ(L(t), t)+[L(t), A(L(t), t)], where Φ(λ, t) is a polynomial with t-dependent
coefficients and A(L(t), t) is a skew-symmetric matrix which is determined by the
evolution of the spectral data. Such an equation is equivalent to a wide class of
generalized Toda lattices. The theory of Jacobi matrices gives rise to the procedure of
solution of the corresponding Cauchy problem by the inverse spectral problem method.
The linearization of this nonlinear equation in terms of the moments is established.

0 Introduction

In brief communications [1–3] we considered non-isospectral deformations of finite and
semi-infinite Jacobi matrices which are governed by a generalized Lax equation (see Sec-
tion 3 below) and used the inverse spectral problem method [4, 5] to solve the correspon-
ding Cauchy problem in the class of bounded operators.

To explain our approach recall that the famous Toda lattice

ȧn =
1
2
an(bn+1 − bn), ḃn = a2

n − a2
n−1 (0.1)

admits the Lax representation:
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L̇(t) = [L(t), A(t)] , (0.2)

where L(t) is a Jacobi matrix constructed from the solution of (0.1) and A(t) = A(L(t), t)
is a skew-symmetric matrix connected with L(t). As it is well known [6, 7] L(t) undergoes
the isospectral deformations. Moreover, for a finite Toda lattice with free ends [8] or
a semi-infinite Toda lattice with one free end [4, 5] it was discovered that a spectral
measure dρ(λ, t) of L(t) meets a very simple differential equation, which after a proper
normalization can be written down as follows:

dρ̇(λ, t) = λ dρ(λ, t) . (0.3)

Thus, in order to integrate the finite or semi-infinite Toda lattice it is enough to construct
the spectral measure dρ(λ, 0) of the initial Jacobi matrix (the direct spectral problem),
to take the solution dρ(λ, t) = eλtdρ(λ, 0) of (0.3), and finally, to recover a self-adjoint
Jacobi matrix L(t) from the obtained measure (the inverse spectral problem of the theory
of Jacobi matrices).

This procedure has been used in [4, 5] to solve the Cauchy problem for (0.1) on the
semi-axis n = 0, 1, . . . with a boundary condition a−1 = 0. Later, modifications of
the procedure were applied to some important isospectral lattice equations, such as non-
abelian Toda and Volterra lattices, discrete mKdV and NLS equations on the finite or
semi-infinite intervals [1, 9–11]. In this connection we should also mention [12, 13], where
semi-infinite lattice equations were treated by means of the continued fractions theory,
a study of the generalized Toda flows in `2 [14], and an investigation of the semi-
infinite Toda lattice with a fixed end [15]. Unlike the inverse scattering method [6, 16, 17]
the approach, which is described above, allows us to construct the solution for arbitrary
bounded initial values.

One of the ways to generalize the Lax equation is to describe the evolution of L(t)
compatible with a given evolution of the spectrum. The corresponding infinite lattice
equations were first considered in [18, 19] in the framework of the inverse scattering (see
also recent paper [20] and the book [21]). In the present paper we show that the more gen-
eral than (0.3) evolution of the spectral measure [1–3] naturally leads to the nonisospectral
flows having the following form :

L̇(t) = Φ(L(t), t) + [L(t), A(t)] , (0.4)

where Φ(λ, t) is a polynomial in λ and A(t) = A(L(t), t) is a skew-symmetric matrix
whose form is determined by this evolution. Note that an autonomous system which is
similar to (0.4) has been treated in [22]. In our derivation of (0.4) the important role is
played by orthogonal polynomials on the line (see [23], where they appeared for the first
time in the context of integrable systems and the inverse scattering method).

To construct solutions of the Cauchy problem for (0.4) we apply the inverse spectral
method. In addition, we obtain the linearization of these nonlinear equations in terms
of the properly normalized moments of the spectral measure corresponding to the Jacobi
matrix L(t) and prove the uniqueness of the solution of the Cauchy problem.

The paper is organized as follows. At the end of this section we introduce the necessary
notations. In Section 1 well known facts of the spectral theory of Jacobi matrices are
reviewed and some useful formulas are established. Section 2 is devoted to the construction
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of a measure transformation which plays an important role in the sequel. In Section 3 we
formulate our main results. Section 4 contains two auxiliary lemmas which allow us to
prove the main results in Section 5. Section 6 is devoted to the uniqueness theorem. In the
last Section 7 we consider one of the possible modifications of our scheme and illustrate it
by specific examples.

Some words on the notations. We denote the σ-algebra of the Borel sets on real axis
by B(R). The symbol M stands for the set of all finite measures ρ(·) on B(R) with
compact support and infinitely many growth points. The symbol L designates the set of
all bounded selfadjoint semi-infinite Jacobi matrices L with real entries along the principal
diagonal and positive entries along two adjacent diagonals.

If A = (ajk)∞j,k=0 is a semi-infinite matrix which defines an operator acting in Hilbert
space `2, then we denote

{A}jk = (Aδk, δj)`2 = ajk ,

where (δj)∞j=0 is a standard basis in `2. For this matrix A we denote by 〈A〉 the matrix
with elements 〈A〉jk = ajk if j > k, 〈A〉jk = 0 if j = k, and 〈A〉jk = −akj if j < k.
We write 〈A〉jk instead of {〈A〉}jk. The symbol [·, ·] designates the usual commutator,
i.e., [A,B] = AB −BA whenever the multiplications make sense, and [A,B]jk stands for
{[A,B]}jk. We denote the transpose of matrix A by Aτ , i.e., {Aτ}jk = {A}kj . The dot
stands for the derivative · = d

dt or for the partial derivative · = ∂
∂t with respect to t ,

while ′ = ∂
∂λ denotes the partial derivative with respect to λ.

1 Preliminaries

To begin with, we review some well-known facts of the theory of semi-infinite Jacobi
matrices (see e.g. [24] for more details). In the space `2 of square summable sequences
u = (uj)∞j=0 let us consider the action of a difference expression

(Tu)j = aj−1uj−1 + bjuj + ajuj+1, aj > 0, bj ∈ R , (1.1)

where j = 0, 1, . . . and a−1 = 0. If the coefficients aj and bj are bounded, then T generates
in `2 a bounded selfadjoint operator L (Jacobi matrix):

(Lu)j = (Tu)j , u ∈ `2 , j = 0, 1, . . . ; u−1 = 0. (1.2)

We denote by L the class of all such Jacobi matrices. Let

B(R) 3 ∆ 7→ ρ(∆) ∈ [0,∞) (1.3)

be its spectral measure. It has the following well known properties:
(1) The support is a compact set in R ,
(2) There are infinitely many points of increase,
(3) ρ(R) = 1.

Let us denote by M the set of all nonzero finite measures on B(R) with properties (1)
and (2). It turns out that every dρ(λ) ∈ M is a spectral measure (up to a scalar factor)
of some bounded selfadjoint Jacobi matrix. The problem of recovering the corresponding
Jacobi matrix L from the given dρ(λ) ∈ M is called the inverse spectral problem (ISP).
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Since the ISP plays an important role in our further considerations we outline here
two different approaches to its solution.
I. Let

P0(λ) = (ρ(R))−1/2, P1(λ), . . . (1.4)

be a sequence of orthonormal polynomials which is constructed by the Schmidt procedure
of orthogonalization of the powers

1, λ, λ2, . . .

in the Hilbert space
L2 := L2(R, dρ(λ)) .

The orthonormality means that∫
R
Pj(λ)Pk(λ) dρ(λ) = δjk, j, k = 0, 1, . . . (1.5)

It turns out that these polynomials satisfy a three-term recursion:

ak−1Pk−1(λ) + bkPk(λ) + akPk+1(λ) = λPk(λ) , k = 0, 1, . . . , P−1 = 0 . (1.6)

Therefore, the coefficients aj and bj of the difference expression T can be found by the
following formulas:

aj =
∫

R
λPj(λ)Pj+1(λ) dρ(λ), bj =

∫
R
λP 2

j (λ) dρ(λ) , j = 0, 1, . . . (1.7)

II. Let

sn =
∫

R
λn dρ(λ), n = 0, 1, . . . , (1.8)

be a moment sequence of dρ(λ) ∈ M. Since dρ(λ) is a finite measure with bounded
support, all the moments exist. Moreover, as dρ(λ) has infinitely many points of increase,
every Hankel matrix Hk of the form

Hk =


s0 s1 . . . sk

s1 s2 . . . sk+1

· · . . . ·
sk sk+1 . . . s2k

 , k = 0, 1, . . . , (1.9)

is positive definite:
Dk = detHk > 0, k = 0, 1, . . .

Denoting

∆k = det


s0 s1 . . . sk−1 sk+1

s1 s2 . . . sk sk+2

· · . . . · ·
sk sk+1 . . . s2k−1 s2k+1

 , k = 0, 1, . . . ,

one can solve the ISP by the following formulas (see e.g., [25]):

an =
√
Dn−1Dn+1

Dn
, bn =

∆n

Dn
− ∆n−1

Dn−1
,

n = 0, 1, . . . , D−1 := 1, ∆−1 := 0, ∆0 := s1. (1.10)
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Note that in terms of the entries of the inverse matrices H−1
k , k = 0, 1, . . ., these formulas

can be rewritten as follows:

an =
√
τnτ

−1
n+1, bn = εnτ

−1
n − εn+1τ

−1
n+1 , (1.11)

where τk = {H−1
k }kk , εk = {H−1

k }k−1,k , k = 0, 1, . . . , ε0 := 0. It is probably worth
noting that a fast algorithm is known, which produces a0, a1, . . . , an and b0, b1, . . . , bn
from s0, s1, . . . , s2n+2 after O(n2) operations (see e.g., [26]).

Let us return to the orthogonal polynomials. Formulas (1.5)–(1.7) show that the
operator of multiplication by λ in the space L2 has the Jacobi matrix L as its matrix
representation in the basis (Pj(λ))∞j=0. Consider the matrix form DL of the differential
operator ∂

∂λ in the same basis:
DL = (djk)∞j,k=0, (1.12)

where

djk = (P ′
k(·), Pj(·))L2 =

∫
R
P ′

k(λ)Pj(λ) dρ(λ) . (1.13)

It follows easily from (1.5) that djk = 0 when j ≥ k, i.e., D is a strictly upper triangular
matrix, and therefore

P ′
k(λ) =

k−1∑
j=0

djkPj(λ), j, k = 0, 1, . . . (1.14)

By differentiation of identities (1.6) with respect to λ, one can get the recurrent formulas
for the calculation of djk, and then express them in terms of an, bn. For example, one has

dk−1,k = ka−1
k−1, dk−2,k = a−1

k−2a
−1
k−1

 k∑
j=1

bj−1 − kbk−1

 . (1.15)

An arbitrary polynomial C(λ) = c0 + c1λ + · · · + cmλ
m with real coefficients cj ∈ R,

j = 0, 1, . . . ,m, generates the operator C of multiplication by this polynomial in the space
L2 and the selfadjoint operator

C(L) = c01 + c1L+ · · ·+ cmL
m ,

which acts in `2. The matrix form of the operator C in the basis (Pj(λ))∞j=0 coincides
with the matrix form of C(L) in the standard basis for `2:

Cjk =
∫

R
C(λ)Pk(λ)Pj(λ) dρ(λ) = {C(L)}jk, j, k = 0, 1, . . . (1.16)

Note that by the spectral theorem, (1.16) holds for any function C(λ) which is continuous
on the spectrum of L. In the sequel we will need the following formula

{C(L)}00 =
∫

R
C(λ)P 2

0 (λ) dρ(λ) =
1

ρ(R)

∫
R
C(λ) dρ(λ) . (1.17)
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The operator C ∂
∂λ acting in L2 can be represented in the orthonormal basis (Pj(λ))∞j=0

as a matrix with jk-entry:(
C

∂

∂λ

)
jk

=
∫

R
C(λ)P ′

k(λ)Pj(λ) dρ(λ) =
∫

R
C(λ)

(
k−1∑
i=0

dikPi(λ)

)
Pj(λ) dρ(λ) =

k−1∑
i=0

dikCji =
∞∑
i=0

Cjidik = {C(L)DL}jk. (1.18)

For any matrix A = (ajk)∞k=0 we define 〈A〉 = Alow − Aτ
low , where Alow stands for

the strictly lower triangular part of A and τ denotes the usual transpose. This definition
can be rewritten as

〈A〉jk =


ajk , j > k ,

0 , j = k ,

−akj , j < k .

(1.19)

Obviously, the matrix 〈A〉 is skew-symmetric:

〈A〉τ = −〈A〉 , (1.20)

and
〈αA+ βB〉 = α〈A〉+ β〈B〉, α, β ∈ R . (1.21)

We proceed with the following elementary

Lemma 1 If L = (Ljk)∞j,k=0 is a Jacobi matrix, then for any matrix R = (Rjk)∞j,k=0,

[L, 〈R〉]jk =

{
[L,R]jk , j > k + 1 ,

[L,R]kj , j < k − 1 ,
(1.22)

where [L,B] = LB −BL is a commutator. Furthermore, if LR = RL, then

[L, 〈R〉]jk = 0 for |j − k| > 1 . (1.23)

P r o o f Since L is a Jacobi matrix, all the elements in the j-row, except for

Lj,j−1 = aj−1, Ljj = bj , Lj,j+1 = aj ,

and all the elements in the k-column, except for

Lk−1,k = ak−1, Lkk = bk, Lk+1,k = ak ,

are zero. Hence

[L, 〈R〉]jk = {L〈R〉}jk − {〈R〉L}jk = Lj,j−1〈R〉j−1,k + Ljj〈R〉jk +
Lj,j+1〈R〉j+1,k − 〈R〉j,k−1Lk−1,k − 〈R〉jkLkk − 〈R〉j,k+1Lk+1,k.

If j > k + 1, then by definition (1.19) we have

[L, 〈R〉]jk = Lj,j−1Rj−1,k + LjjRjk + Lj,j+1Rj+1,k −Rj,k−1Lk−1,k −
RjkLkk −Rj,k+1Lk+1,k = {LR}jk − {RL}jk = [L,R]jk.
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To complete the proof of (1.22), it is enough to observe that

[L, 〈R〉]τ = (L〈R〉)τ − (〈R〉L)τ =
〈R〉τLτ − Lτ 〈R〉τ = −〈R〉L+ L〈R〉 = [L, 〈R〉], (1.24)

i.e., [L, 〈R〉] is a symmetric matrix. Formula (1.23) for commuting L and R is an imme-
diate consequence of (1.22). 2

The following formula will also prove useful:

[A, 〈B〉]00 = 2{AB}00 − 2A00B00 , (1.25)

provided A = Aτ and all multiplications make sense. To check (1.25) it is enough to take
into account definition (1.19):

[A, 〈B〉]00 =
∞∑

j=0

(A0j〈B〉j0 − 〈B〉0jAj0) =

∞∑
j=1

(A0jBj0 +Bj0A0j) = 2
∞∑

j=0

A0jBj0 − 2A00B00 = 2{AB}00 − 2A00B00.

It immediately follows from (1.25) that if Bj0 = 0 , j = 0, 1, . . . , then

[A, 〈B〉]00 = 0 . (1.26)

2 Measure transformation

Let ρ(·, 0) be a finite measure of the class M. Our objective is to introduce a one-parametric
family of measures ρ(·, t) ∈ M, which depends on Φ(λ, t) and Ψ(λ, t), the polynomials in
λ with continuously differentiable t-dependent coefficients:

Φ(λ, t) =
∑̀
i=0

ϕi(t)λi, (2.1)

Ψ(λ, t) =
m∑

i=0

ψi(t)λi, λ ∈ R. (2.2)

Let µ be any number in the compact set M = supp dρ(λ, 0) and let us consider the Cauchy
problem

dλ(t)
dt

= Φ(λ(t), t), λ(0) = µ. (2.3)

It follows from the standard theory of ordinary differential equations that one can chose
T = T (M,Φ) ∈ (0,+∞) such that:

(1) For every fixed µ ∈ M there exists a solution λ(t) = λ(t, µ) of the Cauchy problem
(2.3) for all t ∈ [0, T ];

(2) For every fixed t ∈ [0, T ], the function

M 3 µ 7→ ωt(µ) = λ(t, µ) (2.4)
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is bounded on M, and moreover, the following uniform estimate holds true:

|ωt(µ)| ≤ C < +∞, ∀ (µ, t) ∈M × [0, T ]. (2.5)

For every fixed t ∈ [0, T ] let us define a new finite measure ρ̃(·, t) by the following rule:

ρ̃(∆, t) = ρ(ω−1
t (∆), 0), ∀∆ ∈ B(R), (2.6)

where ω−1
t (∆) is the full preimage of the set ∆ under the mapping ωt. It follows from

estimate (2.5) that for every t ∈ [0, T ] the measure ρ̃(·, t) has a compact support. Since
the initial measure ρ(·, 0) has infinitely many points of increase, so does the measure ρ̃(·, t),
and therefore, ρ̃ ∈ M.

Now consider the solution

r(λ, t) = exp
(∫ t

0
Ψ(λ, τ) dτ

)
of the following equation

∂r(λ, t)
∂t

= Ψ(λ, t)r(λ, t), t ∈ [0, T ], λ ∈ R, (2.7)

and introduce a measure ρ(·, t) by putting

ρ(∆, t) =
∫
∆
r(λ, t) dρ̃(λ, t) =

∫
∆

exp
(∫ t

0
Ψ(λ, τ) dτ

)
dρ̃(λ, t) =∫

ω−1
t (∆)

exp
(∫ t

0
Ψ(λ(t, µ), τ) dτ

)
dρ(µ, 0) (2.8)

for every ∆ ∈ B(R) and fixed t ∈ [0, T ]. One can easily check that ρ(·, t) ∈ M, t ∈
[0, T ]. Thus the functions Φ and Ψ define through equations (2.2) and (2.7) some measure
transformation

M 3 ρ(·, 0) 7→ ρ(·, t) ∈ M, t ∈ [0, T ] (2.9)

of the type ”mapping + multiplication”. This transformation will be sometimes referred
to as a (Φ,Ψ)-transform of ρ(·, 0).

Let F (λ, t) ∈ C1(R× [0, T ]) (T as before) and consider the following integral:

f(t) =
∫

R
F (λ, t) dρ(λ, t), t ∈ [0, T ].

Since ρ(·, t) is a finite measure with a compact support, the function f(t) is defined for
every t ∈ [0, T ]. Moreover, it is continuously differentiable on [0, T ] and our next objective
is to derive a formula for the differentiation of f(t). Let us observe first that in view of
(2.6) and (2.8) we have

f(t) =
∫

R
F (λ, t) r(λ, t) dρ̃(λ, t) =∫

ω−1
t (R)

F (ωt(µ), t) r(ωt(µ), t) dρ(µ, 0) =∫
R
F (λ(t, µ), t) r(λ(t, µ), t) dρ(µ, 0). (2.10)



124 Y.BEREZANSKY and M.SHMOISH

Using (2.3), we get

df

dt
=

∫
R

{(
∂F (λ(t, µ), t)

∂λ
Φ(λ(t, µ), t) +

∂F (λ(t, µ), t
∂t

)
r(λ(t, µ), t)+

F (λ(t, µ), t)
dr(λ(t, µ), t)

dt

}
dρ(µ, 0),

where

dr(λ(t, µ), t)
dt

= r(λ(t, µ), t)
(

Φ(λ(t, µ), t)
∫ t

0

∂Ψ(λ(t, µ), τ)
∂λ

dτ + Ψ(λ(t, µ), t)
)

(2.11)

by (2.3), (2.7) and the formula

∂r(λ, t)
∂λ

=
∂

∂λ
(exp

(∫ t

0
Ψ(λ, τ)dτ)

)
=

r(λ, t)
∫ t

0

∂Ψ(λ, τ)
∂

λτ, λ ∈ R.

As a result we obtain

df

dt
=

∫
R

{∂F (λ, t)
∂λ

Φ(λ, t) +
∂F (λ, t)
∂t

+

F (λ, t)
(

Ψ(λ, t) + Φ(λ, t)
∫ t

0

∂Ψ(λ, τ)
∂λ

dτ

)}
dρ(λ, t).

This important formula can be written down as follows:

d

dt

∫
R
F (λ, t) dρ(λ, t) =

∫
R

(
F ′(λ, t)Φ(λ, t) + Ḟ (λ, t) + F (λ, t)Θ(λ, t)

)
dρ(λ, t), (2.12)

where

Θ(λ, t) = Ψ(λ, t) + Φ(λ, t)
∫ t

0

∂Ψ(λ, τ)
∂λ

dτ =
`+m−1∑

i=0

θi(t)λi, λ ∈ R, (2.13)

is a polynomial in λ. Note that its coefficients θi(t), which can be expressed in term of
ϕj(t), smoothly depend on t.

Note that if the initial measure ρ(·, 0) is concentrated on a finite (or countable) set
with no limit points, then one should consider instead of (2.3) and (2.7) the following
equations [2, 3]:

dλj(t)
dt

= Φ(λj(t), t),
dρj(t)
dt

= Ψ(λj(t), t)ρj(t), j = 1, 2, . . . , N ≤ ∞. (2.14)

After solving (2.14) one can construct the measure ρ(·, t), which is concentrated at the
points λj(t) by the rule

ρ(∆, t) =
∑
j

ρj(t), ∀∆ ∈ B(R), (2.15)
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where the summation is taken over those j for which λj(t) ∈ ∆. It is easy to understand
that the rule of differentiation (2.12) remains valid for such a measure ρ(·, t) with Ψ in
place of Θ.

3 Nonisospectral flows. The Cauchy problem

Assume that the entries of the Jacobi matrix L ∈ L are continuously differentiable
functions of t on the interval [0, T ]:

aj = aj(t) , bj = bj(t) , L = L(t) , j = 0, 1, . . . , t ∈ [0, T ] . (3.1)

The functions Φ(λ, t) and Ψ(λ, t), as in (2.1), have the polynomial dependence on λ and
therefore,

Φ(L(t), t) =
∑̀
i=0

ϕi(t)(L(t))i, Θ(L(t), t) =
`+m−1∑

i=0

θi(t)(L(t))i (3.2)

are polynomials of the Jacobi matrix L(t) (Θ(λ, t) is given by (2.13)).
Let us consider the following differential equation:

L̇(t) = Φ(L(t), t) + [L(t), 〈Φ(L(t), t)DL(t) +
1
2
Θ(L(t), t)〉], (3.3)

where · = d
dt , [·, ·] denotes the commutator, the matrix operation 〈·〉 is defined by (1.19)

and DL(t) is given by formulas (1.12) and (1.15).
We shall see in Section 5 that equation (3.3) is equivalent to the following differential-

difference equations in variables an(t) , bn(t) , n = 0, 1, . . . :

ȧn(t) = {Φ(L(t), t)}n+1,n +
1
2
an({Θ(L(t), t)}n+1,n+1 − {Θ(L(t), t)}nn) +

an+1{Φ(L(t), t)DL(t)}n+2,n − an−1{Φ(L(t), t)DL(t)}n+1,n−1 +
(bn+1 − bn){Φ(L(t), t)DL(t)}n+1,n, (3.4)

ḃn(t) = {Φ(L(t), t)}nn + an{2Φ(L(t), t)DL(t) + Θ(L(t), t)}n+1,n −
an−1{2Φ(L(t), t)DL(t) + Θ(L(t), t)}n,n−1, (3.5)

where n = 0, 1, . . . ; a−1 = 0.

Remark 1 Since DL(t) is a strictly upper triangular matrix and the matrices Φ(L(t), t)
and Θ(L(t), t) have only a finite number of nonzero diagonals, it follows that in (3.3) all
the matrix multiplications make sense.

Remark 2 When taking Φ(λ, t) = 0 (isospectral deformation) and Ψ(λ, t) = λ, equation
(3.3) becomes

L̇(t) = [L(t),
1
2
〈L(t)〉], (3.6)

which is the Lax form of the semi-infinite Toda lattice

ȧn(t) =
1
2
an(bn+1 − bn), ḃn(t) = a2

n − a2
n−1, n = 0, 1, . . . ; a−1 = 0. (3.7)
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The Cauchy problem for the differential equation (3.3) can be stated as follows. Given
L0 ∈ L, i.e., a bounded selfadjoint Jacobi matrix with aj > 0 , bj ∈ R , j = 0, 1, . . ., find
a L-valued function L(t) with continuously differentiable entries aj(t), bj(t) such that:
L(t) is a (weak) solution of the equation (3.3) for t ∈ [0, T ] (T > 0 depends only on
L0 and Φ(λ, t)) and

L(0) = L0 . (3.8)

Theorem 1 A solution of the Cauchy problem (3.3), (3.8) exists, and can be found
in the following way. Let ρ(·) ∈ M be the spectral measure of the Jacobi matrix L0 ∈ L.
Chose T (as in Section 2) and construct ρ(·, t) ∈ M , t ∈ [0, T ], the (Φ,Ψ)-transform of
ρ(·, 0) = ρ(·). Obtain the solution L(t) , t ∈ [0, T ], by solving the ISP via formulas (1.7)
or (1.10).

It is not always possible to implement Theorem 1, since the construction of the (Φ,Ψ)-
transform requires the solution of the nonlinear equation (2.3). Another approach to
the Cauchy problem takes advantage of the description of a Jacobi matrix L through its
moments sk = {Lk}00. It turns out that the nonlinear equation (3.3) can be linearized in
terms of the appropriately normalized moments sk.

Theorem 2 If L(t) ∈ L , t ∈ [0, T ], is a solution of the nonlinear equation (3.3), then
its moments

sk(t) = {Lk(t)}00, k = 0, 1, . . . , (3.9)

after normalization

hk(t) = sk(t) exp
(∫ t

0
{Θ(L(τ), τ)}00 dτ

)
, (3.10)

satisfy the following linear system:

dhk(t)
dt

= kϕ0(t)hk−1(t) +
`−1∑
i=0

(kϕi+1(t) + θi(t))hk+i(t) +

`+m−1∑
i=l

θi(t)hk+i(t), k = 0, 1, . . . ; h−1 = 0, (3.11)

where ϕi(t) and θi(t) are the coefficients of the polynomials Φ(λ, t) and Θ(λ, t) respectively.

The converse is also true, as the following theorem shows.

Theorem 3 For all t ∈ [0, T ] let the sequence (hk(t))∞k=0 be a moment sequence of
some measure ρ(·, t) ∈ M , i.e.,

hk(t) =
∫

R
λkdρ(λ, t) .

Assume further that the moments hk(t) satisfy the linear system (3.11) with continuously
differentiable coefficients ϕi(t), (i = 0, 1, . . . , `), and θi(t), (i = 0, 1, . . . , `+m− 1) . Then
the corresponding Jacobi matrix L(t) (which is built via formulas (1.10) with hk(t) instead
of sk) meets the generalized Lax equation (3.3) on the same interval.
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Remark 3 Theorems 2 and 3 suggest another procedure for the construction of solutions
to the Cauchy problem (3.3), (3.8) in the class L. Namely, starting from an initial value
L(0) = L0 ∈ L:

(1) Construct initial moments

hk(0) = sk = {Lk
0}00 , . (3.12)

(2) Find the solution (hk(t))∞k=0 of the Cauchy problem (3.11), (3.12),

(3) For those t for which (hk(t))∞k=0 is a moment sequence of some measure ρ(·, t) ∈ M,
solve the ISP via formulas (1.10), to obtain the sought-for solution L(t).
Note that at least for t from the interval [0, T ], where T is chosen as in Section 2, the
solution L(t) does exist.

4 Relations for orthogonal polynomials Pj(λ, t)

Let ρ(·, t) ∈ M be a (Φ,Ψ)-transform of some spectral measure ρ(·, 0), where Φ(λ, t) and
Ψ(λ, t) are polynomials in λ, as in (2.1) and (2.2). Consider a sequence (Pj(λ, t))∞j=0 of the
corresponding orthogonal polynomials which is an orthonormal basis in L2(R, dρ(λ, t)):∫

R
Pj(λ, t)Pk(λ, t)dρ(λ, t) = δjk, j, k = 0, 1, . . . (4.1)

The evolution of these polynomials in time t is complicated. Nevertheless, for all j, k =
0, 1, . . . the following two important quantities,

Ijk(t) =
∫

R
Pj(λ, t)

∂Pk(λ, t)
∂t

dρ(λ, t) (4.2)

and
Ejk(t) =

∫
R
λ
∂Pj(λ, t)

∂t
Pk(λ, t)dρ(λ, t) (4.3)

can be expressed in terms of the Jacobi matrix L(t) corresponding to the measure ρ(·, t).

Lemma 2 If Ijk(t) is given by (4.2), then the following equalities hold:

(a) Ijk(t) = 0 , j > k , (4.4)

(b) Ikk(t) = −{ΦDL(t)}kk−
1
2
Θkk , (4.5)

(c) Ijk(t) = −({ΦDL(t)}jk+{ΦDL(t)}kj+Θjk) , j < k , (4.6)

where Φ = Φ(L(t), t) , Θjk = {Θ(L(t), t)}jk.

P r o o f By differentiation of the polynomial Pk(λ, t) with respect to t, we obtain the
polynomial in λ of the same degree k. Hence the following expansion according to the
basis (Pj(λ, t))∞j=0 holds for some coefficients βi(t) , i = 0, . . . , k,

∂Pk(λ, t)
∂t

=
k∑

i=0

βi(t)Pi(λ, t) .
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Now it follows immediately from (4.1) that

Ijk(t) = 0,

when j > k. To prove relations (4.5) and (4.6), let us differentiate identities (4.1) with
respect to t, using formula (2.12):

0 =
d

dt

∫
R
Pj(λ, t)Pk(λ, t)dρ(λ, t) =

∫
R

∂

∂λ
(Pj(λ, t)Pk(λ, t))Φ(λ, t)dρ(λ, t) +∫

R

∂

∂t
(Pj(λ, t)Pk(λ, t)) dρ(λ, t) +

∫
R
Pj(λ, t)Pk(λ, t)Θ(λ, t) dρ(λ, t) . (4.7)

By (1.16), (1.18), and by definition (4.2) of Ijk(t), it follows from (4.7) that

{ΦDL(t)}jk + {ΦDL(t)}kj + Ijk(t) + Ikj(t) + Θjk = 0 . (4.8)

If now j = k, then

2Ikk(t) + 2{ΦDL(t)}kk + Θkk = 0 ,

which implies (4.5). If j < k, then Ikj(t) = 0, and (4.6) follows easily from (4.4). 2

In order to express Ejk(t) in terms of L(t), it is convenient to denote

Ω = Φ(L(t), t)DL(t), Θ = Θ(L(t), t) . (4.9)

Lemma 3 If Ejk(t) are given by (4.3), then one has:

(a) Ejk(t) = 0, j < k−1 ,

(b) Ek−1,k(t) = −ak−1{
1
2
Θ+Ω}k−1,k−1 ,

(c) Ekk(t) = −ak−1{Ω+Ωτ +Θ}k−1,k−bk{Ω+
1
2
Θ}kk ,

(d) Ek+1,k(t) = −{ΩL+(LΩ)τ +ΘL}k+1,k+ak{Ω+
1
2
Θ}k+1,k+1 ,

(e) Ejk(t) = −{ΩL+(LΩ)τ +ΘL}jk, j > k+1 ,

where ak, bk are elements of L = L(t), and Ω and Θ are given by (4.9).

P r o o f Recall that the orthogonal polynomials (Pk(λ, t))∞k=0 satisfy the three-term
recursion

λPk(λ, t) = ak−1(t)Pk−1(λ, t) + bk(t)Pk(λ, t) + ak(t)Pk+1(λ, t), λ ∈ R, t ∈ [0, T ],

where ak(t) = {L(t)}k,k+1 = {L(t)}k+1,k , bk(t) = {L(t)}kk , k = 0, 1, . . . This allows us to
rewrite Ejk(t) in the following form:

Ejk(t) =
∫

R

∂Pj(λ, t)
∂t

(λPk(λ, t))dρ(λ, t) =

ak−1(t)Ik−1,j(t) + bk(t)Ikj(t) + ak(t)Ik+1,j(t).
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In view of (4.9) we have: Ijk(t) = 0, if j > k, while Ikk(t) = −{Ω + 1
2Θ}kk, and

Ijk(t) = −{Ω + Ωτ + Θ}jk, if j < k . To complete the proof, it is enough to take into
account formulas (1.16) and the three-diagonal structure of the Jacobi matrix L(t). 2

5 Proofs

Now we are ready to prove the results formulated in Section 3.

P r o o f of Theorem 1 Let ρ(·) ∈ M be a spectral measure of the initial value
L0 ∈ L, and let ρ(·, t) ∈ M , t ∈ [0, T ], be the (Φ,Ψ) transform of ρ(·). Thus, we have

ρ(·, 0) = ρ(·) . (5.1)

Let (Pj(λ, t))∞j=0 be the orthogonal polynomials in L2(R, dρ(λ, t)). Then the entries Ljk(t)
of the Jacobi matrix L(t) corresponding to ρ(·, t) can be expressed as follows:

Ljk(t) =
∫

R
λPj(λ, t)Pk(λ, t)dρ(λ, t), j, k = 0, 1, . . . (5.2)

It follows from (5.1), (5.2) that L(0) = L0. Hence it remains to show that L(t) satisfies
the generalized Lax equation (3.3)

L̇(t) = Φ(L(t), t) + [L(t), 〈Φ(L(t), t)DL(t) +
1
2
Θ(L(t), t)〉] , t ∈ [0, T ] . (5.3)

Using formula (2.12), let us write

L̇jk(t) =
d

dt

∫
R
λPj(λ, t)Pk(λ, t)dρ(λ, t) =

∫
R

∂

∂λ
(λPj(λ, t)Pk(λ, t))Φ(λ, t)dρ(λ, t) +∫

R
λ
∂Pj(λ, t)

∂t
Pk(λ, t)dρ(λ, t) +

∫
R
λPj(λ, t)

∂Pk(λ, t)
∂t

dρ(λ, t) +∫
R
λPj(λ, t)Pk(λ, t)Θ(λ, t)dρ(λ, t) = Ajk(t) + Ejk(t) + Ekj(t) +Bjk(t), (5.4)

where

Ajk(t) =
∫

R

∂

∂λ
(λPj(λ, t)Pk(λ, t))Φ(λ, t)dρ(λ, t),

Bjk(t) =
∫

R
λPj(λ, t)Pk(λ, t)Θ(λ, t)dρ(λ, t)

and Ejk(t), Ekj(t) are given by Lemma 3.
Taking into account formulas (1.16), (1.18) one can find that

Bjk(t) = {L(t)Θ(L(t), t)}jk, j, k = 0, 1, . . . , (5.5)

Ajk(t) =
∫

R
Pj(λ, t)Pk(λ, t)Φ(λ, t)dρ(λ, t) +

∫
R
λ
∂Pj(λ, t)

∂λ
Pk(λ, t)Φ(λ, t)dρ(λ, t) +∫

R
λPj(λ, t)

∂Pk(λ, t)
∂λ

Φ(λ, t)dρ(λ, t) =

{Φ(L(t), t)}jk + {L(t)Ω}kj + {L(t)Ω}jk, j, k = 0, 1, . . . , (5.6)
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where Ω = Φ(L(t), t)DL(t) as in (4.9).
We proceed in steps.

Step 1 The nontrivial entries

an(t) = {L(t)}n+1,n = Ln+1,n(t), bn(t) = {L(t)}nn = Lnn(t)

of the Jacobi matrix L(t) satisfy equations (3.4), (3.5):

ȧn = Φn+1,n +
1
2
an(Θn+1,n+1 −Θnn) + an+1{ΦDL(t)}n+2,n −

an−1{ΦDL(t)}n+1,n−1 + (bn+1 − bn){ΦDL(t)}n+1,n, (5.7)

ḃn = Φnn + 2an{ΦDL(t)}n+1,n − 2an−1{ΦDL(t)}n,n−1 +
anΘn+1,n − an−1Θn,n−1 , (5.8)

where Φ = Φ(L(t), t) , Θ = Θ(L(t), t), n = 0, 1, . . . ; a−1 = 0.

P r o o f of Step 1 By (5.4), (5.5), (5.6), and Lemma 3 (c) it is easy to verify that

ḃn = L̇nn(t) = Ann(t) + 2Enn(t) +Bnn(t) = (Φnn + 2{LΩ}nn) +

2(−an−1{Ω + Ωτ + Θ}n−1,n − bn{Ω +
1
2
Θ}nn) + {LΘ}nn =

Φnn + 2(an−1Ωn−1,n + bnΩnn + anΩn+1,n)− 2(an−1Ωn−1,n + bnΩnn)−
2an−1Ωn,n−1 − 2an−1Θn−1,n − bnΘnn + an−1Θn−1,n + bnΘnn + anΘn+1,n =
Φnn + 2anΩn+1,n − 2an−1Ωn,n−1 + anΘn+1,n − an−1Θn,n−1, (5.9)

which proves (5.8); Ω is given by (4.9).
Similar arguments work for (5.7) where now Lemma 3 (b, d) is invoked:

ȧn = L̇n+1,n(t) = An+1,n(t) + En,n+1(t) + En+1,n(t) +Bn+1,n(t) =

(Φn+1,n + {LΩ}n,n+1 + {LΩ}n+1,n) + (−an{Ω +
1
2
Θ}nn) + (5.10)

(−{ΩL+ (LΩ)τ + ΘL}n+1,n + an{Ω +
1
2
Θ}n+1,n+1) + {LΘ}n+1,n.

Taking into account that ΘL = LΘ and {LΩ}n,n+1 = {(LΩ)τ}n+1,n, we continue (5.10):

ȧn = Φn+1,n +
1
2
an(Θn+1,n+1 −Θnn) + {LΩ}n+1,n − anΩnn −

{ΩL}n+1,n + anΩn+1,n+1 =

Φn+1,n +
1
2
an(Θn+1,n+1 −Θnn) + (anΩnn + bn+1Ωn+1,n + an+1Ωn+2,n)−

anΩnn − (Ωn+1,n−1an−1 + Ωn+1,nbn + Ωn+1,n+1an) + anΩn+1,n+1 =

Φn+1,n +
1
2
an(Θn+1,n+1 −Θnn) + an+1Ωn+2,n −

an−1Ωn+1,n−1 + (bn+1 − bn)Ωn+1,n, (5.11)

which completes the proof of Step 1.
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Step 2 Equations (5.7), (5.8) can be rewritten as

L̇jk = {Φ(L(t), t) + [L(t), 〈Φ(L(t), t)DL(t) +
1
2
Θ(L(t), t)〉]}jk,

k = 0, 1, . . . , j = k, k + 1. (5.12)

P r o o f of Step 2 Let us denote for a moment

R = Ω +
1
2
Θ = Φ(L(t), t)DL(t) +

1
2
Θ(L(t), t) , (5.13)

and rewrite (5.8) in the following form:

L̇nn(t) = ḃn = Φnn + (an−1(−Rn,n−1) + bn · 0 + anRn+1,n)− (Rn,n−1an−1 + 0 · bn +
(−Rn+1,n)an) = Φnn + (an−1〈R〉n−1,n + bn〈R〉nn + an〈R〉n+1,n)−
(〈R〉n,n−1an−1 + 〈R〉nnbn + 〈R〉n,n+1an) = {Φ + [L, 〈R〉]}nn,

where 〈·〉 is defined by (1.19), Φ = Φ(L(t), t). To rewrite (5.7) as required, it is convenient
to use its equivalent form (5.11):

L̇n+1,n(t) = ȧn(t) = Φn+1,n +
1
2
an(Θn+1,n+1 −Θnn) +

{LΩ}n+1,n − anΩnn − {ΩL}n+1,n + anΩn+1,n+1 =
Φn+1,n + an(Rn+1,n+1 −Rnn) + {LR}n+1,n − {RL}n+1,n, (5.14)

where it is worth to remember that R is defined by (5.13) and ΘL = LΘ.
Since

{LR}n+1,n = anRnn + bn+1Rn+1,n + an+1Rn+2,n

and
{RL}n+1,n = Rn+1,n−1an−1 +Rn+1,nbn +Rn+1,n+1an,

it follows from (5.14) that

L̇n+1,n(t) = Φn+1,n + bn+1Rn+1,n + an+1Rn+2,n −Rn+1,n−1an−1 −Rn+1,nbn =
Φn+1,n + (an〈R〉nn + bn+1〈R〉n+1,n + an+1〈R〉n+2,n)−
(〈R〉n+1,n−1an−1 + 〈R〉n+1,nbn + 〈R〉n+1,n+1an) =
Φn+1,n + {L〈R〉}n+1,n − {〈R〉L}n+1,n = {Φ + [L, 〈R〉]}n+1,n, (5.15)

as needed.

Step 3 Equation (5.12) holds for j > k + 1, i.e.,

{Φ + [L, 〈R〉]}jk = 0, j > k + 1. (5.16)

P r o o f of Step 3 It follows from (5.4), (5.5), (5.6) and Lemma 3(a,e) that for
j > k + 1,

0 = L̇jk(t) = Ajk(t) + Ejk(t) + Ekj(t) +Bjk(t) =
(Φjk + {LΩ}kj + {LΩ}jk) + (−{ΩL+ (LΩ)τ +
ΘL}jk) + 0 + {LΘ}jk. (5.17)
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Using again the fact that {LΩ}kj = {(LΩ)τ}jk and LΘ = ΘL, we have

0 = Φjk + {LΩ}jk − {ΩL}jk = Φjk + [L,Ω]jk =

Φjk + [L,Ω]jk + [L,
1
2
Θ]jk =

Φjk + [L,R]jk = {Φ + [L, 〈R〉]}jk,

where the last equality is justified by Lemma 1.

Step 4 is to complete the proof of the theorem. It remains to show that (5.12) holds for
j < k. Both sides of equation (5.3) are symmetric, since L̇(t) and Φ(L(t), t) are symmetric
in view of the symmetricity of L(t), and [L, 〈R〉] is symmetric by (1.24). Therefore, the
equality (5.12) holds for j < k since in view of Steps 2 and 3 it is valid for j > k. 2

To prove Theorem 2, we need the following

Lemma 4 Let a Jacobi matrix L(t) ∈ L is such that

L̇(t) =
∑̀
i=0

ϕi(t)Li(t) + [L(t), S(t)], t ∈ [0, T ] (5.18)

for some matrix-valued function S(t) and scalar-valued ϕi(t) , i = 0, . . . , `. Then its
powers Lk(t) meet the following equation:

d

dt
(Lk(t)) = k

∑̀
i=0

ϕi(t)Li+k−1(t) + [Lk(t), S(t)], t ∈ [0, T ] , k = 1, 2, . . . (5.19)

P r o o f Let us check (5.19) for k = 2. Denoting Φ(t) =
∑̀
i=0

ϕi(t)Li(t), we can write

d

dt
(L2(t)) =

(
d

dt
L(t)

)
L(t) + L(t)

d

dt
L(t) = (Φ(t) + L(t)S(t)− S(t)L(t))L(t) +

L(t)(Φ(t) + L(t)S(t)− S(t)L(t)) = Φ(t)L(t) + L(t)Φ(t) +

L2(t)S(t)− S(t)L2(t) = 2
∑̀
i=0

ϕi(t)Li+1(t) + [L2(t), S(t)].

Now the standard induction arguments serve to complete the proof. 2

P r o o f of Theorem 2 If L(t) satisfies the generalized Lax equation (3.3), then its
moments sk(t) = {Lk(t)}00 satisfy, in view of Lemma 4, the following system, k = 0, 1, . . . :

ṡk(t) = { d
dt
Lk(t)}00 = k

∑̀
i=0

ϕi(t)si+k−1(t) + [Lk(t), S(t)]00 , (5.20)

where now

S(t) = 〈Φ(L(t), t)DL(t) +
1
2
Θ(L(t), t)〉,
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Φ(L(t), t) =
∑̀
i=0

ϕi(t)Li(t),

Θ(L(t), t) =
`+m−1∑

j=0

θj(t)Lj(t); s−1 = 0.

Using (1.21) let us rewrite

[Lk(t), S(t)]00 = [Lk(t), 〈Φ(L(t), t)DL(t)〉]00 + [Lk(t),
1
2
〈Θ(L(t), t)〉]00 . (5.21)

The first term on the right-hand side of (5.21) is equal to zero by formula (1.26), while
the second term can be computed via formula (1.25):

[Lk(t),
1
2
〈Θ(L(t), t)〉]00 = {Lk(t)Θ(L(t), t)}00 − {Lk(t)}00 · {Θ(L(t), t)}00 =

`+m−1∑
j=0

θj(t)Lj+k(t)


00

− {Lk(t)}00Θ00(t) =

`+m−1∑
j=0

θj(t)sj+k(t)− sk(t)Θ00(t),

where Θ00(t) is a short notation for {Θ(L(t), t)}00. Thus (5.20) can be rewritten as
follows:

ṡk(t) = k
∑̀
i=0

ϕi(t)si+k−1(t) +
`+m−1∑

j=0

θj(t)sj+k(t)− sk(t)Θ00(t) . (5.22)

Multiplying both sides of (5.22) by

N(t) = exp
(∫ t

0
Θ00(τ)dτ

)
, (5.23)

and denoting hk(t) = N(t)sk(t), one can easily obtain

ḣk(t) = k
∑̀
i=0

ϕi(t)hi+k−1(t) +
`+m−1∑

j=0

θj(t)hj+k(t), k = 0, 1, . . . ; h−1 = 0 , (5.24)

which is the same as (3.11). 2

P r o o f of Theorem 3 Let us consider (hk(t))∞k=0 which is a moment sequence
for an arbitrary measure ρ(·, t) ∈ M, and which satisfies (3.11) or the equivalent system

(5.24). Let us take any polynomial F (λ, t) =
s∑

k=0
fk(t)λk , with continuously differentiable

coefficients fk(t), and prove that the basic differentiation formula (2.12) still holds. Indeed,

d

dt

∫
R
F (λ, t)dρ(λ, t) =

d

dt

∫
R

(
s∑

k=0

fk(t)λk

)
dρ(λ, t) =

d

dt

(
s∑

k=0

fk(t)hk(t)

)
=

s∑
k=0

dfk(t)
dt

hk(t) +
s∑

k=0

fk(t)ḣk(t)
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and, after substituting ḣk(t) from (5.24), we obtain

d

dt

∫
R
F (λ, t)dρ(λ, t) =

∫
R

∂F (λ, t)
∂t

dρ(λ, t) +

s∑
k=0

fk(t)

k∑̀
i=0

ϕi(t)hi+k−1(t) +
`+m−1∑

j=0

θj(t)hj+k(t)

 =

∫
R

∂F (λ, t)
∂t

dρ(λ, t) +
s∑

k=0

∑̀
i=0

∫
R
(fk(t) · kλk−1)(ϕi(t)λi)dρ(λ, t) +

s∑
k=0

`+m−1∑
j=0

∫
R
(fk(t)λk)(θj(t)λj)dρ(λ, t) =

∫
R

∂F (λ, t)
∂t

dρ(λ, t) +
∫

R

∂F (λ, t)
∂λ

Φ(λ, t)dρ(λ, t) +
∫

R
F (λ, t)Θ(λ, t)dρ(λ, t),

as needed. Since the ISP has a unique solution, formulas (1.7) and (1.10) lead to the same
Jacobi matrix L(t) ∈ L. Thus, by repeating the arguments of the proof of Theorem 1, we
can conclude that L(t) meets (3.3). 2

6 Uniqueness of solutions of the Cauchy problem

Let us return to the Cauchy problem (3.3), (3.8). We consider its solutions in the following
class: the entries of the Jacobi matrix L(t) ∈ L are continuously differentiable functions
with respect to t, and the sequences an(t) > 0, bn(t) ∈ R (n = 0, 1, . . .) are uniformly
bounded on [0, T ], i.e., there exists a positive number Q such that

‖L(t)‖ ≤ Q < +∞, t ∈ [0, T ] . (6.1)

Theorem 4 Let the coefficients ϕi(t), ψi(t) of polynomials Φ(λ, t),Ψ(λ, t) be (real)
analytic functions, t ∈ [0, T ]. Then any two solutions L1(t), L2(t) of the Cauchy problem
(3.3), (3.8) from the class defined just above, for which L1(0) = L2(0), are identically
equal.

Remark 4 If the coefficients ϕi(t), ψi(t) are analytic or smooth (i.e., belong to C∞)
then every solution of (3.3) from our class is automatically smooth. This is easily seen by
inspecting the right hand side of the equivalent system (3.4), (3.5).

Before proving Theorem 4 we need several auxiliary results.
Let Jacobi matrix L(t) be any solution of the generalized Lax equation (3.3):

L̇(t) = Φ(L(t), t) + [L(t), 〈Φ(L(t), t)DL(t) +
1
2
Θ(L(t), t)〉], t ∈ [0, T ] , (6.2)

and let dρ̃(λ, t) be its unique spectral measure such that ρ̃(R, t) = 1, t ∈ [0, T ]. It is
convenient to normalize the spectral measure of L(t) (which is defined for every t ∈ [0, T ]
up to a scalar factor) as follows:

dρ(λ, t) = q(t)dρ̃(λ, t), ρ(R, t) = q(t),

q(t) = exp
(∫ t

0

∫
R

Θ(λ, τ)dρ̃(λ, τ) dτ
)
, t ∈ [0, T ]. (6.3)
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Thus, without lost of generality we can assume that the spectral measure dρ(λ, t) of L(t)
is such that

ρ̇(R, t) =
∫

R
Θ(λ, t)dρ(λ, t), t ∈ [0, T ]. (6.4)

In view of (6.1) there exists a finite interval [a, b] ∈ R which contains for every t ∈ [0, T ]
the support of dρ(λ, t) :

supp dρ(λ, t) ⊂ [a, b], (6.5)

(in fact, we can take a = −Q, b = Q).

Lemma 5 For every complex number z ∈ C\[a, b], the following formula holds

d

dt

∫
R

1
λ− z

dρ(λ, t) =
∫

R

{
− Φ(λ, t)

(λ− z)2
+

Θ(λ, t)
λ− z

}
dρ(λ, t), t ∈ [0, T ]. (6.6)

P r o o f Fix z ∈ C\[a, b] and let Rz(t) = (L(t) − z1)−1 be a resolvent of the
bounded operator L(t) in the space `2. The operator-valued function Rz(t) is continuously
differentiable with respect to t on [0, T ] in a strong sense. Therefore, formulas (6.2) and
(1.21) imply that

Ṙz(t) = −Rz(t)(L(t)− z1)·Rz(t) = −Rz(t)L̇(t)Rz(t) =

−Rz(t){Φ(L(t), t) + [L(t), 〈Φ(L(t), t)DL(t) +
1
2
Θ(L(t), t)〉]}Rz(t) =

−R2
z(t)Φ(L(t), t)−Rz(t)[L(t)− z1, 〈Φ(L(t), t)DL(t) +

1
2
Θ(L(t), t)〉]Rz(t) =

−R2
z(t)Φ(L(t), t) + [Rz(t), 〈Φ(L(t), t)DL(t) +

1
2
Θ(L(t), t)〉] =

−R2
z(t)Φ(L(t), t) + [Rz(t), 〈Φ(L(t), t)DL(t)〉] + [Rz(t), 〈

1
2
Θ(L(t), t)〉]. (6.7)

In particular, for the upper left hand side entry of corresponding matrix we get:

{Ṙz(t)}00 = −{R2
z(t)Φ(L(t), t)}00 + [Rz(t), 〈Φ(L(t), t)DL(t)〉]00 +

[Rz(t), 〈
1
2
Θ(L(t), t)〉]00 = −{R2

z(t)Φ(L(t), t)}00 +

2{Rz(t)Φ(L(t), t)DL(t)}00 − 2{Rz(t)}00{Φ(L(t), t)DL(t)}00 +
{Rz(t)Θ(L(t), t)}00 − {Rz(t)}00{Θ(L(t), t}00,

where formula (1.25) is invoked. Since DL(t) is a strictly upper triangular matrix, the
entry {CDL(t)}00 vanishes for an arbitrary bounded operator C . Hence we can rewrite
the last equation as follows:

{Ṙz(t)}00 = −{R2
z(t)Φ(L(t), t)}00 + {Rz(t)Θ(L(t), t)}00 −

{Rz(t)}00{Θ(L(t), t)}00, t ∈ [0, T ], z ∈ C\[a, b]. (6.8)

Using the general formula (1.17) and taking into account (6.4), we obtain

d

dt

( 1
ρ(R, t)

∫
R

1
λ− z

dρ(λ, t)
)

=
d

dt
{Rz(t)}00 = {Ṙz(t)}00 =



136 Y.BEREZANSKY and M.SHMOISH

− 1
ρ(R, t)

∫
R

Φ(λ, t)
(λ− z)2

dρ(λ, t) +
1

ρ(R, t)

∫
R

Θ(λ, t)
λ− z

dρ(λ, t)−

1
ρ2(R, t)

∫
R

1
λ− z

dρ(λ, t) ·
∫

R
Θ(λ, t)dρ(λ, t) =

1
ρ(R, t)

∫
R

{
− Φ(λ, t)

(λ− z)2
+

Θ(λ, t)
λ− z

}
dρ(λ, t)−

ρ̇(R, t)
ρ2(R, t)

∫
R

1
λ− z

dρ(λ, t),

which yields the required formula (6.6). 2

Using Theorems 2 and 3 one can show that the basic formula (2.12) is valid under
the assumption that ρ(·, t) is the spectral measure of the solution L(t) (before we proved
(2.12) when assuming that ρ(·, t) is the (Φ,Ψ)-transform of ρ(·, 0) ). Below we formulate
this result precisely and give an alternative proof on the base of Lemma 5.

Lemma 6 Let F (λ, t) be a complex valued function which is analytic with respect to λ in
some neighborhood G ⊂ C of the interval [a, b] (for every fixed t ∈ [0, T ]) and continuously
differentiable with respect to t in [0, T ] (for every fixed λ ∈ G). Then the function

f(t) =
∫

R
F (λ, t)dρ(λ, t), t ∈ [0, T ], (6.9)

is continuously differentiable and its derivative has the form

d

dt

∫
R
F (λ, t)dρ(λ, t) =

∫
R

(
F ′(λ, t)Φ(λ, t) + Ḟ (λ, t) + F (λ, t)Θ(λ, t)

)
dρ(λ, t). (6.10)

P r o o f Let Γ ⊂ G be some contour which encloses [a, b]. Then it follows from the
Cauchy formula that∫

R
F (λ, t) dρ(λ, t) =

∫
R

(
1

2πi

∮
Γ

F (ζ, t)
ζ − λ

dζ

)
dρ(λ, t) =

− 1
2πi

∮
Γ

(∫
R

1
λ− ζ

dρ(λ, t)
)
F (ζ, t)dζ, t ∈ [0, T ].

Using this representation and formula (6.6) we get:

d

dt

∫
R
F (λ, t) dρ(λ, t) = − 1

2πi

∮
Γ

{(∫
R

1
λ− ζ

dρ(λ, t)
)·
F (ζ, t)+(∫

R

1
λ− ζ

dρ(λ, t)
)
Ḟ (ζ, t)

}
dζ = − 1

2πi

∮
Γ

{(∫
R

(
− Φ(λ, t)

(λ− ζ)2
+

Θ(λ, t)
λ− ζ

)
dρ(λ, t)

)
F (ζ, t) +

(∫
R

1
λ− ζ

dρ(λ, t)
)
Ḟ (ζ, t)

}
dζ =∫

R

{ 1
2πi

∮
Γ

F (ζ, t)
(λ− ζ)2

dζ · Φ(λ, t) +
1

2πi

∮
Γ

F (ζ, t)
ζ − λ

dζ ·Θ(λ, t) +

1
2πi

∮
Γ

Ḟ (ζ, t)
ζ − λ

dζ
}
dρ(λ, t) =

∫
R
{F ′(λ, t)Φ(λ, t) +

F (λ, t)Θ(λ, t) + Ḟ (λ, t)}dρ(λ, t),
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as needed. 2

Remark 5 The assertions of Lemmas 5 and 6 hold true for polynomials Φ(λ, t), Ψ(λ, t)
whose t dependent coefficients are continuously differentiable (as in Section 2).

Lemma 7 Assume that the coefficients ϕi(t), ψi(t) of polynomials Φ(λ, t),Ψ(λ, t), and
the function F (·, t) from Lemma 6 are smooth, i.e., belong to the class C∞([0, T ]). Then
the function (6.9) is also smooth and its derivatives are given by the following formula:

f (n)(t) :=
dn

dtn

(∫
R
F (λ, t)dρ(λ, t)

)
=
∫

R
(MnF )(λ, t)dρ(λ, t), n = 0, 1, . . . , (6.11)

where the differential expression M is of the form

(MF )(λ, t) = Φ(λ, t)
(
∂F

∂λ

)
(λ, t) +

(
∂F

∂t

)
(λ, t) + Θ(λ, t)F (λ, t),

λ ∈ [a, b], t ∈ [0, T ]; M0F := F. (6.12)

P r o o f For n = 0 and n = 1 formula (6.11) is the same as (6.9) and (6.10),
respectively. Under our assumptions the function (MF )(λ, t), (λ, t) ∈ G× [0, T ] has the
same differential properties as F (λ, t). It follows from Lemma 6 that the function(

df

dt

)
(t) =

∫
R
(MF )(λ, t)dρ(λ, t)

is differentiable, and for its derivative the representation (6.10) is valid. This justifies
(6.11) for n = 2. One can easily complete the proof by induction. 2

P r o o f of Theorem 4 Let L1(t) and L2(t) be solutions of the Cauchy problem
(3.3), (3.8) such that L1(0) = L2(0). Let us take the corresponding spectral measures
ρ1(λ, t) and dρ2(λ, t), which are normalized as in (6.3). This means that they both meet
the condition (6.4). The inverse spectral problem has a unique solution which can be
found via formulas (1.8)–(1.10). Hence, to prove the theorem it is sufficient to show that
the moment sequences of measures ρ1(·, t) and ρ2(·, t) are the same on [0, T ]. Introduce
for every t ∈ [0, T ] a real-valued measure B(R) 3 ∆ 7→ ω(∆, t) = ρ1(∆, t)− ρ2(∆, t) ∈ R.
We need to prove that all the moments of the measure ω(·, t) vanish:∫

R
λqdω(λ, t) = 0 , q = 0, 1, . . . , t ∈ [0, T ] . (6.13)

To do this, let us take any nonnegative integer q and prove that the function

f(t) =
∫

R
λq dω(λ, t) , (6.14)

is identically equal to 0 on [0, T ].
By Lemma 7 we have f ∈ C∞([0, T ]), and

f (n)(t) =
∫

R
(MnF )(λ, t)dω(λ, t) , F (λ, t) = λq , n = 0, 1, . . . , t ∈ [0, T ] . (6.15)
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Under our assumptions dρ1(λ, 0) = dρ2(λ, 0), i.e., ω(·, 0) = 0, and hence f (n)(0) = 0,
n = 0, 1, · · · . We shall prove below that for some constant K > 0

|f (n)(t)| ≤ Knn!, n = 1, 2, . . . , t ∈ [0, T ]. (6.16)

These estimates ensure the analyticity of f(t) in some neighborhood of [0, T ], and therefore
the conditions f (n)(0) = 0, n = 0, 1, . . ., will give the equality f(t) = 0 for all t ∈ [0, T ].

Let us prove the estimates (6.16). Bearing in mind (6.15), (2.1), and (2.13), we take
r enough large and write down the polynomials F, Φ, and Θ in the following form:

F (λ, t) =
r−1∑
i=0

fi(t)λi , Φ(λ, t) =
r−1∑
i=0

ϕi(t)λi , Θ(λ, t) =
r−1∑
i=0

θi(t)λi , (6.17)

where the coefficients fi(t), ϕi(t), θi(t), i = 0, 1, · · · , r − 1, are analytic in some domain
D ⊃ [0, T ] of the complex plane (clearly, some of the coefficients are zero). One can see
that the expressions (MnF )(λ, t) are polynomials in λ with analytic in the same domain
D t-dependent coefficients:

F (λ, t) = λq ,

(MF )(λ, t) = Φ(λ, t)(
∂

∂λ
F )(λ, t) + (

∂

∂t
F )(λ, t) + Θ(λ, t)F (λ, t) =

∑̀
i=0

qϕi(t)λi+q−1 +
`+m−1∑

i=0

θi(t)λi+q , (6.18)

(M2F )(λ, t) = Φ(λ, t)(
∂

∂λ
MF )(λ, t) + (

∂

∂t
MF )(λ, t) + Θ(λ, t)(MF )(λ, t) = . . . ,

(M3F )(λ, t) = Φ(λ, t)(
∂

∂λ
M2F )(λ, t) + (

∂

∂t
M2F )(λ, t) + Θ(λ, t)(M2F )(λ, t) = . . . ,

and so forth. The estimate for derivatives of any analytic function [0, T ] 3 t 7→ g(t) ∈ C

∃Cg > 0 : |g(n)(t)| =
∣∣∣ n!
2πi

∮
Γ

g(ζ)
(ζ − t)n+1

dζ
∣∣∣ ≤ Cn+1

g n! ,

n = 0, 1, . . . , t ∈ [0, T ] , (6.19)

(fixed Γ encloses [0, T ], Γ ⊂ D) ensures the existence of constants A,B ≥ 1 such that the
absolute value of every derivative ∂n/∂tn of the terms

fi(t)λjk , ϕi(t)λjk , θi(t)λjk , (6.20)

is not greater than ABnn!, n = 0, 1, . . ., (λ, t) ∈ [a, b] × [0, T ], i, j, k = 0 . . . , r − 1. For
example, we can take

A = (r − 1) max{1, Qr−1}, B = maxi{Cfi
, Cϕi , Cθi

}, i = 0, 1, . . . , r − 1,

where Q is given by (6.1), while the constants C come from (6.19).
The polynomial F from (6.17) contains r terms of the first type from (6.20), therefore

|F (λ, t)| ≤ r ·A, (λ, t) ∈ [a, b]× [0, T ]. The polynomial MF , according to (6.12), contains
less than r ·r ·3 terms, where every such term is a product of two terms of the type (6.20) or
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some of their first derivatives ∂/∂t . Therefore, one can write |(MF )(λ, t)| ≤ 3r2 ·A ·AB1!,
(λ, t) ∈ [a, b] × [0, T ]. Similarly, the polynomial M2F contains less than r · 3r2 · 3 terms,
each of which is a product of three terms of type (6.20) or some of their derivatives
∂/∂t, ∂2/∂2t. Hence, one has |(M2F )(λ, t)| ≤ 32r3 · A · AB · AB22!, (λ, t) ∈ [a, b] ×
[0, T ]. Continuing this procedure, it is easy to understand that for every n = 3, 4, . . .
the polynomial MnF contains less than r · 3n−1rn · 3 = 3nrn+1 terms, each of which is a
product of n + 1 terms of type (6.20) or some of their derivatives ∂ν1/∂tν1 , . . . , ∂νk/∂tνk ,
where ν1 + · · · + νk ≤ n. Therefore, the absolute value of every such product does not
exceed An+1Bν1 · · ·Bνkν1! . . . νk! ≤ An+1Bnn!, in [a, b]× [0, T ], and we have

|(MnF )(λ, t)| ≤ 3nrn+1 ·An+1Bnn! , (λ, t) ∈ [a, b]× [0, T ] , n = 0, 1, . . . .

This estimate and (6.15) prove (6.16), which completes the proof of the theorem. 2

Remark 6 The application of Theorem 4 to the linear system of Theorems 2 and 3 gives
the uniqueness of the solution for the Cauchy problem (3.11), (3.12) in the class of moment
sequences (hk(t))∞k=0 of measures ρ(·, t) ∈ M. Because of the factor k on the right hand
side of (3.11), in general the operator of this linear system is unbounded.

7 Modification and examples

Let us consider instead of (2.7) the following partial differential equation:

∂s(λ, t)
∂λ

Φ(λ, t) +
∂s(λ, t)
∂t

= Ψ(λ, t)s(λ, t) . (7.1)

Let s(λ, t) be its nonnegative solution, such that

s(λ, 0) = 1, λ ∈ R . (7.2)

Replacing r(λ, t) by s(λ, t) in the procedure of Section 2, we can construct a new measure
σ(·, t) ∈ M : dσ(λ, t) = s(λ, t)ρ̃(λ, t). It follows from (7.1) that if λ̇(t) = Φ(λ(t), t) then
one has:

d

dt
s(λ(t), t) = Ψ(λ(t), t)s(λ(t), t) . (7.3)

The basic formula (2.12) (with Ψ in place of Θ) remains true for this measure (com-
pare (2.11), (2.13) and (7.3)). Hence, the corresponding Jacobi matrix L(t) meets the
appropriately modified equation (3.3):

L̇(t) = Φ(L(t), t) + [L(t), 〈Φ(L(t), t)DL(t) +
1
2
Ψ(L(t), t)〉] . (7.4)

Remark 7 Since Θ(λ, t) in (2.13) has a special structure, equation (7.4) is more general
than our original equation (3.3). However, in order to solve (7.4) we have to integrate not
only equation (2.3) but also (7.1) with initial condition (7.2).

Remark 8 The moment equation (3.11) (or, which is the same, (5.24)) should be re-
placed by the following equation:

ḣk(t) = k
∑̀
i=0

ϕi(t)hi+k−1(t) +
m∑

j=0

ψj(t)hj+k(t) , (7.5)
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where ϕi(t) and ψj(t) are the coefficients of Φ(λ, t) and Ψ(λ, t), as in (2.1).
We are going to write down the differential-difference equations corresponding to (7.4)

for the case when

Φ(λ, t) = ϕ0 + ϕ1λ+ ϕ2λ
2, Ψ(λ, t) = ψ0 + ψ1λ , (7.6)

where ϕi and ψj are real constants. The following terms appearing in (3.4), (3.5) are
to be expressed through an and bn:

Φjk = {Φ(L(t), t)}jk = {ϕ01 + ϕ1L(t) + ϕ2L
2(t)}jk , j = k, k + 1, k + 2 ,

Ψjk = {Ψ(L(t), t)}jk = {ψ01 + ψ1L(t)}jk , j = k, k + 1 ,
Ωjk = {Φ(L(t), t)DL(t)}jk = {ϕ0DL(t) + ϕ1L(t)DL(t) + ϕ2L

2(t)DL(t)}jk ,

j = k + 1, k + 2 .

We have

Φk+1,k = ak(ϕ1 + ϕ2bk + ϕ2bk+1) ,
Φk+1,k−1 = ϕ2ak−1ak ,

Φkk = ϕ0 + ϕ1bk + ϕ2(a2
k−1 + b2k + a2

k) ,
Ψkk = ψ1bk + ψ0 ,

Ψk+1,k = ψ1ak .

Since Φ(L(t), t) is a 5-diagonal matrix and DL(t) is a strictly upper triangular matrix,
one has: Ωk+2,k = 0. Moreover, it follows from (1.15) that

Ωk+1,k = Φk+1,k−1{DL(t)}k−1,k = ϕ2ak−1ak
k

ak−1
= kϕ2ak .

Substituting all these expressions into (3.4) and (3.5) (where Θ is replaced by Ψ), we
obtain the following nonlinear equations:

ȧn =
1
2
an(2ϕ1 + 2ϕ2(bn + bn+1) + ψ1(bn+1 − bn) + 2nϕ2(bn+1 − bn)) , (7.7)

ḃn = ϕ0 + ϕ1bn + a2
n−1(ϕ2 − ψ1 − 2ϕ2(n− 1)) + a2

n(ϕ2 + ψ1 + 2ϕ2n) + ϕ2b
2
n ,(7.8)

n = 0, 1, . . . ; a−1 = 0 .

Let us consider several concrete examples. The procedure of integration of the corre-
sponding equations will be explained at the end of this section.

Example 1 For the following choice of coefficients,

ϕ0 = −4δ, ϕ1 = ψ0 = 0 , ϕ2 = δ , ψ1 = δ − 1 , (7.9)

after the change of variables

An = a2
n, Bn = bn , (7.10)
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we get from (7.7) and (7.8) the so-called inhomogeneous Toda lattice [20] on semi-axis:

Ȧn = An{Bn(1− δ(2n− 1))−Bn+1(1− δ(2n+ 3))} ,
Ḃn = An−1(1− 2δ(n− 1))−An(1− 2δ(n+ 1)) + δ(B2

n − 4) , (7.11)
n = 0, 1, . . . ; A−1 = 0 .

Example 2 If we take ϕ0 = ϕ1 = ψ0 = 0 and ϕ2 = ψ1 = 1, we get from (7.7) and
(7.8) the following equations:

ȧn =
1
2
an(bn+1(3 + 2n)− bn(2n− 1)) ,

ḃn = 2a2
n−1(1− n) + 2a2

n(1 + n) + b2n , (7.12)
n = 0, 1, . . . ; a−1 = 0 .

It follows from (7.5) that the corresponding moments are subject to the equation ḣk(t) =
(k + 1)hk+1(t) k = 0, 1, . . . , which can be easily integrated:

h0(t) =
∞∑

j=0

hj(0)tj = {(1− tL0)−1}00 ,

hk(t) =
1
k!

dkh0(t)
dtk

=
∞∑

j=0

(k + j)!
k!

hk+j(0) · tj ,

where hj(0) = {Lj
0}00 , j = 0, 1, · · · , are initial moments of L0 ∈ L.

In view of the estimate hj(0) ≤ ‖L0‖j , j = 0, 1, . . . , all the series converge absolutely
and uniformly on the interval t ∈ [0, T ] for every positive T such that T < ‖L0‖−1.
Therefore, the solution of the Cauchy problem on this interval can be found via formulas
(1.10) or (1.11) as will be explained below.

Let polynomials

Φ(λ, t) =
∑̀
j=0

ϕ2i+1(t)λ2i+1 , Ψ(λ, t) =
m∑

i=0

ψ2i(t)λ2i

be odd and even functions of λ, respectively. Assume that all the diagonal entries
bn(0) of the initial Jacobi matrix L0 are zero. This is equivalent to the fact that the
corresponding initial measure ρ(·, 0) is even, i.e., its support is a symmetric subset of R
and for any odd integrable function g(λ) the following integral vanishes:∫

R
g(λ)dρ(·, 0) = 0.

In the present situation the function s(λ, t) is even, as one can see from (2.3), (7.1) under
our assumptions on Φ(λ, t) and Ψ(λ, t). Therefore, the mapping (2.4) (more precisely, its
counterpart for our modification) produces the measure ρ(·, t), which is also even. Thus,
the solution L(t) of the Cauchy problem corresponding to equation (7.4) preserves this
extra structure for all t for which it exists (cf. [2]):

bn(t) = 0, n = 0, 1, . . . , (7.13)
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and equations (3.4), (3.5) are reduced to the following system:

ȧn(t) = {Φ(L(t), t)}n+1,n +
1
2
an({Ψ(L(t), t)}n+1,n+1 − {Ψ(L(t), t)}nn) +

an+1{Φ(L(t), t)DL(t)}n+2,n − an−1{Φ(L(t), t)DL(t)}n+1,n−1, (7.14)
n = 0, 1, . . . ; a−1 = 0 .

One can show that the right hand side of (7.14) is a product of an(t) and some poly-
nomial function in variables ak(t) , and therefore, these equations can be regarded as
generalizations of the classical Lotka-Volterra system.

Example 3 a) If we take Φ(λ, t) = 0 and Ψ(λ, t) = λ2, and substitute xn = a2
n, then

equation (7.14) transforms into the Kac-van Moerbeke system:

ẋn(t) = xn(xn+1 − xn−1), n = 0, 1, · · · ; x−1 = 0

(see e.g. [7, 16, 23, 4]).
b) Consider the following equation :

ẋn(t) = (xn + n)(xn+1 − xn−1), n = 0, 1, . . . ; x−1 = 1 . (7.15)

Let us rewrite (7.15) in variables an =
√
xn + n, n = 0, 1, . . .:

ȧn(t) = −an +
1
2
an(a2

n+1 − a2
n−1), n = 0, 1, . . . ; a−1 = 0 . (7.16)

It can be easily checked that this equation is of the form (7.14) with Φ(λ, t) = −λ and
Ψ(λ, t) = λ2. In view of Theorem 1 this allows us to integrate (7.16) and to find the
solution of (7.15) (the details will be provided below).
c) By taking Φ(λ, t) = λ3 and Ψ(λ, t) = λ2 we get from (7.14):

ȧn(t) =
1
2
an{a2

n−1(3− 2n) + 2a2
n + a2

n+1(3 + 2n)}, n = 0, 1, . . . ; a−1 = 0 .

After the change of variables xn = 2na2
n we obtain another kind of ”nonisospectral

Kac-van Moerbeke equation”:

ẋn(t) = xn(xn+1−xn−1)+
1
2n
xn

(
n

n+ 1
xn+1 + xn +

n

n− 1
xn−1

)
, n = 0, 1, · · · ; x−1 = 0 .

(7.17)
Note that the Cauchy problem for (7.17) can be locally resolved by the ISP method
provided the initial values xn(0) grow with n not too fast (see below).

Let us return to Example 1 and present the ISP method of integration of the inho-
mogeneous Toda lattice (7.11). In this case, according to (7.9), the polynomials Φ and
Ψ have the form Φ(λ, t) = δ(λ2 − 4), Ψ(λ, t) = (δ − 1)λ. Therefore the Cauchy problems
(2.3) and (7.1), (7.2) are as follows:

dλ(t)
dt

= δ(λ2(t)− 4) , λ(0) = µ; (7.18)

∂s(λ, t)
∂λ

δ(λ2 − 4) +
∂s(λ, t)
∂t

= (δ − 1)λs(λ, t) , (7.19)

s(λ, 0) = 1, λ ∈ R .
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Let supp dρ(·, λ) be a spectrum set of the initial Jacobi matrix. It is easy to calculate the
solution λ(t, µ) of (7.18):

λ(t, µ) = 2
µ+ 2 + (µ− 2)e4δt

µ+ 2− (µ− 2)e4δt
, µ ∈ supp dρ(·, λ) , t ∈ [0, T ] , (7.20)

where T > 0 should be chosen in such a manner that for all µ ∈ supp dρ(·, λ) formula
(7.20) makes sense. Note that a small enough number T > 0 with this property always
exists.

The measure ρ̃(·, t) is constructed as the image of ρ(·, 0) under the mapping R 3 µ 7→
ωt(µ) = λ(t, µ) ∈ R. To solve the Cauchy problem (7.19), we explore the method of
characteristics (see e.g., [27]). We rewrite equation (7.19) using the classical variables
(x, y, z) in place of (λ, t, s) :

δ(x2 − 4)
∂z(x, y)
∂x

+
∂z(x, y)
∂y

= (δ − 1) x z(x, y) . (7.21)

Our next objective is to find a surface z = z(x, y) passing through the curve ` : z(x, 0) = 1,
x ∈ R, y = 0, in the space (x, y, z). Let us represent the curve ` in the parametric form
` = {(x, y, z) : x = v, y = 0, z = 1; v ∈ R}, and consider the characteristic system of
equation (7.21):

dx

du
= δ(x2 − 4),

dy

du
= 1,

dw

du
= (δ − 1) x w . (7.22)

By integrating (7.22) with the initial data x(0) = v, y(0) = 0, w(0) = 1 we get the
(u, v)-parametric equations of our integral surface:

x = x(u, v) = 2
v + 2 + (v − 2)e4δu

v + 2− (v − 2)e4δu
, y = y(u, v) = u ,

z = w(u, v) = e2(δ−1)u
(

1
4
(v + 2− (v − 2)e4δu)

) 1−δ
δ

, u, v ∈ R . (7.23)

It follows by elimination of u, v from (7.23) that the solution of the Cauchy problem (7.19)
is

z(x, y) = 2
2(1−δ)

δ e2(δ−1)y
(
x+ 2− (x− 2)e−4δy

) δ−1
δ , x, y ∈ R , (7.24)

or, in the old variables,

s(λ, t) = 2
2(1−δ)

δ e2(δ−1)t
(
λ+ 2− (λ− 2)e−4δt

) δ−1
δ , λ ∈ R , t ∈ [0, T ] . (7.25)

The corresponding spectral measure dσ(λ, t) has the form dσ(λ, t) = s(λ, t)dρ̃(λ, t), where
ρ̃(·, t) is constructed via (7.20). The function s(λ, t) should be nonnegative on supp ρ(·, t),
therefore we take a small enough T > 0.

The solution of the Cauchy problem (7.11) is unique (by Theorem 4) and can be found
by the procedure of Theorem 1. One should replace ρ(·, t) by σ(·, t), take into account
relations (7.10), and compute an(t) and bn(t)) via formulas (1.7) or (1.10).
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To calculate integrals with respect to the measure dσ(λ, t) (this is a necessary step when
using Theorem 1), it is convenient to apply the following formula for enough arbitrary
function F (λ): ∫

R
F (λ) dσ(λ, t) = 2

2(1−δ)
δ e2(δ−1)t

∫
R
F

(
2
µ+ 2 + (µ− 2)e4δt

µ+ 2− (µ− 2)e4δt

)
×

(µ+ 2− (µ− 2)e4δt)
1−δ

δ dρ(µ, 0) , t ∈ [0, T ] , (7.26)

where ρ(·, 0) is a spectral measure of the initial Jacobi matrix. This formula is a conse-
quence of (2.10), (7.20) and (7.25). The value of T > 0 is small enough and depends on
supp ρ(·, 0) : T is such that µ+ 2− (µ− 2)e4δt > 0 for µ ∈ suppρ(·, 0) and t ∈ [0, T ].

Remark 9 If δ = 0 then the inhomogeneous Toda lattice (7.11) becomes the classical
one (3.7) up to a simple change of variables. It follows from (7.20) that in this case for
all t ∈ [0, T ] : λ(t, µ) = µ, and therefore ρ̃(·, t) = ρ(·, 0). It is also easy to verify that the
solution (7.25) tends to e−λt when δ → 0, which is consistent with the classical situation.

For Example 2, when Φ = λ2, Ψ = λ, the calculations are even simplier, and one can
easily get instead of (7.20), (7.25) and (7.26), the following formulas:

λ(t, µ) =
µ

1− µt
, s(λ, t) = 1 + λt ,∫

R
F (λ) dσ(λ, t) =

∫
R
F (

µ

1− µt
)

1
1− µt

dρ(µ, 0) , t ∈ [0, T ] . (7.27)

If the initial Jacobi matrix is stable (the spectrum is in the left semi-axis), then T > 0 can
be chosen arbitrarily, while in general it has to be small enough to ensure that 1− µt > 0
for µ ∈ supp (ρ·, 0) and t ∈ [0, T ]. By Theorem 4 the solution of the Cauchy problem
(7.12) is unique and can be found by means of Theorem 1 for t ∈ [0, T ].

Concerning Example 3, the situation is as follows. In case (a) we have the classical
isospectral equation. As for cases (b) and (c), we can apply the scheme of Example 1 and
get the solutions by means of Theorem 1. The formulas (7.20), (7.25), and (7.26) in case
(b) should be replaced by

λ(t, µ) = µe−t , s(λ, t) = e
1
2
λ2(e2t−1) ,∫

R
F (λ) dσ(λ, t) =

∫
R
F (µe−t)e

1
2
µ2(1−e−2t)dρ(µ, 0) , t ∈ [0, T ] ,

respectively, where T > 0 can be chosen arbitrarily.

In case (c) we have

λ(t, µ) =
µ√

1− 2µ2t
, s(λ, t) =

√
1 + 2λ2t ,

∫
R
F (λ)dσ(λ, t) =

∫
R
F

(
µ√

1− 2µ2t

)
1√

1− 2µ2t
dρ(µ, 0) , t ∈ [0, T ] ,

T > 0 is chosen small enough, such that 1− 2µ2t > 0 for µ ∈ supp ρ(·, 0) and t ∈ [0, T ].
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